MINIMAL SURFACES WITH M-INDEX 2, T_1 -INDEX 2 AND T_2 -INDEX 2

By Takehiro Itoh

For a minimal submanifold of dimension greater than 2 and with M-index 2 in a Riemannian manifold of constant curvature, \overline{O} tsuki [4] gave a condition that its geodesic codimension is 3 and some examples of such minimal submanifolds under certain additional conditions in Euclidean, spherical and hyperbolic non-Euclidean spaces. For a minimal surface with M-index 2 in a Riemannian manifold of constant curvature, the author [2] proved that we may put formally p=0 and n=2 in the result of [4] when the ambiant spaces are spheres and solved the differential equations. \overline{O} tsuki [5] gave a condition that the geodesic codimension becomes 4 and some examples in space forms.

In the present paper, the author will study minimal surfaces with M-index 2, T_1 -index 2 and T_2 -index 2 in a Riemannian manifold of constant curvature, where T_1 -index and T_2 -index are analogous to those of \overline{O} tsuki [3]. Furthermore, he will give a condition that the geodesic codimension becomes 6 and a general solution of such minimal surfaces.

The author expresses his deep gratitude to Professor T. Ōtsuki who encouraged him and gave him a lot of valuable suggestions.

§ 1. Minimal surfaces with M-index 2. Let $\overline{M}=\overline{M}^{2+\nu}$ be a $(2+\nu)$ -dimensional Riemannian manifold of constant curvature \bar{c} and $M=M^2$ be a 2-dimensinal submanifold in \overline{M} with the Riemannian metric induced from \overline{M} , where both manifolds are C^{∞} . Let $\overline{\omega}_A$, $\overline{\omega}_{AB}=-\overline{\omega}_{BA}$ $A,B=1,2,\cdots,2+\nu$, be the basic and connection forms of \overline{M} on the orthonormal frame bundle $F(\overline{M})$ which satisfy the structure equations:

$$(1. 1) d\overline{\omega}_A = \sum_A \overline{\omega}_{AB} \wedge \overline{\omega}_B, d\overline{\omega}_{AB} = \sum_C \overline{\omega}_{AC} \wedge \overline{\omega}_{CB} - \overline{c}\overline{\omega}_A \wedge \overline{\omega}_B.$$

Let B be the subbundle of $F(\overline{M})$ over M such that $B\ni b=(x,e_1,e_2,e_3,\cdots,e_{2+\nu})\in F(\overline{M})$ and $(x,e_1,e_2)\in F(M)$, where F(M) is the orthonormal frame bundle of M. Then, deleting bars of $\overline{\omega}_A$, $\overline{\omega}_{AB}$, on B we have

(1. 2)
$$\omega_{\alpha} = 0, \quad \omega_{i\alpha} = \sum_{j} A_{\alpha i j} \omega_{j}, \quad A_{\alpha i j} = A_{\alpha j i},$$

$$d\omega_{i} = \omega_{ik} \wedge \omega_{k}, \quad d\omega_{ik} = \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha k} - \bar{c} \omega_{i} \wedge \omega_{k},$$
(1. 3)
$$d\omega_{i\alpha} = \omega_{ik} \wedge \omega_{k\alpha} + \sum_{\beta} \omega_{i\beta} \wedge \omega_{\beta\alpha},$$

$$d\omega_{\alpha\beta} = \sum_{i} \omega_{\alpha i} \wedge \omega_{i\beta} + \sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma\beta},$$

Received December 16, 1970.

where $i, j, k=1, 2, i \neq k, \alpha, \beta, \gamma=3, 4, \dots, 2+\nu$.

For any point $x \in M$, let N_x be the normal space to $M_x = T_x M$ in $\overline{M}_x = T_x \overline{M}$. For any $b \in B$, we define a linear mapping ϕ_b from N_x into the set of all symmetric matrices of order 2 by

(1.4)
$$\phi_b(\sum_{\alpha} v_{\alpha} e_{\alpha}) = \sum_{\alpha} v_{\alpha} A_{\alpha}, \qquad A_{\alpha} = (A_{\alpha ij}).$$

We call the dim ψ_b (ker \bar{m}) at x M-index of M at x in \bar{M} , where \bar{m} is a linear mapping from N_x into R defined by $\bar{m}(\sum_{\alpha} v_{\alpha} e_{\alpha}) = (1/2) \operatorname{trace}(\sum_{\alpha} v_{\alpha} A_{\alpha})$.

Now we suppose that M is minimal in \overline{M} and of M-index 2 at each point. Then N_x is decomposed as

$$(1.5) N_x = N_x' + O, N_x' \perp O_x,$$

where $O_x = \psi_b^{-1}(0)$ and dim $N_x' = 2$, which does not depend on the choice of b over x and is smooth. Let B_1 be the set of $b \in B$ such that e_3 , $e_4 \in N_x'$. From the definition of M-index, on B_1 we have

$$\omega_{i\beta}=0, \qquad i=1, 2, \qquad 4<\beta.$$

Lemma 1. On B_1 , for a fixed $\beta > 4$, we have $\omega_{3\beta} \equiv \omega_{4\beta} \equiv 0 \pmod{\omega_1, \omega_2}$ and $\omega_{3\beta} = \omega_{4\beta} \equiv 0$ or else $\omega_{3\beta} \wedge \omega_{4\beta} \neq 0$.

Lemma 2. We can choose a frame $b \in B_1$ such that

$$(1.7) \omega_{13} = \lambda \omega_1, \quad \omega_{23} = -\lambda \omega_2, \quad \omega_{14} = \mu \omega_2, \quad \omega_{24} = \mu \omega_1, \quad \lambda \mu = 0.$$

Proof. Rotating 2-frames (x, e_1, e_2) and (x, e_3, e_4) suitably, we can choose a frame $b \in B_1$ such that

$$\omega_{13} = \lambda \omega_1, \quad \omega_{23} = -\lambda \omega_2, \quad \lambda \neq 0, \quad \langle A_3, A_4 \rangle = 0.$$

Then, putting $\omega_{14}=a\omega_1+\mu\omega_2$ and $\omega_{24}=\mu\omega_1+b\omega_2$, we have $\langle A_3, A_4\rangle=(1/2)\lambda(a-b)=0$. It follows from $\lambda \neq 0$ that a=b. On the other hand, since trace $A_4=0$, we have a+b=0. Hence we have a=b=0. Since *M*-index is 2, μ must not be zero. Q.E.D.

