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MINIMAL SURFACES WITH M-INDEX 2,
T-INDEX 2 AND T.-INDEX 2

By TakeHIro IToH

For a minimal submanifold of dimension greater than 2 and with M-index 2
in a Riemannian manifold of constant curvature, Otsuki [4] gave a condition that
its geodesic codimension is 3 and some examples of such minimal submanifolds
under certain additional conditions in Euclidean, spherical and hyperbolic non-Eucli-
dean spaces. For a minimal surface with M-index 2 in a Riemannian manifold of
constant curvature, the author [2] proved that we may put formally p=0 and z=2
in the result of [4] when the ambiant spaces are spheres and solved the differential
equations. Otsuki [5] gave a condition that the geodesic codimension becomes 4
and some examples in space forms.

In the present paper, the author will study minimal surfaces with M-index 2,
Ti-index 2 and Ty-index 2 in a Riemannian manifold of constant curvature, where
Ti-index and 7y-index are analogous to those of Otsuki [3]. Furthermore, he will
give a condition that the geodesic codimension becomes 6 and a general solution
of such minimal surfaces.

The author expresses his deep gratitude to Professor T. Otsuki who en-
couraged him and gave him a lot of valuable suggestions.

§1. Minimal surfaces with M-index 2. Let M=M?" be a (2+v)-dimensional
Riemannian manifold of constant curvature ¢ and M=M* be_a 2-dimensinal sub-
manifold in M with the Riemannian metric induced from M, where both mani-
folds are C*. Let @4, @ap=—a®ps A, B=1,2, ---, 2+, be the basic and connection
forms of M on the orthonormal frame bundle F(M) which satify the structure
equations:

(1.1 Adb 4= § @4/\D3p, db = ZCI D40 N\NGep—CDAN\Dp.
Let B be the subbundle of F(A7I) over M such that Bab=(z, ei, e, es, ***, €21,)

eF(A7I) and (z, ei, e)eF(M), where F(M) is the orthonormal frame bundle of M.
Then, deleting bars of @4, @43, on B we have

(1’ 2) wa=0y Wia= Z Aaijwjy Aaif=Aaji;
7
doi=wuNwr,  dog=7, OwuA\wa—Cwi A0k,
1.3) dwie=0ix N\ Oka~+ % Wis N\ Opar

dw,,ﬁ= Z (l)m,/\a)ip+ Z w,,,/\a),p,
P I3

Received December 16, 1970.
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where 7, 7, k=1, 2, ixk, a, B, =3, 4, -+, 2+v. _ _

For any point zeM, let N, be the normal space to Mp=T,M in My=T.M.
For any beB, we define a linear mapping ¢ from N, into the set of all sym-
metric matrices of order 2 by

1. 4) (,/;,,(Za: Vo) = ; VaAas Ar=(Auy)-

We call the dim ¢, (ker /m) at x M-index of M at z in M, where m is a linear
mapping from N, into R defined by (2. v..)=(1/2) trace (3, v.Aq)-

Now we suppose that M is minimal in M and of M-index 2 at each point.
Then N, is decomposed as

1.5) N,=N3%+0, N’ 10,
where O:=¢3%(0) and dim N,=2, which does not depend on the choice of & over

x and is smooth. Let B, be the set of b€B such that e;, e;e N;. From the defini-
tion of M-index, on B, we have

(1. 6) wp=0, i=1,2, 4<p.

LemmA 1. On B, for a fixed B>4, we have wp=wi,p=0 (mod v, ws) and
(03,9=(1)4,9=0 or else 0)3,3/\(1)43#0.

LEMMA 2. We can choose a frame beB, such that
(1. 7) w13=2w1, a)23=—2a)2, W14 = W2, W24 = YW1, zﬂﬂFO

Proof. Rotating 2-frames (z, e, ¢2) and (z, s, es) suitably, we can choose a
frame beB; such that

(013:20)1, W3 = —2(1)2, 2#0, <A3, A4> =0.

