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MINIMAL SURFACES WITH Jf-INDEX 2,
7VINDEX 2 AND 7VINDEX 2

BY TAKEHIRO ITOH

For a minimal submanifold of dimension greater than 2 and with M-index 2
in a Riemannian manifold of constant curvature, Otsuki [4] gave a condition that
its geodesic codimension is 3 and some examples of such minimal submanifolds
under certain additional conditions in Euclidean, spherical and hyperbolic non-Eucli-
dean spaces. For a minimal surface with M-index 2 in a Riemannian manifold of
constant curvature, the author [2] proved that we may put formally p=Q and n=2
in the result of [4] when the ambiant spaces are spheres and solved the differential
equations. Otsuki [5] gave a condition that the geodesic codimension becomes 4
and some examples in space forms.

In the present paper, the author will study minimal surfaces with Λf-index 2,
Ti-index 2 and TVindex 2 in a Riemannian manifold of constant curvature, where
Γi-index and TVindex are analogous to those of Otsuki [3]. Furthermore, he will
give a condition that the geodesic codimension becomes 6 and a general solution
of such minimal surfaces.

The author expresses his deep gratitude to Professor T. Otsuki who en-
couraged him and gave him a lot of valuable suggestions.

§1. Minimal surfaces with M-index 2. Let M—M2+V be a (2+v)-dimensional
Riemannian manifold of constant curvature c and M=M2 be a 2-dimensinal sub-
manifold in M with the Riemannian metric induced from M, where both mani-
folds are Cj. Let ωA, G>AB=—(OBA A, B=l, 2, •••, 2+_v, be the basic and connection
forms of M on the orthonormal frame bundle F(M) which satify the structure
equations:

(1. 1) dδJA = Σ <*>AB Λ ωBl dωAB = Σ <*>AGΛ «JCB—cωA Λ ωB.A C

Let B be the subbundle of F(M) over M such that B3b=(x, βi, e2, es, •••, e2+v)
eF(M) and (x, βi, 02)eF(M), where F\M) is the orthonormal frame bundle of M.
Then, deleting bars of ωA, ωAB, on B we have

(l 2) ωa=0, o)ia = Σ Aaijωj, Aaij=Aaji,
3

dwi=o)ik Λ (UK, dωik = Σ <*>ίa Λ ωak —
a

(l 3) dcύia=(Oik Λ ωica + Σ toit Λ ωβa,β
dωaβ = Σ (*>al Λ 0)iβ + Σ ωaγ Λ O)rβ,
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where i,j, k=l, 2, i^k, a, β, f=3, 4, •••, 2+v.
For any point xeM, let Nx be the normal space to MX=TXM in MX=TXM.

For any b^B, we define a linear mapping ψb from A^ into the set of all sym-
metric matrices of order 2 by

(1. 4) ψb(Σ vaea) = Σ vaA«, Aa=(Aaίj).
a a

We call the dim ψb (ker m) at x M-index of M at x in M, where m is a linear
mapping from NX into # defined by m( Σ «#«£«) = (1/2) trace (Σ<*vaAa).

Now we suppose that M is minimal in M and of M-index 2 at each point.
Then NX is decomposed as

(1.5) NX=N'X+0, N'XLOX,

where Oχ=ψtl(ty and dim ̂ =2, which does not depend on the choice of b over
x and is smooth. Let ft be the set of bsB such that ez, e^Nr

x. From the defini-
tion of M-index, on Bι we have

(1.6) α*,=0, ί=l,2, 4<β.

LEMMA 1. Ow ft, /br a fixed β>4, κ β te^ ωSβ=ω4β=Q (modωι,ω2) and
(*)zβ — ωiβ—Q or else

LEMMA 2. W(? can choose a frame &€ft such that

(1.7) <yi3 = Λωι, ft>23=— ̂ 2, a)u = μa)2> 0)24 = μωi,

Proof. Rotating 2-frames (x, eίf e2) and (x, eB, e*} suitably, we can choose a
frame b^Bi such that

Then, putting ^14=^^1+^2 and ω24=μωι+bω2) we have
It follows from A^O that βr— &. On the other hand, since trace A^— 0, we have
=0. Hence we have a=b=Q. Since M-index is 2, μ must not be zero. Q.E.D.