Let B_2 be the set of all $b \in B_1$ satisfying (1.7). Then since M-index is 2 everywhere on M, B_2 is a smooth submanifold of B_1 . Making use of (1.3) and (1.6), we have $\omega_{t3} \wedge \omega_{3\beta} + \omega_{t4} \wedge \omega_{4\beta} = 0$. Substituting (1.7) into these equations, we have

(1. 8)
$$\lambda \omega_1 \wedge \omega_{3\beta} + \mu \omega_2 \wedge \omega_{4\beta} = 0, \\ \lambda \omega_2 \wedge \omega_{3\beta} - \mu \omega_1 \wedge \omega_{4\beta} = 0,$$

which imply that we can put

(1. 9)
$$\lambda \omega_{3\beta} = f_{\beta} \omega_1 + g_{\beta} \omega_2, \\ \mu \omega_{4\beta} = g_{\beta} \omega_1 - f_{\beta} \omega_2.$$

Now, by virtue of Lemma 1, we can define two linear mappings φ_{11} and φ_{12}

corresponding to the normal vector fields e_3 and e_4 from M_x into O_x as follows: for any $X \in M_x$

(1. 10)
$$\varphi_{11}(X) = \sum_{\beta} \omega_{3\beta}(X)e_{\beta}, \qquad \varphi_{12}(X) = \sum_{\beta} \omega_{4\beta}(X)e_{\beta}.$$

By means of (1.9), the two linear mappings

$$\tilde{\varphi}_{11} = \lambda \varphi_{11} \quad \text{and} \quad \tilde{\varphi}_{12} = \mu \varphi_{12}$$

have the same images of the tangent unit sphere $S_x^! = \{X \in M_x | ||X|| = 1\}$ and $\tilde{\varphi}_{11}(X)$ and $\tilde{\varphi}_{12}(X)$ are conjugate to each other with respect to the image. The mappings $\tilde{\varphi}_{11}$ and $\tilde{\varphi}_{12}$ may be called *the 1st torsion operators* of M in \bar{M} . We define *the second curvature* $k_2(x)$ of M at x by

$$k_2(x) = \operatorname{Max}_{X \in S_x^1} ||\tilde{\varphi}_{11}(X)|| = \operatorname{Max}_{X \in S_x^1} ||\tilde{\varphi}_{12}(X)||$$

and call the dimension of the image of M_x by $\tilde{\varphi}_{11}$ (or $\tilde{\varphi}_{12}$) the 1st torsion index of M at x and denote it by T_1 -index xM. It is trival that T_1 -index ≤ 2 at each point of M. If $k_2(x)=0$, then T_1 -index xM=0. Hence if $k_2(x)=0$ at each point $x\in M$, then the geodesic codimension of M is 2. If T_1 -index=1 at each $x\in M$, then the geodesic codimension is 3, which is the case treated by \bar{O} tsuki [4] for a minimal submanifold of general dimension n.

§ 2. Minimal surfaces with M-index 2 and T_1 -index 2. In this section we will consider minimal surfaces with M-index 2 and T_1 -index 2 in \overline{M} . Then we can choose a frame $b \in B_2$ and local function θ_1 on M such that

(2. 1)
$$\begin{aligned} \tilde{\varphi}_{11}(e_1\cos\theta_1 + e_3\sin\theta_1) &= k_{21}e_5, \\ \tilde{\varphi}_{11}(-e_1\sin\theta_1 + e_2\cos\theta_1) &= k_{22}e_6, \end{aligned}$$

where $k_{21}=k_2>0$ and $k_{22}=\operatorname{Min}_{X\in S_x^1}||\tilde{\varphi}_{11}(X)||=\operatorname{Min}_{X\in S_x^1}||\tilde{\varphi}_{12}(X)||$. If $k_{21}\neq k_{22}$, then k_{21} and k_{22} are differentiable functions on M. We suppose that they are differentiable functions. Let B_3 be the set of all such frames $b\in B_2$. Then B_3 is a submanifold of B_2 . On B_3 we have

$$\omega_{35} = \frac{k_{21}}{\lambda} (\cos \theta_1 \omega_1 + \sin \theta_1 \omega_2),$$

$$(2. 2)$$

$$\omega_{36} = \frac{k_{22}}{\lambda} (-\sin \theta_1 \omega_1 + \cos \theta_1 \omega_2), \quad \omega_{3\gamma} = 0, \quad 6 < \gamma.$$

Making use of (1.7) and (2.2), we have

(2. 3)
$$\omega_{45} = \frac{k_{21}}{\mu} (\sin \theta_1 \omega_1 - \cos \theta_1 \omega_2),$$

$$\omega_{46} = \frac{k_{22}}{\mu} (\cos \theta_1 \omega_1 + \sin \theta_1 \omega_2), \qquad \omega_{4\gamma} = 0, \quad 6 < \gamma.$$

Then, by means of (1.3), (1.7), (2.2) and (2.3), we can verify the following

Lemma 3. Under the above condition, on B_3 we have

$$(2. 4) {d log } \lambda - i(2\omega_{12} - \sigma \tilde{\omega}_1) \wedge (\omega_1 + i\omega_2) = 0,$$

$$(2. 5) \qquad \{d\sigma + i(1-\sigma^2)\tilde{\omega}_1\} \wedge (\omega_1 + i\omega_2) = 0,$$

$$(2. 6) d\omega_{12} = -(\bar{c} - \lambda^2 - \mu^2)\omega_1 \wedge \omega_2,$$

(2.7)
$$d\tilde{\omega} = -\left(2\lambda\mu - \frac{k_{21}^2 + k_{22}^2}{\lambda\mu}\right)\omega_1 \wedge \omega_2,$$

where $\tilde{\omega}_1 = \omega_{34}$ is the connection form of the vector bundle $N' = \bigcup_{x \in M} N'_x$ over M.

Furthermore, making use of (2.2) and (2.3), we have

LEMMA 4. On B_3 , for a fixed $\gamma > 6$, we have $\omega_{5\gamma} \equiv \omega_{6\gamma} \equiv 0 \pmod{\omega_1, \omega_2}$ and $\omega_{5\gamma} = \omega_{6\gamma} = 0$ or else $\omega_{5\gamma} \wedge \omega_{6\gamma} \neq 0$.

Now, since T_1 -index is 2 everywhere on M, the image of M_x by $\tilde{\varphi}_{11}$ (or $\tilde{\varphi}_{12}$) spans 2-dimensional subspace in O_x , which we denote by N''_x . Let $N'' = \bigcup_{x \in M} N''_x$. Then N'' is a 2-dimensional normal vector bundle over M like N'. We can orthogonally decompose N_x as

$$(2.8) N_x = N_x' + N_x'' + O_x', O_x = N_x'' + O_x', N_x'' \perp O_x'.$$

By virtue of Lemma 4, we can define two linear mappings φ_{21} and φ_{22} from M_x into O'_x corresponding to the normal vector field e_5 and e_6 respectively as follows: for any $X \in M_x$

$$\varphi_{21}(X) = \sum_{6 < r} \omega_{6r}(X)e_r, \qquad \varphi_{22}(X) = \sum_{6 < r} \omega_{6r}(X)e_r.$$

On the other hand, since $\omega_{3r} = \omega_{4r} = 0$, we have

$$\omega_{35} \wedge \omega_{67} + \omega_{36} \wedge \omega_{67} = 0, \qquad 6 < \gamma,$$

$$\omega_{45} \wedge \omega_{57} + \omega_{46} \wedge \omega_{67} = 0.$$

Substituting (2. 2) and (2. 3) into these equations, we may put

(2. 9)
$$k_{21}\omega_{\delta_7} = \alpha_7(\cos\theta_1\omega_1 + \sin\theta_1\omega_2) + b_7(-\sin\theta_1\omega_1 + \cos\theta_1\omega_2), \\ k_{22}\omega_{\delta_7} = b_7(\cos\theta_1\omega_1 + \sin\theta_1\omega_2) - \alpha_7(-\sin\theta_1\omega_1 + \cos\theta_1\omega_2),$$

which imply that the two linear mappings

$$\tilde{\varphi}_{21} = k_{21} \varphi_{21}$$
 and $\tilde{\varphi}_{22} = k_{22} \varphi_{22}$

have the same images of S_x^1 in M_x . We call $\tilde{\varphi}_{21}$ and $\tilde{\varphi}_{22}$ the second torsion operators of M in \bar{M} . We define the third curvature $k_3(x)$ of M at x by

$$(2. 10) k_3(x) = \operatorname{Max}_{X \in S^1_x} ||\tilde{\varphi}_{21}(X)|| = \operatorname{Max}_{X \in S^1_x} ||\tilde{\varphi}_{22}(X)||$$

and call the dimension of the image of M_x by $\tilde{\varphi}_{21}$ (or $\tilde{\varphi}_{22}$) the second torsion index of M at x, which we denote by T_2 -index $_xM$. It is trivial that $k_3(x)=0$ if and only if T_2 -index $_xM=0$. If $k_3(x)=0$ identically on M, then the geodesic codimension of M is 4. If T_2 -index is identically 1 on M, the geodesic codimension will be 5. In the next section we shall give a condition for the geodedic codimension to be 6 when T_2 -index is identically 2 on M.