Then, putting wu=aw:+ pw: and w.=pw,+bw:, we have {As, AD=(1/2)A(a—b)=0.
It follows from 20 that a=b. On the other hand, since trace A,=0, we have a+b
=0. Hence we have ¢=b=0. Since M-index is 2, g must not be zero. Q.E.D.

Let B, be the set of all beB; satisfying (1. 7). Then since M-index is 2 every-
where on M, B, is a smooth submanifold of B;. Making use of (1.3) and (1. 6),
we have wisAwsg+wuAwip=0. Substituting (1. 7) into these equations, we have

Awi Awsp+ pw: Ay =0,
1. 8)
/2(!)2 /\(035—[1(01 /\(1)4p=0,

which imply that we can put

Awsp=Fp01+gpw2,
1.9
10i1p= 01— [ p02.

Now, by virtue of Lemma 1, we can define two linear mappings ¢u and ¢,
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corresponding to the normal vector fields ¢; and e, from M, into O, as follows:
for any XeM,

(1. 10) 9011(X)=§ wss(X)es, 012(X)= %} w15(X)ep.
By means of (1.9), the two linear mappings
(1.11) P11=Apn and P12= P12

have the same images of the tangent unit sphere SL={XeM,|||X||=1} and &.(X)
and @;»(X) are conjugate to each other with respect to the image. The mappings
@u and ¢» may be called the Ist torsion operators of M in M. We define the
second curvature ki(x) of M at x by

o) =Max |6, (2)]| = Max [|¢s(X)|
xesl, Xesl,
and call the dimension of the image of M, by & (or ¢i2) the 1st torsion index of
M at x and denote it by Ti-index ;M. It is trival that Ti-index =2 at each point
of M. If ky(x)=0, then Ti-index ,M=0. Hence if k,(x)=0 at each point zel,
then the geodesic codimension of M is 2. If Ti-index=1 at each xelM, then the
geodesic codimension is 3, which is the case treated by Otsuki [4] for a minimal

submanifold of general dimension .

§2. Minimal surfaces with M-index 2 and T-index 2. In this section we
will consider minimal surfaces with M-index 2 and 7i-index 2 in M. Then we
can choose a frame beB: and local function #; on M such that

¢11(81 cos 0, +e3 sin 01)=k21€5,
@ 1) .
¢Il(_el Sin 01 +e5 cos 01)=k22€s,

where ki =k,>0 and ks=Minxes, ||¢:1:(X)||=Minxest, ||312(X)||. If Eoi2ckss, then ks
and kg, are differentiable functions on M. We suppose that they are differen-
tiable functions. Let B; be the set of all such frames b€B,. Then B; is a sub-
manifold of B.. On B; we have

Wgs= %(cos br01+sin 0,0,),
2.2)
w36=%(—sin O1w1+cos rws), 03, =0, 6<7.

Making use of (1.7) and (2. 2), we have

W= —%(Sin 01(1)1 —CO0s 01(1)2),
(2.3)
(1)46.:%((:08 0101+sin O1w,), 0,=0,  6<y.
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Then, by means of (1. 3), (1. 7), (2. 2) and (2.3), we can verify the following

LemMA 3. Under the above condition, on Bs we have

@. 4) {d log 2—i(2w13— 061} A (01 +iws) =0,
(. 5) {do+i(1—0*)@:} A (01 +iws) =0,

2. 6) dwr=—(E—2— 21 Aws,

@.7) d@=—<2zy—k;‘—;;’1§’-> 1A,

where &, =ws, is the connetion form of the vector bundle N’= U zex N> over M.

Furthermore, making use of (2. 2) and (2. 3), we have

LeMMmA 4. On Bs, for a fixed y>6, we have ws,=ws=0 (mod w:, ) and s,
=we,=0 or else a)sr/\(t)erﬂ"-o.