Let B2 be the set of all freft satisfying (1. 7). Then since M-index is 2 every-
where on M, B2 is a smooth submanifold of ft. Making use of (1. 3) and (1. 6),
we have ωu/\o)3β+ωuAω^β=Q. Substituting (1. 7) into these equations, we have

λω i Λ MSB + μ<y2 Λ <W4θ = 0,
(1.8)

λω2 Λ <w30 — μω i Λ ω4/3 = 0,

which imply that we can put

λω3β=fβ
(1-9)

μω4β = gβωι— fβω2.

Now, by virtue of Lemma 1, we can define two linear mappings φu and
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corresponding to the normal vector fields e* and e± from Mx into Ox as follows:
for any

(1. 10) pπCX) = Σ ωβ/K-SO** φu(X) = Σ
/* β

By means of (1. 9), the two linear mappings

(1. 11) φn=Λφn and φi2

have the same images of the tangent unit sphere S1

X = {X€MX\ \\X\\ = l] and φu(X)
and φι2(X) are conjugate to each other with respect to the image. The mappings
0ιι and φ12 may be called the 1st torsion operators of M in M. We define the
second curvature k2(x) of M at x by

and call the dimension of the image of Mx by φn (or 0J2) the 1st torsion index of
M at x and denote it by Trindex XM. It is trival that Ti-index ^2 at each point
of M. If &2(#)=0, then TΊ -index ^M=0. Hence if ^2(^)=0 at each point #€M,
then the geodesic codimension of M is 2. If TVindex^l at each #€M, then the
geodesic codimension is 3, which is the case treated by Otsuki [4] for a minimal
submanifold of general dimension n.

§2. Minimal surfaces with J/-index 2 and TVindex 2. In this section we
will consider minimal surfaces with M-index 2 and TΊ-index 2 in M. Then we
can choose a frame b^B2 and local function #ι on M such that

(2.1)
0n(— ̂ i sin #ι

where ^21 = ̂ 2>0 and k22=Mmχ£S]c\\φιι(X)\\=MmXζS]j;\\φ12(X)\\. If k21*k22, then fei
and y^22 are differentiable functions on M We suppose that they are differen-
tiable functions. Let Bs be the set of all such frames bςB2. Then BΆ is a sub-
manifold of B2. On B3 we have

α>35 = -y-(CQS θιθ)ι + Sin

(2.2)

^36= — r— (—sin ΘI(L>I
Λ

Making use of (1. 7) and (2. 2), we have

0)45 = - (sin θ\ω\— cos #ι<y2),

(2. 3) ^

o>46 = - (cos ^iftίi + sin #ιft>2), oj4r =0, 6 < γ.
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Then, by means of (1. 3), (1. 7), (2. 2) and (2.3), we can verify the following

LEMMA 3. Under the above condition, on B$ we have

(2. 4) [d log λ - i (2ωi2 - σ&J} Λ (α>ι + ία>2) = 0,

(2. 5) {rf<τ+ί(l-σa)<δι}Λ(ωι+ίωa)=0,

(2. 6) dωi2=-(c-λ2-μ2)ω1/\ω2,

(2. 7) rf(g = - 2^ - 2 Λ α»2,

wA0r0 ί551=ω34 is ίA0 connetion form of the vector bundle N' = \JX^NX over M.

Furthermore, making use of (2. 2) and (2. 3), we have

LEMMA 4. On BB, for a fixed γ>6, we have ω5r=ω6r=0 (mod ωi, ω2) and ω5r

=a)Qr=Q or else

Now, since Γi-index is 2 everywhere on M, the image of Mx by φn (or ^i2)
spans 2-dimensional subspace in Ox, which we denote by N%. Let N"=(Jx€MNχ.
Then N"is a 2-dimensional normal vector bundle over M like N'. We can ortho-
gonally decompose Nx as

(2. 8) Nx=N'x+m+0'x, Ox=Nΐ+σx, N'XLO'X.

By virtue of Lemma 4, we can define two linear mappings φz\ and φ22 from
MX into Oi corresponding to the normal vector field eδ and eβ respectively as
follows: for any

ψ2i(X) = Σ o)5r(X)eΐy φ&(X) = Σ
6<r 6<r

On the other hand, since ω3r=ω4r=Q, we have

ft>45 Λ Cύζγ + ά>46 Λ <Wer = 0.