§ 3. Minimal surfaces with M-index 2, T_1 -index 2 and T_2 -index 2. In this section we shall consider the minimal surfaces with M-index 2, T_1 -index 2 and T_2 -index 2 and give a condition that the geodesic codimension is 6. Under the above conditions, we can choose a frame $b \in B_3$ and a local function θ_2 on M such that

(3. 1)
$$\begin{aligned} \tilde{\varphi}_{21}(e_1\cos\theta_2 + e_2\sin\theta_2) &= k_{31}e_7, \\ \tilde{\varphi}_{21}(-e_1\sin\theta_2 + e_2\cos\theta_2) &= k_{32}e_8, \end{aligned}$$

where $k_{31}=k_3>0$ and $k_{32}=\min_{X\in S_x^1}||\tilde{\varphi}_{21}(X)||=\min_{X\in S_x^1}||\tilde{\varphi}_{22}(X)||$. If $k_{31}=k_{32}$, then both k_{31} and k_{32} are differentiable functions on M. From now on, we suppose that they are differentiable functions on M. Then, B_4 being the set of all such frames of B_3 , B_4 is a smooth submanifold of B_3 . On B_4 we have

(3. 2)
$$\omega_{57} = \frac{k_{31}}{k_{21}} (\cos \theta_2 \omega_1 + \sin \theta_2 \omega_2),$$

$$\omega_{58} = \frac{k_{31}}{k_{21}} (-\sin \theta_2 \omega_1 + \cos \theta_2 \omega_2), \quad \omega_{5\gamma} = 0, \quad 8 < \gamma.$$

From (3. 2) and (2. 9), we get

(3. 3)
$$\omega_{67} = \frac{k_{31}}{k_{22}} (\sin \theta_2 \omega_1 - \cos \theta_2 \omega_2),$$

$$\omega_{68} = \frac{k_{32}}{k_{22}} (\cos \theta_2 \omega_1 + \sin \theta_2 \omega_2), \qquad \omega_{67} = 0, \qquad 8 < \gamma.$$

Making use of (3.2) and (3.3), we have the following

LEMMA 5. On B_4 , for a fixed $\gamma > 8$, we have $\omega_{7\gamma} \equiv \omega_{8\gamma} \equiv 0 \pmod{\omega_1, \omega_2}$ and $\omega_{7\gamma} = \omega_{8\gamma} = 0$ or else $\omega_{7\gamma} \wedge \omega_{8\gamma} \neq 0$.

Proof. Since $\omega_{5r} = \omega_{6r} = 0$, we have

$$\omega_{57} \wedge \omega_{77} + \omega_{58} \wedge \omega_{87} = \omega_{67} \wedge \omega_{77} + \omega_{68} \wedge \omega_{87} = 0.$$

Substituting (3. 2) and (3. 3) into these equations, we get

$$k_{31}(\cos\theta_2\omega_1 + \sin\theta_2\omega_2) \wedge \omega_{7\gamma} + k_{32}(-\sin\theta_2\omega_1 + \cos\theta_2\omega_2) \wedge \omega_{8\gamma} = 0,$$

$$k_{31}(-\sin\theta_2\omega_1 + \cos\theta_2\omega_2) \wedge \omega_{7\gamma} - k_{32}(\cos\theta_2\omega_1 + \sin\theta_2\omega_2) \wedge \omega_{8\gamma} = 0,$$

which imply that we may put

$$(3. 4) k_{31}\omega_{7r} = a_r'(\cos\theta_2\omega_1 + \sin\theta_2\omega_2) + b_r'(-\sin\theta_2\omega_1 + \cos\theta_2\omega_2), k_{32}\omega_{8r} = b_r'(\cos\theta_2\omega_1 + \sin\theta_2\omega_2) - a_r'(-\sin\theta_2\omega_1 + \cos\theta_2\omega_2).$$

Then we have $k_{31}k_{32}\omega_{7_1}\wedge\omega_{8_7}=-(a_7^{\prime 2}+b_7^{\prime 2})\omega_1\wedge\omega_2$, which completes the proof.

Now, since T_2 -index is identically 2 on M, the image of M_x by $\tilde{\varphi}_{21}$ (or $\tilde{\varphi}_{22}$) spans 2-dimensional linear subspace in O_x , which we denote by N_x . Then we can decompose N_x as follows:

$$(3.5) N_x = N_x' + N_x'' + N_x''' + O_x'', O_x = N_x'' + N_x''' + O_x'', O_x' = N_x''' + O_x'', N_x''' \perp O_x''.$$

By virtue of Lemma 5, we can define two linear mappings φ_{31} and φ_{32} from M_x into O_x'' corresponding to the normal vector fields e_7 and e_8 respectively as follows: for any $X \in M_x$

$$\varphi_{31}(X) = \sum_{8 < r} \omega_{7}(X)e_r, \qquad \varphi_{32}(X) = \sum_{8 < r} \omega_{8}(X)e_r.$$

By means of (3.4) we have two linear mappings

(3. 6)
$$\tilde{\varphi}_{31} = k_{31}\varphi_{31}$$
 and $\tilde{\varphi}_{32} = k_{32}\varphi_{32}$

which have the same images of S_x^1 . We call $\tilde{\varphi}_{31}$ and $\tilde{\varphi}_{32}$ the third torsion operators of M in \bar{M} . We define the forth curvature $k_4(x)$ of M at x by

$$(3. 7) k_4(x) = \underset{x \in S^1_x}{\operatorname{Max}} ||\tilde{\varphi}_{31}(X)|| = \underset{x \in S^1_x}{\operatorname{Max}} ||\tilde{\varphi}_{32}(X)||$$

and call the dimension of the image of M_x by $\tilde{\varphi}_{31}$ (or $\tilde{\varphi}_{32}$) the third torsion index of M at x and denote it by T_3 -index xM. Then we get a condition that the geodesic codimension is 6 as follows:

THEOREM 1. Let $M=M^2$ be a minimal surface with M-index 2, T_1 -index 2 and T_2 -index 2 in \overline{M} . The geodesic codimension of M is 6 if and only if T_3 -index xM =0 at each point $x \in M$.

Proof. The necessity is trival. Let us suppose that T_3 -index $_xM=0$ at each point x of M. Then we have $\omega_{7_r}=\omega_{8_r}=0$, $8<\gamma$. It follows from (3. 2), (3. 3), (2. 2), (2. 3) and (1. 6) that the geodesic codimension is 6. Q.E.D.