Now, since Ti-index is 2 everywhere on M, the image of M, by @u (or @12)
spans 2-dimensional subspace in O,, which we denote by N%. Let N”=Uzen N%.
Then N”is a 2-dimensional normal vector bundle over M like N’. We can ortho-
gonally decompose N, as

2.8 Ne=N3+N3+0;,  O:=N37+0;  N;1O:.

By virtue of Lemma 4, we can define two linear mappings ¢ and ¢, from
M into O} corresponding to the normal vector field es and e; respectively as
follows: for any XeM,

¢21(X)=6§rw57(X)eri S022(X)=6§rwer(X)er-
On the other hand, since ws,=ws,=0, We have
@35 A\ Ws;F w36 A we, =0, 6<7,
@45 A\ 05+ w46 N\ e, =0.
Substituting (2. 2) and (2. 3) into these equations, we may put
k2105, =a,(C0S 6101+ sin 10:)+b,(—sin 6,0, +cos 61wz),
@9 koaws,; =b,(COS 0101+ Sin 0,02) —a,(—sin 61w, +cos O1s),
which imply that the two linear mappings
Por=PR2102 and Pa2=PRaop2o

have the same images of S} in M. We call @u and @ the [second torsion opera-
tors of M in M. We define the third curvature ks(x) of M at z by
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(2. 10) ks(x)=Mafi [|@21 (X =Ma1X [1@22(XDI|

Xes,, Xes,,

and call the dimension of the image of M, by @a (Or @2) the second torsion index
of M at z, which we denote by Ty-index .M. It is trivial that ks(x)=0 if and only
if Ty-index ,M=0. If ky(x)=0 identically on M, then the geodesic codimension of
M is 4. If Ty-index is identically 1 on M, the geodesic codimension will be
5. In the next section we shall give a condition for the geodedsic codimension
to be 6 when Tr-index is identically 2 on M.

§3. Minimal surfaces with M-index 2, Ti-index 2 and T:-index 2. In this
section we shall consider the minimal surfaces with M-index 2, Ti-index 2 and
Trindex 2 and give a condition that the geodesic codimension is 6. Under
the above conditions, we can choose a frame beB; and a local function 6, on M
such that

¢21(81 cos fs+e; sin 02)=k31e7,

6. 1) _
¢21<—91 sSin 02+€2 COos 02) =kazes,

where ks1=k;>0 and k32=MiIlXe,sf” ”¢21(X)”=M11’1Xes§c“gﬁzz(X)”. If kslz\zksz, then
both ks; and ks, are differentiable functions on M. From now on, we suppose
that they are differentiable functions on M. Then, B, being the set of all such
frames of B;, B, is a smooth submanifold of B;. On B, we have

31

Wy = L(COS 0201 +Sin 02(02),
k21

(3.2

wss=%(—sin02w1+cos 02(1)2), (05r=0, 8<)’.
21

From (3. 2) and (2. 9), we get

ks, .
We7 ='k—(Sln G201 —COS 02(02),
22

(3.3) .
Wes= k_sz(cos 0201 +5in 0:05), we; =0, 8<7y.
22
Making use of (3.2) and (3. 3), we have the following

LEMMA 5. On B, for a fixed y>8, we have wi,=ws,=0 (mod w1, wz) and w,,=
s, =0 or else wi, Aws,=0.

Proof. Since ws;=we, =0, we have
@s1 A\ Wy w55 A\ 0s; = Wer A w1, + wes A ws, =0.

Substituting (3. 2) and (3. 3) into these equations, we get
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ku(COS o +Sin 02(})2)/\&)7,— +k32(—Sin 02(01 +cos 62(02)/\0)8,=0,

ksl(—Sin 0201+ COS 020)2) A\ W7, — ksz(COS 0201+ sin 02(1)2) /\(z)s, = 0,
which imply that we may put

k310)77 = d;(COS Q01 +sin 020)2) + b,l,( —sin #201-+C0OS 02(1)2),

3.4)
Rsaws, =b}(COS 020, +SIn O:02) — @(—sin w1+ COS Oz0s).