Substituting (2. 2) and (2. 3) into these equations, we may put

&2iω5r=#r(cos θiωi + sm Θιω2}+br(— sin #ι<yι+cos ι̂
(2. 9)

k22(t)6r=br(cos θiωi+sm 61.0)2}— a r(— si

which imply that the two linear mappings

$21 = #21^21 and $22

have the same images of S^ in Mx. We call φzl and $22 the {second torsion opera-
tor '$ of M in Λ/. We define the third curvature ks(x) of M at # by
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(2. 10) ft,(a)

and call the dimension of the image of Mx by φ2ί (or φ22) the second torsion index
of M at #, which we denote by TVindex XM. It is trivial that &3(#)=0 if and only
if 71

2-indexa?Λf=0. If kB(x)=Q identically on M, then the geodesic codimension of
M is 4. If TVindex is identically 1 on M, the geodesic codimension will be
5. In the next section we shall give a condition for the geodedsic codimension
to be 6 when TVindex is identically 2 on M

§3. Minimal surfaces with M-index 2, TVindex 2 and TVindex 2. In this
section we shall consider the minimal surfaces with M-index 2, TVindex 2 and
TVindex 2 and give a condition that the geodesic codimension is 6. Under
the above conditions, we can choose a frame b€B3 and a local function 02 on M
such that

02l(01 COS 0

(3. 1)
21 ( — 0ι sin #2 + 02 cos 02) =

where feι=&3>0 and ks2=Mmχς&x\\φ2i(X)\\=Mmχς$s\\φ22(X)\\ If &3ι^F&32, then
both ksi and &32 are differentiable functions on M. From now on, we suppose
that they are differentiable functions on M. Then, B± being the set of all such
frames of B3, B^ is a smooth submanifold of B3. On B± we have

(t>51 = ~ί (COS Θ20)ι
*21

(3.2)

From (3. 2) and (2. 9), we get

(3.3)

ί?
=-τ—(sin θzo)ι

α>6r=0,
«22

Making use of (3. 2) and (3. 3), we have the following

LEMMA 5. On B^ for a fixed γ>8, we have ω7r=ω8r=0 (modωi, ω2) and ωlr =
o>sr=0 or else

Proof. Since ω^γ=ω6r=
:0, we have

(1)57 Λ Wιγ + 6)58 Λ O>8r = 0)Q7 Λ Cί>7r + 6>68 Λ ft)8r = 0.

Substituting (3. 2) and (3. 3) into these equations, we get



6 TAKEHIRO ITOH

&3i(cos Θ2ωι + sin Θ2ω2) Λ ωlγ + kS2( — sin Θ2ωι + cos Θ2ω2) Λ ω8r = 0,

ksι( — sin 02ωι + cos #2ω2) Λ ω7r — k32(cos Θ2ωι + sin Θ2ω2) Λ ω8r = 0,

which imply that we may put

kB1ω7ΐ = a'(cos #2α>ι+sin #2ω2)+£'( — sin #2ωι
(3.4)

k32ω8r = b'r(cos Θ2ωι + sin Θ2ω2) — a'r( — si

Then we have k31kB2ω7rAω8r=-(a/

r

2+bf

r

2)ωιAω2, which completes the proof.
Now, since Γ2-index is identically 2 on M, the image of Mx by φzι (or ^22)

spans 2-dimensional linear subspace in O'x, which we denote by Nx. Then we can
decompose Nx as follows:

(3.5) N^N'.+N'ί+Ny+σί, 0X=N'X+N'X'+0'X, 0'X=N%'+0'X,

By virtue of Lemma 5, we can define two linear mappings φBι and φΆ2 from
MX into Oχ corresponding to the normal vector fields e7 and e8 respectively as
follows: for any

) = Σ
8<r 8<r

By means of (3. 4) we have two linear mappings

(3.6) <f>3i=ksi<p3i and φ^

which have the same images of Si?. We call φsl and φ32 the third torsion operators
of M in M. We define the forth curvature k±(x) of M at x by

(3. 7) ft4(aO=Max H^iWINMax H^-X")!!
-KsJ. 2res .̂

and call the dimension of the image of Mx by φsl (or φB2) the third torsion index
of M at x and denote it by T3-index XM. Then we get a condition that the geodesic
codimension is 6 as follows:

THEOREM 1. Let M—M2 be a minimal surface with M-index 2, Ti-index 2 and
T2-index 2 in M. The geodesic codimension of M is 6 if and only if T^-index XM
=0 at each point xzM.