§ 4. Minimal surfaces with M-index 2, T_1 -index 2, T_2 -index 2 and T_3 -index 0. We shall consider minimal surfaces with M-index 2, T_1 -index 2, T_2 -index 2 and T_3 -index 0. Then, by virtue of Theorem 1, we may put $\nu=6$, i.e., $\overline{M}=\overline{M}^8$. Making use of (2. 2), (2. 3), (3. 2) and (3. 3), we have the following

Lemma 6. Under the above conditions, on B₅ we have the following equations

$$d\tilde{\omega}_{2} = d\omega_{56} = \left(\frac{k_{31}^{2} + k_{32}^{2}}{k_{21}k_{22}} - k_{21}k_{22}\left(\frac{1}{\lambda^{2}} + \frac{1}{\mu^{2}}\right)\right)\omega_{1} \wedge \omega_{2},$$

(4. 2)
$$d\tilde{\omega}_3 = d\omega_{78} = -k_{31}k_{32}\left(\frac{1}{k_{21}^2} + \frac{1}{k_{22}^2}\right)\omega_1 \wedge \omega_2.$$

Theorem 2. Let M be a minimal surface with M-index 2, T_1 -index 2, T_2 -index 2 and T_3 -index 0 in a Riemannian manifold of constant curvature \bar{c} . If we have

(
$$\alpha$$
) $\tilde{\omega}_1 \neq 0$, $\sigma = \mu/\lambda = constant$ on M ,

$$(\beta)$$
 M is of constant curvature c ,

$$(\gamma)$$
 $k_2 = constant \ and \ k_3 = constant \ on \ M,$

then we have

$$(4.3) \sigma=1 or -1,$$

$$(4. 4) c = \bar{c} - 2\lambda^2,$$

(4. 5)
$$\tilde{\omega}_1 = 2\omega_{12}, \quad \tilde{\omega}_2 = d\theta_1 + 3\omega_{12}, \quad \tilde{\omega}_3 = d\theta_1 + d\theta_2 + 4\omega_{12},$$

$$(4. 6) k_2 = k_{21} = k_{22} and k_3 = k_{31} = k_{32},$$

(4.7)
$$\lambda^2 = \frac{9}{2}c, \quad \frac{k_2^2}{\lambda^2} = \frac{7}{2}c, \quad \frac{k_3^2}{k_2^2} = 2c \quad and \quad \bar{c} = 10c.$$

Furthermore the Frenet formula of M is

$$dx = R((e_1^* + ie_2^*)(\omega_1^* - i\omega_2^*)),$$

$$\bar{D}(e_1^* + ie_2^*) = -i(e_1^* + ie_2^*)\omega_{12}^* + \lambda(e_3^* + ie_4^*)(\omega_1^* - i\omega_2^*),$$

$$(4. 8) \quad \bar{D}(e_3^* + ie_4^*) = -2i(e_3^* + ie_4^*)\omega_{12}^* - \lambda(e_1^* + ie_2^*)(\omega_1^* + i\omega_2^*) + \frac{k_2}{\lambda}(e_5^* + ie_6^*)(\omega_1^* - i\omega_2^*),$$

$$\bar{D}(e_5^* + ie_6^*) = -3i(e_5^* + ie_6^*)\omega_{12}^* - \frac{k_2}{\lambda}(e_3^* + ie_4^*)(\omega_1^* + i\omega_2^*) + \frac{k_3}{k_2}(e_7^* + ie_8^*)(\omega_1^* - i\omega_2^*),$$

$$\bar{D}(e_7^* + ie_8^*) = -4i(e_7^* + ie_8^*)\omega_{12}^* - \frac{k_3}{k_2}(e_5^* + ie_6^*)(\omega_1^* + i\omega_2^*),$$

where $e_{j}^{*}=e_{j}$ $(j=1, \dots, 4)$, $e_{5}^{*}+ie_{6}^{*}=e^{i\theta_{1}}(e_{5}+ie_{6})$, $e_{7}^{*}+ie_{8}^{*}=e^{i(\theta_{1}+\theta_{2})}(e_{7}+ie_{8})$.

Proof. From (α) and (2.5) we have $\sigma^2=1$. Hence we have $\lambda^2=\mu^2$, which together with (2.6) implies that $c=\bar{c}-2\lambda^2$. We may suppose $\sigma=1$. Since we have $\lambda=$ const. from (4.4), (2.4) implies $\tilde{\omega}_1=2\omega_{12}$. From (2.7) and (4.5), we get

$$(4. 9) 2c = 2\lambda^2 - \frac{k_{21}^2 + k_{22}^2}{\lambda^2}.$$

Since $k_2=k_{21}$ is constant, so is k_{22} . Thus, since $\lambda=\mu$ is constant, $k_{21}=$ constant and $k_{22}=$ constant, making use of (2.2) and (2.3), we have

$$k_{21}(d\theta_1 + \omega_{12} + \tilde{\omega}_1) - k_{22}\tilde{\omega}_2 = 0,$$

$$k_{22}(d\theta_1 + \omega_{12} + \tilde{\omega}_1) - k_{21}\tilde{\omega}_2 = 0.$$

$$(4.10)$$

Hence, making use of $\tilde{\omega}_1 = 2\omega_{12}$ and (4.1), we have

$$3k_{21}c = k_{22} \left\{ \frac{2k_{21}k_{22}}{\lambda^2} - \frac{k_{31}^2 + k_{32}^2}{k_{21}k_{22}} \right\},$$

$$3k_{22}c = k_{21} \left\{ \frac{2k_{21}k_{22}}{\lambda^2} - \frac{k_{31}^2 + k_{32}^2}{k_{21}k_{22}} \right\},\,$$

which together with $k_3=k_{31}=$ constant imply that k_{32} is constant and hence we have

$$(4. 13) c = \frac{1}{3} \left\{ \frac{2k_{21}^2}{\lambda^2} - \frac{k_{31}^2 + k_{32}^2}{k_{22}^2} \right\} = \frac{1}{3} \left\{ \frac{2k_{22}^2}{\lambda^2} - \frac{k_{31}^2 + k_{32}^2}{k_{21}^2} \right\}.$$

From the second equality of (4.13), we have

$$(4.14) (k_{21}^2 - k_{22}^2) \left\{ \frac{2k_{21}k_{22}}{\lambda^2} - \frac{k_{31}^2 + k_{32}^2}{k_{21}k_{22}} \right\} = 0.$$

Now we assume that

$$\frac{2k_{21}k_{22}}{\lambda^2} - \frac{k_{21}^2 + k_{32}^2}{k_{21}k_{22}} = 0.$$