Then we have ksikswr, Aws,= —(@>+b%)w1 Aws, Which completes the proof.

Now, since T:index is identically 2 on M, the image of M, by @a (Or (Pss)
spans 2-dimensional linear subspace in O}, which we denote by Ny. Then we can
decompose N, as follows:

(8.5)  No=Ni+NZ+N7+0%, O:=Ni+N7+07 O,=N3'+037 N7 107

By virtue of Lemma 5, we can define two linear mappings ¢;; and ¢z from
M, into O/ corresponding to the normal vector fields e; and e; respectively as
follows: for any XeM,

puX)=Z on(Xe, gl X)=F 0s(Xey.
By means of (3.4) we have two linear mappings
(3.6) ¢31=k319031 and ¢32=k32§032

which have the same images of Si. We call @5, and @se the third torsion operators
of M in M. We define the forth curvature kyxz) of M at z by

3.7 ky(z)=Max [|@s:(X)||=Max ||@so(X)||

xesl, xesl,
and call the dimension of the image of M, by @ (or @s») the third torsion index
of M at x and denote it by Ti-index ;M. Then we get a condition that the geodesic
codimension is 6 as follows:

THEOREM 1. Let M=DM* be a minimal surface with M-index 2, Ti-index 2 and
To-index 2 in M. The geodesic codimension of M is 6 if and only if Ts-index M
=0 at each point xeM.

Proof. The necessity is trival. Let us suppose that Ti-index ,M=0 at each
point z of M. Then we have w;,=ws,=0, 8<y. It follows from (3. 2), (3. 3), (2. 2),
(2. 3) and (1. 6) that the geodesic codimension is 6. Q.E.D.

§4. Minimal surfaces with M-index 2, T-index 2, T:-index 2 and T:-index 0.
We shall consider minimal surfaces with M-index 2, T;j-index 2, Ts-index 2 and T%-
index 0. Then, by virtue of Theorem 1, we may put v=6, ie., M=M? Making
use of (2.2), (2.3), (3.2) and (3. 3), we have the following
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LEMMA 6. Under the above conditions, on Bs we have the following equations

(4- 1) ddy=dwse= < Kot —ka kzz( +”12‘>>601 Nz,
k21k22 y2
1 1
4. 2) dds=dws= —k31k32< +— 7 )a)l N we.
22

THEOREM 2. Let M be a minimal surface with M-index 2, Ty-index 2, Ty-index
2 and Tsindex 0 in a Riemannian manifald of constant curvature ¢. If we have

(a) @,%0,  o=pli=constant on M,
(8) M is of constant curvature c,
(7) ky=constant and ks=constant on M,

then we have

4.3) a=1 or -1,
4. 4) c=C—22,
4. 5) @1=2w13, By=db,+3w:s, Gs=db0:+db>+4w;2,
(4. 6) k2=k21=k22 and k3=k31=k32,
9 BT R <
2 - —_ —_— =
4.7 A= 56 =30 2 2c and ¢=10c.

Furthermore the Frenet formula of M is
dz=R((ef¥+ief)(wF —iof)),
D(e¥+ie¥)= —i(ef +ieF)wk+A(eX +ie¥) ¥ —in¥),
(4.8) D(e¥+ie¥)=—2i(ex+ie¥)wl— el +ied)(w¥ +iv) +ﬁ(e§"+ieé“)(w1 ¥ —iwf),
D(e;k+lezk)_ -3l(e§k+w?)wlz— _(egk'l'le:k)(w +io%)+ ——‘(97 +ie¥)(of —iw}),
Diet i) = —4ile} +iel)u—2 (et +iek o +iad),
2
where ef=e; (j=1, -, 4), ef+ief=e'"(es+1ies), ef +ief=e' "+ (er1-ieg).
Proof. From (a) and (2.5) we have o¢?=1. Hence we have 2*=g%, which

together with (2. 6) implies that c=¢—222.. We may suppose ¢=1. Since we have
A=const. from (4. 4), (2.4) implies &, =2w;2. From (2.7) and (4.5), we get