Proof. The necessity is trival. Let us suppose that T3-index#M=0 at each
point x of M Then we have ωlr=ω8γ=Q, 8<γ. It follows from (3. 2), (3. 3), (2. 2),
(2. 3) and (1. 6) that the geodesic codimension is 6. Q.E.D.

§4. Minimal surfaces with M-index 2, TVindex 2, TVindex 2 and Γ3-index 0.
We shall consider minimal surfaces with M-index 2," Γi-index 2, TVindex 2 and T3-
index 0. Then, by virtue of Theorem 1, we may put p=6, i.e., M=M8. Making
use of (2. 2), (2. 3), (3. 2) and (3. 3), we have the following
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LEMMA 6. Under the above conditions, on B5 we have the following equations

(4. 1) dώ2=dύ)56=( f , 32 — fei^f-rrH — £-
\ &21&22 \ μ

(4. 2) J<y3 = ̂ ί£)78=-^31^32(-TΓ + -rΓ )
\ #21 «22 /

THEOREM 2. Let M be a minimal surface with M-index 2, Ti-index 2, T2-index
2 and T^index 0 in a Riemannian manifald of constant curvature c. If we have

(a) ώj^O, σ=μjλ—constant on M,

( β ) M is of constant curvature c,

( γ ) kz=constant and kz —constant on M,

(4.3) (7=1 or -1,

(4.4) c=c-2λ2,

(4.7) *2=%-c, -§-=•!*, 4r=2c αnrf c=J
z x z /22

Furthermore the Frenet formula of M is

(4. 8) D(e*+ie*)= -2i(

D(e*+ie?)=-<ίi(e*+ie*)ω?2—^-(e*+iet)(ω*+iω?),

where e*—ej 0*=1, •••, 4), e*+ief=eίθl(es+ie<i), e*+ief=eί(iθl+θ2:)(eτ+ie8).

Proof. From (a) and (2. 5) we have (T2=l. Hence we have λ2=μ2, which
together with (2. 6) implies that c—c—2λ2. We may suppose σ=l. Since we have
λ=const, from (4.4), (2.4) implies ώ1=2ωί2. From (2.7) and (4.5), we get

(4.9) 2c=2Λ2--
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Since k2=k2ί is constant, so is k22. Thus, since λ=μ is constant, k2ί=constant and
k22—constant, making use of (2. 2) and (2.3), we have

(4.10)
k22(dθι

Hence, making use of ώι—2ωι2 and (4.1), we have

£ιK2lK22(4.11) 3k2ιc=k22l-

(4.12) 3k22c=k2ί
Λ K2lK2

which together with ks=ksι=constant imply that k32 is constant and hence we have

From the second equality of (4.13), we have

(4.14) (kli-k

Now we assume that

=0.

From (4.11) and (4.12), we have c=Q. On the other hand, making use of (3. 2)
(3. 3), we have

dw5i — -~- dθ2/\( — sin #2ωι + cos #2^2) +-77̂ 12 Λ (cos Θ2ω2—sin 620)1)
K21 K21

= -τ^ίt>2Λ(sin Θ2o)ι—cos ^2cy2)+^-ώ3Λ(—sin 02cyι+cos02ω2),
K22 K2ί

do)58=-jr-dθ2 Λ (— cos θzωι — sin ^2ω2) — -r^ωί2 Λ (sin <^2ω2 -f cos Θ2ωι)
K21 K21

m 620)2) —
K22 K21

(4.15)
&31 &31

dω6ι = -j—dθz Λ (cos 620)1 + sin 620)2}+-r— o)ί2 Λ (cos ^2^2+sin 620)1}

= — -τp-&2 Λ (cos 620)1+sin 02ω2)+~ ώB Λ (cos Θ2ωι+sin 620)2},
K2ι K22
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dωβs = ~τ — dθ2 Λ ( — sin Θ2ωι + cos Θ2ω2) + -Tp-ωiz Λ (cos Θzω2 — sin Θ2ωι)
K22 K22

= —~-ω2/\(cos 02<y2— sin θ2ωι)—~^-ώs/\($in. Θ2ωι—cos 02ω2).
K2ι K22

Hence, if we suppose that k21=k22, we have

kSι(dU2 + ωi2 + ά>2) — kS2ωΆ = 0,
(4. 16)

kS2(dθ2 + 0)12 + 0>2) — ̂ 31^3 = 0.