From (4.11) and (4.12), we have c=0. On the other hand, making use of (3.2) (3.3), we have

$$d\omega_{57} = \frac{k_{31}}{k_{21}} d\theta_{2} \wedge (-\sin\theta_{2}\omega_{1} + \cos\theta_{2}\omega_{2}) + \frac{k_{31}}{k_{21}} \omega_{12} \wedge (\cos\theta_{2}\omega_{2} - \sin\theta_{2}\omega_{1})$$

$$= \frac{k_{31}}{k_{22}} \tilde{\omega}_{2} \wedge (\sin\theta_{2}\omega_{1} - \cos\theta_{2}\omega_{2}) + \frac{k_{32}}{k_{21}} \tilde{\omega}_{3} \wedge (-\sin\theta_{2}\omega_{1} + \cos\theta_{2}\omega_{2}),$$

$$d\omega_{58} = \frac{k_{32}}{k_{21}} d\theta_{2} \wedge (-\cos\theta_{2}\omega_{1} - \sin\theta_{2}\omega_{2}) - \frac{k_{32}}{k_{21}} \omega_{12} \wedge (\sin\theta_{2}\omega_{2} + \cos\theta_{2}\omega_{1})$$

$$= \frac{k_{32}}{k_{22}} \tilde{\omega}_{2} \wedge (\cos\theta_{2}\omega_{1} + \sin\theta_{2}\omega_{2}) - \frac{k_{31}}{k_{21}} \tilde{\omega}_{3} \wedge (\cos\theta_{2}\omega_{1} + \sin\theta_{2}\omega_{2}),$$

$$(4. 15)$$

$$d\omega_{67} = \frac{k_{31}}{k_{22}} d\theta_{2} \wedge (\cos\theta_{2}\omega_{1} + \sin\theta_{2}\omega_{2}) + \frac{k_{31}}{k_{22}} \omega_{12} \wedge (\cos\theta_{2}\omega_{2} + \sin\theta_{2}\omega_{1})$$

$$= -\frac{k_{31}}{k_{21}} \tilde{\omega}_{2} \wedge (\cos\theta_{2}\omega_{1} + \sin\theta_{2}\omega_{2}) + \frac{k_{32}}{k_{22}} \tilde{\omega}_{3} \wedge (\cos\theta_{2}\omega_{1} + \sin\theta_{2}\omega_{2}),$$

$$\begin{split} d\omega_{68} &= \frac{k_{32}}{k_{22}} d\theta_2 \wedge (-\sin\theta_2 \omega_1 + \cos\theta_2 \omega_2) + \frac{k_{32}}{k_{22}} \omega_{12} \wedge (\cos\theta_2 \omega_2 - \sin\theta_2 \omega_1) \\ &= -\frac{k_{32}}{k_{21}} \tilde{\omega}_2 \wedge (\cos\theta_2 \omega_2 - \sin\theta_2 \omega_1) - \frac{k_{31}}{k_{22}} \tilde{\omega}_3 \wedge (\sin\theta_2 \omega_1 - \cos\theta_2 \omega_2). \end{split}$$

Hence, if we suppose that $k_{21}=k_{22}$, we have

(4. 16)
$$k_{31}(d\theta_2 + \omega_{12} + \tilde{\omega}_2) - k_{32}\tilde{\omega}_3 = 0,$$

$$k_{32}(d\theta_2 + \omega_{12} + \tilde{\omega}_2) - k_{31}\tilde{\omega}_3 = 0.$$

From (4. 10), we have

$$\tilde{\omega}_2 = d\theta_1 + \omega_{12} + \tilde{\omega}_1 = d\theta_1 + 3\omega_{12}.$$

This together with (4.2), (4.16) implies that

(4. 17)
$$4k_{31}c = \frac{2k_{31}k_{32}^2}{k_2^2} \quad \text{and} \quad 4k_{32}c = \frac{2k_{31}^2k_{32}}{k_2^2}$$

which contradict c=0. Thus it must be $k_{21} \neq k_{22}$ when

$$\frac{2k_{21}k_{22}}{\lambda^2} - \frac{k_{31}^2 + k_{32}^2}{k_{21}k_{22}} = 0.$$

Then, from (4.10) we get $\tilde{\omega}_2 = 0$ and $d\theta_1 + \omega_{12} + \tilde{\omega}_1 = 0$. Since $\tilde{\omega}_2 = 0$, (4.15) implies

$$k_{31}(d\theta_2+\omega_{12})-k_{32}\tilde{\omega}_3=k_{32}(d\theta_2+\omega_{12})-k_{31}\tilde{\omega}_3=0.$$

Making use of (4.2), we get

$$c = k_{32}^2 \left(\frac{1}{k_{21}^2} + \frac{1}{k_{22}^2} \right) = k_{31}^2 \left(\frac{1}{k_{21}^2} + \frac{1}{k_{22}^2} \right),$$

which contradicts c=0. Thus it must be

$$\frac{2k_{21}k_{22}}{\lambda^2} - \frac{k_{31}^2 + k_{32}^2}{k_{21}k_{22}} \neq 0,$$

and hence $k_2=k_{21}=k_{22}$. Then from (4.17) we have

$$c = \frac{k_{32}^2}{2k_2^2} = \frac{k_{31}^2}{2k_2^2},$$

which implies $k_{32}=k_{31}=k_3$ and $k_3^2/k_2^2=2c$. From $\tilde{\omega}_1=2\omega_{12}$, (4. 10) and (4. 16), we have $\tilde{\omega}_2=d\theta_1+3\omega_{12}$ and $\tilde{\omega}_3=d\theta_1+d\theta_2+4\omega_{12}$. From (4. 1) and (4. 5), we have $c=(2/3)(k_2^2/\lambda^2-k_3^2/k_2^2)$, which together with $k_3^2/k_2^2=2c$ implies that $k^2/\lambda^2=(7/2)c$. Substituting this equality into (4. 9), we have $2c=2\lambda^2-7c$ and hence $\lambda^2=(9/2)c$. Furthermore, from (4. 4) and $\lambda^2=(9/2)c$ we have $\bar{c}=c+2\lambda^2=10c$.

Now we choose a new frame $b^*=(x,e_1^*,e_2^*,e_3^*\cdots,e_3^*)$ such that $e_j^*=e_j,j=1,2,$

..., 4, $e_5^* + ie_6^* = e^{i\theta_1}(e_5 + ie_6)$, $e_7^* + ie_8^* = i(\theta_1 + \theta_2)(e_7 + ie_8)$. Then, with respect to this new frame we have

$$\begin{split} &\omega_{35}^* = \frac{k_2}{\lambda} \omega_1^*, \qquad \omega_{36}^* = \frac{k_2}{\lambda} \omega_2^*, \qquad \omega_2^* = 3\omega_{12}^*, \\ &\omega_{45}^* = -\frac{k_2}{\lambda} \omega_2^*, \qquad \omega_{46}^* = \frac{k_2}{\lambda} \omega_1^*, \\ &\omega_{57}^* = \frac{k_3}{k_2} \omega_1^*, \qquad \omega_{58}^* = \frac{k_3}{k_2} \omega_2^*, \qquad \omega_3^* = 4\omega_{12}^*, \\ &\omega_{67}^* = -\frac{k_3}{k_2} \omega_2^*, \qquad \omega_{68}^* = \frac{k_3}{k_2} \omega_1^*. \end{split}$$

and

Therefore the Frenet formula of M is (4.8).

Q.E.D.

Now, in order to solve (4.8), we wish to write (4.8) in terms of an isothermal coorinate of M. Since we may put $\sigma=1$ from (4.7), M may be considered locally the unit sphere S^2 .