2 2
4. 9) 20:212—’?“—;‘;@.
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Since k;=k,; is constant, so is ks Thus, since A=p is constant, k., =constant and

ks2=constant, making use of (2.2) and (2.3), we have
kzl(dﬁl -+ w12+ 071) - kzzdl)z = 0,
(4.10)
kzz(dﬁl + w12+ (7)1) - k21d')2 =0.

Hence, making use of &, =2w,; and (4. 1), we have

[ 2k _k:,+k§z}
(4. 11) 3k21€ —kgg{ = kzlkzz ,

o | 2kuks  Ey+EG
(4. 12) 3k220—k21 [ 2 —“‘—_—‘kmkzz } 5

which together with k;=FAs; =constant imply that ks, is constant and hence we have

(4.13) PR T Ea B I R 1)

1 ‘2k§1 Btk 1 (2 :1+k:z}
=3 .
From the second equality of (4.13), we have

‘ 2koks  Ky+EG ] -0
/22 k21k22 e

(4. 14) (B~

Now we assume that

2Rk KL+E,

T hkm

From (4.11) and (4.12), we have ¢=0. On the other hand, making use of (3.2)
(3. 3), we have

k dﬁz/\( sin G201+ COS 02(02) + k 0)12/\ (COS Gz — sin 020)1)

d6057— k
k3l ~ k
= —wz/\ (sin Gzw; — oS Ozw2) +Tw3/\( sin 0w +cos O2w2),
_ k82 . ksz .
dw53 —‘k—d02 A ( — COS f,w;—SIn 02(02) — k—a)m A (Sln 022+ COS 02(01)
21 21
k32 ~ k
=—w2 A (COS Q01+ sin 02(02) — T(ﬂg A (COS Oow1+ sin 02(02),

(4. 15)

ks
dwe7 = k_dgz A (COS Ow1+ sin 620)2) + a)m A (COS Q2 +Sll'l 02(01)

k
=— —3ic62 A(cos G201 +Sin Gows) +:—w3 A(coSs 02w +sin Ozw,),
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k . k .
d(l)(;s:'iidﬂz/\(—sln 02(1)1 4 cos 02&)2) +—k—32—w12/\(cos 020)2—‘511'1 02(01)
22 22

k ) N .
=—22.5, A(COS O3 —Sin Oz;) —ﬁ“—wa A(Sin 0201 —C0S O205).
k21 k22

Hence, if we suppose that ks =£.., we have

k31(A0:+ w12+ B2) — F3a@3 =0,
(4. 16)

ksz(daz Fot+ @2) ""kalfr)a =0.
From (4. 10), we have

Gy =d0,+ 012+ G1=d0:+3w;s.
This together with (4. 2), (4. 16) implies that

2 2
4.17) 4k31c=2_";;& and  Ahooe Zk;;fsz

which contradict ¢=0. Thus it must be A.13k: When

Shuke  KaitEs

22 B k2l k22 _O.

Then, from (4. 10) we get @,=0 and d0,+ w1+ & =0. Since @,=0, (4. 15) implies
Ba1(dOs+ @12) — Bso@s = ksa(dOz+ 012) — Ba1@3=0.
Making use of (4.2), we get
o=+ ) =B+ )
n R n Ko
which contradicts ¢=0. Thus it must be

huihss I
T im0

and hence ky=Fk, =k,. Then from (4. 17) we have

B
T2k 2k

which implies kg;=ksi=ks; and Kiki=2c. From &,=2w:, (4.10) and (4.16), we
have @y=d0;+3w1: and @;=db,+dg.+4w.. From (4.1) and (4.5), we have c=
(2/3)(k:/22—K3kD), which together with £Ai/kj=2c¢ implies that £%/A*=(7/2)c. Sub-
stituting this equality into (4. 9), we have 2c=22*—7¢ and hence 22=(9/2)c. Fur-
thermore, from (4. 4) and 22=(9/2)c we have {=c+22*=10c.