From (4. 10), we have

ώ2 = dθi + 6>i2 + ωi = dθi + 3α>ι2.

This together with (4. 2), (4. 16) implies that

(4.17) 4knc= L and

which contradict c=0. Thus it must be k2ί^k22 when

Λ K2lK22

Then, from (4. 10) we get ώ2=0 and dOι+ωi2+&ι=Q. Since <S2=0, (4. 15) implies

Making use of (4. 2), we get

which contradicts c=Q. Thus it must be

and hence k2=k21=k22. Then from (4. 17) we have

which implies k32=k3ι=ks and kξlk%=2c. From ω1=2ωi2, (4.10) and (4.16), we
have ώ2=<20ι+3α>i2 and ώ3=^ι+^2+4ωi2. From (4. 1) and (4. 5), we have c =
(2/3)(kl/λ2-kl/kΐ), which together with kl/kl=2c implies that k2/λ2 = (7/2)c. Sub-
stituting this equality into (4.9), we have 2c=2λ2-7c and hence λ2 = (9/2)c. Fur-
thermore, from (4. 4) and Λ2 = (9/2)c we have c = c+2λ*=lQc.

Now we choose a new frame 6* = (a?, £?, 0jf, f̂ - , βf) such that e*=ej9 j=l, 2,
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•••,4, ef+ief=eίθl(eδ+ie6), ef+ief^^+^fa+ies). Then, with respect to this new
frame we have

jij A/2 jij 5J, KZ ji, j j

χ χ

Jy ί>
•Λ, t*Z •&• s|> '*2 5|f

45 ^ ^and

*_ ^ * *_ ^3 * *_

Therefore the Frenet formula of M is (4. 8). Q.E.D.

Now, in order to solve (4. 8), we wish to write (4. 8) in terms of an isothermal
coorinate of M Since we may put σ=l from (4. 7), M may be considered locally
the unit sphere S2.

On the other hand, for the unit sphere S2, considering it the Riemann sphere,
as is well known, we have the following formulas:

tλ ΛC\\ j 2 2(4. 19) ds z)2= 1+ 2y

2dz . zdz-zdz
(λ oπ
(4. 20)

where ω\z is the connection form of S2.
Hence we may put

(4. 21) wf + iωf = e-ίψ(ω, + tωa).

Substituting this into

d(ώf + iωf) — — iωfz Λ (ώ

we have

(4. 22) ωfz =ω

Putting ξι=eίφ(e?+ief), ξ2=e2ίφ(e*+ie?)1 ξ3=e*ίφ(ef+ief) and ξ4=e*iφ(ef+ief), (4. 8)
can be written as follows:

1
' dx^-rdidz+gidz), h=ϊi+zz,

h

1 2>ί
3f1=4-f1(5^+2:^)+_-i

_ o χ o tyy

(4. 23) I £>|2= — ̂ -ξJz+jUz dz+zdz)+-~ξsdz,
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§ 5. Solution of (4. 23). In this section, we shall give a solution of (4. 23).
As stated in §4, since we put c=l, from (4. 7) we have

A - 1Λand c=lα

Hence we may regard M=M8 as

(5.1)

we have the Frenet formula of M as follows:

(5.2) έfeβ=

. Putting

(5.3)

(5.4)

(5.5)

(5.6)

From the first equation of (5. 6), we have

(5.7) ?4 = 4r
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where F(z) is a complex analytic vector field. Substituting (5. 7) into (5. 6), we have

(5.8) ^=TF(Z)-2VWW

Making use of (5. 7) and (5. 8), we can verify

jgL_2</2\ f i __3£,
d* h ^ h ̂

From the 1st equation of (5. 5), we get

(5 9) ^

Making use of (5. 8) and (5. 9), we can verify that

^2 _ Λ/Ϊ4 fi 2<T

IF — TΓξ*~ΊΓξ2'
From the 1st equation of (5. 4), we get

3£ _
2 l ;

Making use of (5. 9) and (5. 10), we can verify

From the 1st equation of (5. 3), we have

(5. 11) es=^F(z)

From (5. 10) and (5. 11), we can prove that

J£i
dz F"1 '

Thus, if we choose F(^) so that e9 is real, then ^9, <?ι, ξ2, ζs, ^4 given by (5. 11), •••,
(5. 7) respectively satisfy the equations (5. 2), •••, (5. 6).