On the other hand, for the unit sphere S^2 , considering it the Riemann sphere, as is well known, we have the following formulas:

(4. 19)
$$ds^2 = \frac{4dzd\bar{z}}{(1+z\bar{z})^2} = \omega_1^2 + \omega_2^2,$$

(4. 20)
$$\omega_1 + i\omega_2 = \frac{2dz}{1 + z\bar{z}}, \qquad \omega_{12} = i\frac{\bar{z}dz - zd\bar{z}}{1 + z\bar{z}},$$

where ω_{12} is the connection form of S^2 .

Hence we may put

(4. 21)
$$\omega_1^* + i\omega_2^* = e^{-i\varphi}(\omega_1 + i\omega_2).$$

Substituting this into

$$d(\omega_1^* + i\omega_2^*) = -i\omega_{12}^* \wedge (\omega_1^* + i\omega_2^*),$$

we have

(4. 22)
$$\omega_{12}^* = \omega_{12} + d\varphi$$
.

Putting $\xi_1 = e^{i\varphi}(e_1^* + ie_2^*)$, $\xi_2 = e^{2i\varphi}(e_3^* + ie_4^*)$, $\xi_3 = e^{3i\varphi}(e_5^* + ie_6^*)$ and $\xi_4 = e^{4i\varphi}(e_7^* + ie_8^*)$, (4. 8) can be written as follows:

$$\begin{bmatrix} \bar{D}\xi_3\!=\!-\frac{2k_2}{\lambda h}\xi_2 dz\!+\!\frac{3}{h}\xi_3(\bar{z}dz\!+\!zd\bar{z})\!+\!\frac{2k_3}{k_2 h}\xi_4 d\bar{z},\\ \bar{D}\xi_4\!=\!-\frac{2k_3}{k_2 h}\xi_3 dz\!+\!\frac{4}{h}\xi_4(\bar{z}dz\!+\!zd\bar{z}). \end{bmatrix}$$

§ 5. Solution of (4.23). In this section, we shall give a solution of (4.23). As stated in § 4, since we put c=1, from (4.7) we have

$$\lambda = \frac{3}{\sqrt{2}}$$
, $\frac{k_2}{\lambda} = \frac{\sqrt{14}}{2}$, $\frac{k_3}{k_2} = \sqrt{2}$ and $\bar{c} = 10$

Hence we may regard $\bar{M} = \bar{M}^8$ as $S^8(1/\sqrt{10}) \subset E^9$. Putting

$$(5. 1) e_9 = \sqrt{10}x,$$

we have the Frenet formula of M as follows:

(5. 2)
$$de_9 = \frac{\sqrt{10}}{h} (\bar{\xi}_1 dz + \xi_1 d\bar{z}),$$

(5. 3)
$$\begin{cases} d\xi_{1} = -\frac{2\sqrt{10}}{h}e_{9}dz + \frac{1}{h}\xi_{1}(\bar{z}dz - zd\bar{z}) + \frac{3\sqrt{2}}{h}\xi_{2}d\bar{z}, \\ d\bar{\xi}_{1} = -\frac{2\sqrt{10}}{h}e_{9}d\bar{z} - \frac{1}{h}\bar{\xi}_{1}(\bar{z}dz - zd\bar{z}) + \frac{3\sqrt{2}}{h}\bar{\xi}_{2}dz, \end{cases}$$

(5. 4)
$$\begin{cases} d\xi_{2} = -\frac{3\sqrt{2}}{h}\xi_{1}dz + \frac{2}{h}\xi_{2}(\bar{z}dz - zd\bar{z}) + \frac{\sqrt{14}}{h}\xi_{3}d\bar{z}, \\ d\bar{\xi}_{2} = -\frac{3\sqrt{2}}{h}\bar{\xi}_{1}d\bar{z} - \frac{2}{h}\bar{\xi}_{2}(\bar{z}dz - zd\bar{z}) + \frac{\sqrt{14}}{h}\bar{\xi}_{3}dz, \end{cases}$$

(5. 5)
$$\begin{cases} d\xi_{3} = -\frac{\sqrt{14}}{h} \xi_{2} dz + \frac{3}{h} \xi_{3} (\bar{z} dz - z d\bar{z}) + \frac{2\sqrt{2}}{h} \xi_{4} d\bar{z}, \\ d\bar{\xi}_{3} = -\frac{\sqrt{14}}{h} \bar{\xi}_{2} d\bar{z} - \frac{3}{h} \bar{\xi}_{3} (\bar{z} dz - z d\bar{z}) + \frac{2\sqrt{2}}{h} \bar{\xi}_{4} dz, \end{cases}$$

(5. 6)
$$\begin{cases} d\xi_{4} = -\frac{2\sqrt{2}}{h}\xi_{3}dz + \frac{4}{h}\xi_{4}(\bar{z}dz - zd\bar{z}), \\ d\bar{\xi}_{4} = -\frac{2\sqrt{2}}{h}\bar{\xi}_{3}d\bar{z} - \frac{4}{h}\bar{\xi}_{4}(\bar{z}dz - zd\bar{z}). \end{cases}$$

From the first equation of (5.6), we have

(5.7)
$$\xi_4 = \frac{1}{h^4} F(z),$$

where F(z) is a complex analytic vector field. Substituting (5.7) into (5.6), we have

(5.8)
$$\xi_3 = \frac{2\sqrt{2}\bar{z}}{h^4}F(z) - \frac{1}{2\sqrt{2}h^3}F'(z).$$

Making use of (5.7) and (5.8), we can verify

$$\frac{\partial \xi_3}{\partial \bar{z}} = \frac{2\sqrt{2}}{h} \xi_4 - \frac{3z}{h} \xi_3.$$

From the 1st equation of (5.5), we get

(5.9)
$$\xi_2 = \frac{2\sqrt{7}\bar{z}^2}{h^4}F(z) - \frac{\sqrt{7}\bar{z}}{2h^2}F'(z) + \frac{1}{4\sqrt{7}h^2}F''(z).$$

Making use of (5.8) and (5.9), we can verify that

$$\frac{\partial \xi_2}{\partial \bar{z}} = \frac{\sqrt{14}}{h} \xi_3 - \frac{2z}{h} \xi_2.$$

From the 1st equation of (5.4), we get

(5. 10)
$$\xi_1 = \frac{2\sqrt{14}\bar{z}^3}{h^4}F(z) - \frac{3\sqrt{14}\bar{z}^2}{4h^3}F'(z) + \frac{3\bar{z}}{2\sqrt{14}h^2}F''(z) - \frac{1}{12\sqrt{14}h}F'''(z)$$

Making use of (5.9) and (5.10), we can verify

$$\frac{\partial \xi_1}{\partial \overline{z}} = \frac{3\sqrt{2}}{h} \xi_2 - \frac{z}{h} \xi_1.$$

From the 1st equation of (5.3), we have

$$(5. 11) \quad e_9 = \frac{\sqrt{35}\bar{z}^4}{h^4}F(z) - \frac{\sqrt{35}\bar{z}^3}{2h^3}F'(z) + \frac{3\sqrt{35}\bar{z}^2}{28h^2}F''(z) - \frac{\sqrt{35}\bar{z}}{84h}F'''(z) + \frac{\sqrt{35}}{1680}F''''(z).$$

From (5.10) and (5.11), we can prove that

$$\frac{\partial e_9}{\partial \bar{z}} = \frac{\sqrt{10}}{h} \xi_1.$$

Thus, if we choose F(z) so that e_9 is real, then e_9 , ξ_1 , ξ_2 , ξ_3 , ξ_4 given by (5. 11), ..., (5. 7) respectively satisfy the equations (5. 2), ..., (5. 6).