Now we choose a new frame b*=(z, ef, ef, e -+, ef) such that e¥=e,, j=1, 2,
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-, 4, eFtief=e(es+ies), ef +ief=10110(g;+ieg). Then, with respect to this new
frame we have

k k
(0;;= Tzwik ’ W3 = "2‘2‘(02 ) ‘U;k =30,
wE= —-&-w* ) —ﬁw
45— Z 2 46— l 1
and .
k
ws"§=-k—:wi“, ws"§=7;z—w2", oF =40},
k k
Wer= — ka Wz y a)éka=‘k_2'wik
Therefore the Frenet formula of M is (4. 8). Q.E.D.

Now, in order to solve (4. 8), we wish to write (4. 8) in terms of an isothermal
coorinate of M. Since we may put ¢=1 from (4. 7), M may be considered locally
the unit sphere S2.

On the other hand, for the unit sphere S?% considering it the Riemann sphere,
as is well known, we have the following formulas:

4dzdz

g _RUL 2 2

4.19) ds*= Atz i+ o},
. 2dz . Zdz—2dZ
(4. 20) a)1+za)2——1—_{—_z—§-, Wi2= _T-I-—ZE—’
where w;, is the connection form of S2.
Hence we may put

4. 21) o¥tiv¥=e""*(w:+iws).

Substituting this into

d(o¥ +iof)= —ivi A\ (0¥ +ioY),
we have
4. 22) wE=wiz+do.

Putting &,=e*(ef+ief), &:=e%(ef+ie¥), Es=e**(ef+ief) and &,=e'*(ef+ie¥), (4.8)
can be written as follows:

dx=—}l—(§1dz+$1d§), h=1+23,
Dsl=%el(§dz+zd§)+—2;—szdz,

(4. 23) De,= —%&dz+%&(édz+ zdz-)+-22%£sdz,
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_ 2%k 3. 2k
Da=-"2¢ ;; Wzt EZda+ad2) + ;; £4dZ,
_ 2k 4 _
Dg,= —-k‘z-;-(fadz‘l‘%‘&(i?dz'i'zdz)-

§5. Solution of (4.23). In this section, we shall give a solution of (4.23).
As stated in §4, since we put ¢=1, from (4. 7) we have

3 h_yHE  h_ -
= =g 7 =+/2 and ¢=10.
Hence we may regard M=M?® as S¥(1/+/10)cE®. Putting

(5 1) e9g= '\/m"b‘,

we have the Frenet formula of M as follows:

V10

(5. 2) de9=T(§1dz+&d§),
[ dgy=— 2*216 eedz+%$1(§dz—zd§)+ 3‘; 2 ¢,d3,
5.3) ) . _
dE=—2V10, 45 L g Gaz—zan)+3Y 2 Ea,
7 7 7
(der= -3V 2 a4 2 e ade—any + Yoz,
(5.4 1 -
dE=—3Y2 g a5 25 zar—zaz+ Y4
7 ) )
dgy= —L]zl‘iszdz+%5s(zdz—zd§)+ 2‘2 2 ¢z,
5. 5) B B
d=~ Ve 052 5, Gda—adz)+ 2 2 £,
de=— 2*2 2 Esdz+%54(§dz—zd§),
5. 6) B
dE,=—2V2 éadz—%é(édz—zdz).

h

From the first equation of (5. 6), we have

6.7 &= %F (2),
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where F(z) is a complex analytic vector field. Substituting (5. 7) into (5. 6), we have