From now on, we will search for F(z) such that ed is real. Since h=l+zz is
real, e9 is real if and only if

7=rhle<>=168054F(2) - 840zs(l+zf )FΊ

(5.12)
)4F////(0) = : Gfe z)

is real. Then G( ,̂ z) is a polynomial of degree at most 4 in z as well as in z

since G(z, z) = G(z, z). We have easily from (5.12)
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G(z, z) = {

"(z\

which implies that F/f/f(z) is a polynomial in z, because G(z, z) is a vector valued
polynomial in z and z. Hence we may put

(5. 13) F(z)=Ao+A1z+'~+Amzm,

where A0, Ai, •••, Am are constant vectors in C5. Then we have

+ {3β(L42 + 720^3^ + — + 6m(m - l)(m - T)(m - 8)Amzm-2}z2

+- +4m(l-m)(m-2)(m-8)Amzm-s}z

Since G(z, z) is a polynomial in z and 2r of degree at most 4, the polynomial in
the first { } lacks the terms of degree 5, 6, 7, 8 in z. Hence we may suppose
m=S. Then we have

G(z, z) =

- (840 !̂

(5. 14) + (360A2

4^ + 720

which implies that G(z, z) = G(z, z) is satisfied if and only if

(5.15) At=Ai, A5=-ΆS, A6=Ά2, A7=—Ai9 A8=A0.

Making use of (5. 12), (5. 14) and (5. 15), we have

(5. 16)
+ 5(A2z

2+Azz
2}(3

- 35(̂ ^3 + A,zz)( - zz

From (5. 7), (5. 8), (5. 9) and (5. 10), we
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(5. 17)

(5. 18)

(5. 19)

(Z 9m

1

A4

1
2V~2h*

I
c ίc

5.

TAKEHIRO ITOH

Now we must find the conditions that £1( £2, ?s, £< and 09 form an ortho-
normal frame. In the following calculation, " = " denotes the equality modulus
the quantities:

βa ξj, es j}, ξj ξ,, ξj iί, ξj ξk, ξj ik, ij ik,

where j, k=l, 2, •••, 4 and j^k. Then we have easily the relations:

J)=d(ξ1 js)=d(ξ1 j^d(ξz ii)=0,

1=2,3,4, j,k=l, -,4,

(f f -ΐ

from which we see that £9 £9, ξj jj O'=l, •••, 4) are constants. Hence, if we can
choose AQ, Ai, A2, A3, At such that ^9^9=1 and ζj jj=2 (j=l, •••, 4) at ^=0, then
the above quantities are all zero. It is sufficient to give conditions that e9, ζi, ζz,
ζ3 and £4 form an orthonormal frame at z=0. From (5. 16), (5. 17), (5. 18), (5. 19)
and (5. 20), at z=Q, we have

n — Δ £ _
9 -- 70~ 4' ^~~

Thus we have the conditions for A0, Ai, •••, ^44:

= A, Ar^=0 O'=0, 1, 2, 3),

t=UQ, AS Ά3=112, A2 AΛ=56
(5.21)

=0, 1, -, 3) (/=0,1,2),
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Now we give the equation of M using the above result. First of all, we choose
five constant vectors A0, Ai, A2, A3, At in C5 which satisfy the conditions (5. 21)
and determine e9 given by (5. 16) which is a real unit vector field in E10^C6.
Since we may consider #=(l/\/ΪO)£9, we have a general solution of (4.23) as
follows :

(5. 22)
+ 5(3 -

If we put

and
5 axe / ox , xs

we can write (5. 22) in the cannonical coordinates xίt χΐy •••, x<, as follows:

, 2(z +z }'

~Z

(5.23)

V 7 Z / 4 -4\
Z)>

*z2 - 16zszs
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