From now on, we will search for F(z) such that e_{θ} is real. Since $h=1+z\bar{z}$ is real, e_{θ} is real if and only if

$$\frac{1680}{\sqrt{35}}h^4e_9 = 1680\bar{z}^4F(z) - 840\bar{z}^8(1+z\bar{z})F'(z) + 180\bar{z}^2(1+z\bar{z})^2F''(z)$$

$$-20\bar{z}(1+z\bar{z})^3F''''(z) + (1+z\bar{z})^4F''''(z) =: G(z,\bar{z})$$

is real. Then $G(z, \bar{z})$ is a polynomial of degree at most 4 in z as well as in \bar{z} since $G(z, \bar{z}) = \overline{G(z, \bar{z})}$. We have easily from (5.12)

$$\begin{split} G(z,\bar{z}) = & \{1680F(z) - 840zF'(z) + 180z^2F''(z) - 20z^3F'''(z) + z^4F''''(z)\}\bar{z}^4 \\ - & \{840F'(z) - 360zF''(z) + 60z^2F'''(z) - 4z^3F''''(z)\}\bar{z}^3 \\ + & \{180F''(z) - 60zF'''(z) + 6z^2F'''(z)\}\bar{z}^2 \\ - & \{20F'''(z) - 4zF''''(z)\}\bar{z} + F''''(z), \end{split}$$

which implies that F''''(z) is a polynomial in z, because $G(z, \bar{z})$ is a vector valued polynomial in z and \bar{z} . Hence we may put

(5. 13)
$$F(z) = A_0 + A_1 z + \dots + A_m z^m,$$

where A_0 , A_1 , ..., A_m are constant vectors in C^5 . Then we have

$$\begin{split} G(z,\bar{z}) = & \{1680A_0 + 840A_1z + \dots + (m-5)(m-6)(m-7)(m-8)A_mz^m\}\bar{z}^4 \\ - & \{840A_1 + 960A_2z + \dots + 4m(6-m)(m-7)(m-8)A_mz^{m-1}\}\bar{z}^3 \\ + & \{360A_2 + 720A_3z + \dots + 6m(m-1)(m-7)(m-8)A_mz^{m-2}\}\bar{z}_2 \\ - & \{120A_3 + 384A_4z + \dots + 4m(1-m)(m-2)(m-8)A_mz^{m-3}\}\bar{z} \\ + & 24A_4 + 120A_5z + \dots + & m(m-1)(m-2)(m-3)A_mz^{m-4}. \end{split}$$

Since $G(z, \bar{z})$ is a polynomial in \bar{z} and z of degree at most 4, the polynomial in the first $\{\ \}$ lacks the terms of degree 5, 6, 7, 8 in z. Hence we may suppose m=8. Then we have

$$G(z, \bar{z}) = (1680A_0 + 840A_1z + 360A_2z^2 + 120A_3z^3 + 24A_4z^4)\bar{z}^4$$

$$-(840A_1 + 960A_2z + 720A_3z^2 + 384A_4z^3 + 120A_5z^4)\bar{z}^3$$

$$+(360A_2 + 720A_3z + 864A_4z^2 + 720A_5z^3 + 360A_6z^4)\bar{z}^2$$

$$-(120A_3 + 384A_4z + 720A_5z^2 + 960A_6z^3 + 840A_7z^4)\bar{z}$$

$$+ 24A_4 + 120A_5z + 360A_6z^2 + 840A_7z^3 + 1680A_8z^4,$$

which implies that $G(z, \bar{z}) = \overline{G(z, \bar{z})}$ is satisfied if and only if

(5. 15)
$$A_4 = \bar{A}_4, \quad A_5 = -\bar{A}_3, \quad A_6 = \bar{A}_2, \quad A_7 = -\bar{A}_1, \quad A_8 = \bar{A}_0.$$

Making use of (5.12), (5.14) and (5.15), we have

$$e_{9} = \frac{\sqrt{35}}{70h^{4}} \{ A_{4} (1 - 16z\bar{z} + 36z^{2}\bar{z}^{2} - 16z^{3}\bar{z}^{3} + z^{4}\bar{z}^{4})$$

$$-5(\bar{A}_{3}z + A_{3}\bar{z})(1 - 6z\bar{z} + 6z^{2}\bar{z}^{2} - z^{3}\bar{z}^{3})$$

$$+5(\bar{A}_{2}z^{2} + A_{2}\bar{z}^{2})(3 - 8z\bar{z} + 3z^{2}\bar{z}^{2})$$

$$-35(\bar{A}_{1}z^{3} + A_{1}\bar{z}^{3})(1 - z\bar{z}) + 70(\bar{A}_{0}z^{4} + A_{0}\bar{z}^{4}) \}.$$

From (5.7), (5.8), (5.9) and (5.10), we have

$$(5. 17) \xi_4 = \frac{1}{h^4} \{ A_4 z^4 + (A_3 z^3 - \bar{A}_3 z^5) + (A_2 z^2 + \bar{A}_2 z^6) + (A_1 z - \bar{A}_1 z^7) + A_0 + \bar{A}_0 z^8 \}$$

(5. 18)
$$\xi_{3} = \frac{1}{2\sqrt{2}h^{4}} \{4\bar{z}F(z) - (1+z\bar{z})F'(z)\}$$

(5. 19)
$$\xi_2 = \frac{1}{4\sqrt{7}h^4} \{56\bar{z}^2 F(z) - 14\bar{z}(1+z\bar{z})F'(z) + (1+z\bar{z})^2 F''(z)\}$$

(5. 20)
$$\xi_{1} = \frac{1}{12\sqrt{14}h^{4}} \{336\bar{z}^{3}F(z) - 126\bar{z}^{2}(1+z\bar{z})F'(z) + 18\bar{z}(1+z\bar{z})^{2}F''(z) - (1+z\bar{z})^{3}F''''(z)\}.$$

Now we must find the conditions that $\xi_1, \xi_2, \xi_3, \xi_4$ and e_9 form an orthonormal frame. In the following calculation, " \equiv " denotes the equality modulus the quantities:

$$e_9 \cdot \xi_1$$
, $e_9 \cdot \bar{\xi}_1$, $\xi_j \cdot \xi_j$, $\bar{\xi}_j \cdot \bar{\xi}_j$, $\xi_j \cdot \xi_k$, $\xi_j \cdot \bar{\xi}_k$, $\bar{\xi}_j \cdot \bar{\xi}_k$

where $j, k=1, 2, \dots, 4$ and $j \neq k$. Then we have easily the relations:

$$d(e_{9} \cdot e_{9}) \equiv d(e_{9} \cdot \xi_{i}) \equiv d(\xi_{j} \cdot \xi_{k}) \equiv d(\xi_{j} \cdot \bar{\xi}_{j}) \equiv d(\xi_{1} \cdot \bar{\xi}_{3}) \equiv d(\xi_{1} \cdot \bar{\xi}_{4}) \equiv d(\xi_{2} \cdot \bar{\xi}_{4}) \equiv 0,$$

$$l = 2, 3, 4, \quad j, k = 1, \dots, 4,$$

$$d(e_{9} \cdot \xi_{1}) \equiv \frac{\sqrt{10}}{h} (\xi_{1} \cdot \bar{\xi}_{1} - 2e_{9} \cdot e_{9}) dz$$