2\/ 2z

Making use of (5.7) and (5. 8), we can verify

08 24/2 _ _?E

0z _—h—& i o
From the st equation of (5.5), we get

2\/~Z _ \/7 i nli /1

Making use of (5.8) and (5.9), we can verify that

aEz _ \/14 Z

T ——&s—
From the 1st equation of (5. 4), we get
2\/142 3\/142 y 1 1,

6.10  &=2YE R0~ SRR @)y i =y g PR

Making use of (5.9) and (5. 10), we can verify

96 _3v2,. Z.
9z &k ¥ n“

From the 1st equation of (5.3), we have

‘\/352’ F/

2h3 3'\/35§2 F//(z) — '\/352 F”I(Z)'I' '\/35 F///I( )

28h* 844 1680

5.11) = */352 F(z)— @+

From (5. 10) and (5. 11), we can prove that

ges. «/10 V10,
oz o

Thus, if we choose F(z) so that e, is real, then ey, &, &, &, & given by (5. 11), -,

(5. 7) respectively satisfy the equations (5. 2), ---, (5. 6).
From now on, we will search for F(z) such that e, is real. Since A=1+42Z is

real, e, is real if and only if

1680

V35 hte,=16802*F(2) —8402°(1 4 22)F'(2) +1802*(1422)*F"(2)

(5.12)
—202(1+22) F""(2)+ (L +22)F""(2)=: G(z, )

is real. Then G(z, z) is a polynomial of degree at most 4 in z as well as in 2
since G(z, 2)=G(z, 2). We have easily from (5. 12)
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G(z, 2)={1680F (2)—8402F"(2)+18022F"(2) — 202°F " "(2)+- z*F " (2)} 2*
—{840F"(2)—360zF"(2)+ 602 F""'(2) —42° F""(2)} 2*
+{180F"(2) —60zF""(2) + 622 F"" ()} 2>
—{20F""(2)—4zF""(2)}2+ F""(2),

which implies that F”“(z) is a polynomial in z, because G(z, Z) is a vector valued
polynomial in z and Z. Hence we may put

(5.13) F(2)=A¢+ A2+ +An2™,
where A,, Ai, -+, An are constant vectors in C°. Then we have
G(z, 2)={1680A4,+840A,2+ -+ +(m—5)(m—6)(m—T)(m—8) Anz™}z*
—{840A:4+960A22+ -+ +4m(6 —m)(m—T)(m—8) Anz™1}2®
+1{360A:4+720As2+ -+ +-6m(m—1)(m—"T)(m—8) Anz™ %2,
—{120A,+384A,z+ -+ +4m(l —m)(m—2)(m—8) Anz™ |2
+ 24A,+120A524 -4 mim—1)(m—2)(m—3)Anz™".

Since G(z, Z) is a polynomial in z and z of degree at most 4, the polynomial in
the first { } lacks the terms of degree 5, 6, 7, 8 in z. Hence we may suppose
m=8. Then we have

G(z, 2)=(1680A4,+840A:2+360A.2%+120A,2° + 24 A,2*)2*
—(840A:+960A4:2+720A522+384A42° + 1204524 2°
(5.14) +(360A,+720A52 +864A,2% 4 720 A52° + 360 442*) 2%
—(120A45+384A,2+720A52°+960A:2° + 840A4,2%) 2

+ 24A,+120A52+ 3604422+ 840A,2°+1680A452%,
which implies that G(z, 2)=G(z, Zz) is satisfied if and only if

(5- 15) A4=A4, A5=—A3, As=ﬁg, A7="‘A1, A3=Ao.
Making use of (5.12), (5.14) and (5. 15), we have

ey= ;{3{:—) {A(1—1622+ 362222 —16232°+ 212*)
—5(Asz+ AsZ)(1 —622 462222 —282%)
+5(A,2% 4+ A,72) (3 — 822 +32227)

—35(A125 + AyZ)(1 — 28) +T0(Asz + Aoz},

From (5. 7), (5. 8), (5.9) and (5. 10), we have

(5. 16)
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(5. 17) 54 =~_}]l.4— {A4Z4 + (AaZa - A325> + <A222 + /1226) + (A],Z"" /_1127) + Ao + Aozs}
1 . -