$$d(\xi_{1} \cdot \bar{\xi}_{2}) \equiv \frac{3\sqrt{2}}{h} (\xi_{2} \cdot \bar{\xi}_{2} - \xi_{1} \cdot \bar{\xi}_{1}) d\bar{z} \equiv d(\bar{\xi}_{1} \cdot \xi_{2})$$

$$d(\xi_{2} \cdot \bar{\xi}_{3}) \equiv \frac{\sqrt{14}}{h} (\xi_{3} \cdot \bar{\xi}_{3} - \xi_{2} \cdot \bar{\xi}_{2}) d\bar{z} \equiv d(\bar{\xi}_{2} \cdot \xi_{3})$$

$$d(\xi_{3} \cdot \bar{\xi}_{4}) \equiv \frac{2\sqrt{2}}{h} (\xi_{4} \cdot \bar{\xi}_{4} - \xi_{3} \cdot \bar{\xi}_{3}) d\bar{z} \equiv d(\bar{\xi}_{3} \cdot \xi_{4}),$$

from which we see that $e_9 \cdot e_9$, $\xi_j \cdot \bar{\xi}_j$ $(j=1, \dots, 4)$ are constants. Hence, if we can choose A_0 , A_1 , A_2 , A_3 , A_4 such that $e_9 \cdot e_9 = 1$ and $\xi_j \cdot \bar{\xi}_j = 2$ $(j=1, \dots, 4)$ at z=0, then the above quantities are all zero. It is sufficient to give conditions that e_9 , ξ_1 , ξ_2 , ξ_3 and ξ_4 form an orthonormal frame at z=0. From (5.16), (5.17), (5.18), (5.19) and (5.20), at z=0, we have

$$e_9 = \frac{\sqrt{35}}{70}A_4$$
, $\xi_1 = -\frac{A_3}{2\sqrt{14}}$, $\xi_2 = \frac{A_2}{2\sqrt{7}}$, $\xi_3 = -\frac{A_1}{2\sqrt{2}}$, $\xi_4 = A_0$.

Thus we have the conditions for A_0, A_1, \dots, A_4 :

$$(5. 21) \begin{cases} A_4 = \bar{A}_4, & A_j \cdot A_j = 0 \\ A_4 \cdot A_4 = 140, & A_3 \cdot \bar{A}_3 = 112, & A_2 \cdot \bar{A}_2 = 56 \\ A_4 \cdot A_j = 0, & A_3 \cdot \bar{A}_l = 0, & A_3 \cdot \bar{A}_l = 0 \end{cases} (j = 0, 1, \dots, 3) \quad (l = 0, 1, 2),$$

$$A_2 \cdot A_1 = A_2 \cdot \bar{A}_1 = A_2 \cdot A_0 = A_2 \cdot \bar{A}_0 = A_1 \cdot A_0 = A_1 \cdot \bar{A}_0 = 0.$$

Now we give the equation of M using the above result. First of all, we choose five constant vectors A_0 , A_1 , A_2 , A_3 , A_4 in C^5 which satisfy the conditions (5. 21) and determine e_9 given by (5. 16) which is a real unit vector field in $E^{10} \cong C^5$. Since we may consider $x=(1/\sqrt{10})e_9$, we have a general solution of (4. 23) as follows:

$$x = \frac{1}{10\sqrt{14}(1+z\bar{z})^4} \{ (1 - 16z\bar{z} + 36z^2\bar{z}^2 - 16z^3\bar{z}^3 + z^4\bar{z}^4)A_4 - 5(1 - 6z\bar{z} + 6z^2\bar{z}^2 - z^3\bar{z}^3)(\bar{A}_3z + A_3\bar{z}) + 5(3 - 8z\bar{z} + 3z^2\bar{z}^2)(\bar{A}_2z + A_2\bar{z}) - 35(1 - z\bar{z})(\bar{A}_1z^3 + A_1\bar{z}^3) + 70(\bar{A}_0z^4 + A_0\bar{z}^4) \}.$$

If we put

$$A_{4} = 2\sqrt{35} \frac{\partial}{\partial x_{9}}, \quad A_{3} = -2\sqrt{14} \left(\frac{\partial}{\partial x_{1}} + i \frac{\partial}{\partial x_{2}} \right), \quad A_{2} = 2\sqrt{7} \left(\frac{\partial}{\partial x_{3}} + i \frac{\partial}{\partial x_{4}} \right)$$

$$A_{1} = -2\sqrt{2} \left(\frac{\partial}{\partial x_{5}} + i \frac{\partial}{\partial x_{6}} \right) \quad \text{and} \quad A_{0} = \frac{\partial}{\partial x_{7}} + i \frac{\partial}{\partial x_{8}},$$

we can write (5. 22) in the cannonical coordinates x_1, x_2, \dots, x_9 as follows:

$$x_{1} = \frac{1 - 6z\bar{z} + 6\bar{z}^{2}z^{2} - z^{3}\bar{z}^{3}}{(1 + z\bar{z})^{4}} (z + \bar{z}),$$

$$x_{2} = -i\frac{1 - 6z\bar{z} + 6z^{2}\bar{z}^{2} - z^{3}\bar{z}^{3}}{(1 + z\bar{z})^{4}} (z - \bar{z}),$$

$$x_{3} = \frac{3 - 8z\bar{z} + 3z^{2}\bar{z}^{2}}{\sqrt{2}(1 + z\bar{z})^{4}} (z^{2} + \bar{z}^{2}),$$

$$x_{4} = -i\frac{3 - 8z\bar{z} + 3z^{2}\bar{z}^{2}}{\sqrt{2}(1 + z\bar{z})^{4}} (z^{2} - \bar{z}^{2}),$$

$$x_{5} = \frac{\sqrt{7}(1 - z\bar{z})}{(1 + z\bar{z})^{4}} (z^{3} + \bar{z}^{3}),$$

$$x_{6} = -i\frac{\sqrt{7}(1 - z\bar{z})}{(1 + z\bar{z})^{4}} (z^{3} - \bar{z}^{3}),$$

$$x_{7} = \frac{\sqrt{7}(1 - z\bar{z})}{2(1 + z\bar{z})^{4}} (z^{4} + \bar{z}^{4}),$$

$$x_{8} = -\frac{\sqrt{7}i}{2(1 + z\bar{z})^{4}} (z^{4} - \bar{z}^{4}),$$

$$x_{9} = \frac{1 - 16zz + 36z^{2}\bar{z}^{2} - 16z^{3}\bar{z}^{3} + z^{4}\bar{z}^{4}}{\sqrt{10}(1 + z\bar{z})^{4}}$$

REFERENCES

- [1] Ітон, Т., Complete surfaces in E^4 with constant mean curvature. Kōdai Math. Sem. Rep. 22 (1970), 150–158.
- [2] —, A note on minimal submanifolds with *M*-index 2. Kōdai Math. Sem. Rep. **23** (1971), 204–207.
- [3] Ōtsuki, T., Theory of surfaces in Euclidean spaces. mimeographed note (1968).
- [4] , On Minimal submanifolds with M-index 2. To appear in J. Diff. Geometry.
- [5] ———, Minimal submanifolds with M-index 2 in Riemmannian manifolds of constant curvature. Tôhoku Math. J. 23 (1971), 371-402.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.