(5. 18) 53=W{4ZF (2)—(1+2z2)F'(2)}

(6.19) ¢ {562%F (2) —142(1+z2)F'(2)+ (1 +22)2F"(2)}

1
AT
(5.20) & =m{336§3F (2)—126z%(14-22)F’(2)
+182(1+4-22)2F"(2) —(1+22)*F""(2)}.

Now we must find the conditions that &, &, &, & and e, form an ortho-
normal frame. In the following calculation, “ =" denotes the equality modulus
the quantities:

o) esE, E506, E;E, Ei&r &G &
where j, k=1, 2, ---, 4 and j=k. Then we have easily the relations:

d(es)‘eg)E‘d(eg'&)Ed(sj'gk)Ed(Ej'g])Ed(SI'53)Ed(81'§4)5d(52'§4)50’
l=2; 3y 4) jy k=1y tty 4’

’1(09'51)5@(61‘51—299-eg)dz

d(fl-f-g)E 3\2 2 (52‘52—51'51)d55d(€-1‘52)

der En= 60 £t ENIE=dE 8

d(&;-Ey)= 2\2? (&4 54—53'53)d55d(§-3‘54),

from which we see that ey-e, &;-&, (j=1, ---,4) are constants. Hence, if we can
choose A,, Ai, As, As, As such that ey-eo=1 and &;-£,=2 (j=1, ---, 4) at z=0, then
the above quantities are all zero. It is sufficient to give conditions that e, &, &,
& and & form an orthonormal frame at z=0. From (5.16), (5.17), (5.18), (5.19)
and (5. 20), at z=0, we have

_ V3 _ A __ A A B
89———W 4y El—_z\/ﬁy 52—2\/*, Ea——2~/7, 54——Ao.

Thus we have the conditions for A,, A, +--, As:
A4=A4, Aj‘Aj'_—O (.7=Oy 1: 2’ 3)’
A4’A4=140, As‘As=112, AQ'A2=56 Al‘Al-_—lG, A0~A0=2,

(5. 21) ) )
AgA,=0, Ay-A=0, AyA=0 (j=0,1,--,3) (=0,1,2),
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l Az‘A1=Az‘A1=A2’A0=A2'A0=A1'A0=A1‘Ao=0-

Now we give the equation of M using the above result. First of all, we choose
five constant vectors A,, A, A As, Ay in C® which satisfy the conditions (5. 21)
and determine e, given by (5.16) which is a real unit vector field in E°=CS5.
Since we may consider z=(1/+/10)es, we have a general solution of (4.23) as
follows:

1
T=10v/TA(1+22)*

—5(1—622+62222—2°5%)(Asz+ As2)

{(1—1622+362°2°—162°2°+2*Z*) A4

(5. 22) _
+5(3—822432%22%)(Asz+ A,2)
—35(1—22)(A12°+ A12%) +T0(Asz* + AoZ*)}.

If we put

A=2/35-, A3=—zm<—a—+iﬁ—), Az=2\/7<—a—+ii)
a(L‘Q 3x1 3.1‘2 awa 31‘4
—( 0 . 0 0 . 0
Al——Z\/Z (—a'x—6~+l—az> and Ao—%ﬁ'lm,

we can write (5. 22) in the cannonical coordinates xi, x2, --+, 2 as follows:

_ 1-62z+67%2°—2°2°

= ( Z

o Arezi T2

g — . 1—-622+62°2°—2°2° (z—2)
= (1+2z)* ’

3—8zz +32%22 _
xs:TZz(ZT:,zz'Tz“(z2+zz)’

. 3—822 4 32%2"

= o ez & TE)
(5. 23) oy 3/(_17%;;_5) i,
pom =iV T OB 1z,
= g(fggw +24),
o= = g 2,
gy 11622436220 1622 212

V10(1+22)*
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