ON CONFORMAL MAPPINGS ONTO INCISED RADIAL SLIT DISKS

By Kôtaro Oikawa and Nobuyuki Suita

A plane domain cannot always be mapped conformally onto a radial slit disk. But it was shown by Strebel [5] and Reich [3] that it can be mapped onto an incised radial slit disk. We are interested in the problem: under what circumstances do these incisions occur. In the present paper we shall show that the occurrence depends only on a property of a neighborhood of the "boundary element" corresponding to the incision. The concept of such a boundary element was introduced recently by the second author [8, 9]. We shall define it here in a somewhat different manner.

Statement of results.

1. Let Ω be a proper subdomain on the Riemann sphere, $\zeta \in \Omega$, and γ be a boundary component of Ω . For the sake of simplicity assume $\zeta \neq \infty$. Let

$$S = S(\Omega, \zeta, \gamma)$$

be the family of the functions f with the following properties: f is regular and univalent on Ω , $f(\zeta)=0$, $f'(\zeta)=1$, and $f(\gamma)$ is the other boundary component of $f(\Omega)$. We introduce the quantity

$$R(\gamma) = R(\Omega, \zeta, \gamma)$$

by

$$\log R(\gamma) = \lim_{\epsilon \to 0} (\log \epsilon + 2\pi \lambda(\Gamma_{\epsilon}^*)).$$

Here $\varepsilon > 0$ satisfies $\{z \mid |z - \zeta| \le \varepsilon\} \subset \Omega$, λ stands for extremal length, and Γ_*^* is the family of the locally rectifiable open arcs in $\Omega - \{z \mid |z - \zeta| \le \varepsilon\}$ joining γ and the circle $|z - \zeta| = \varepsilon$. By an open arc in a domain we mean a continuous mapping c of the open interval (0, 1) into the domain; it is said to join sets E_0 and E_1 if the "tails" $T_0 = \bigcap_{\tau > 0} \overline{\{c(t) \mid 0 < t < \tau\}}$ and $T_1 = \bigcap_{\tau > 0} \overline{\{c(t) \mid 1 - \tau < t < 1\}}$ belong to E_0 and E_1 respectively.

The quantity $R(\gamma)$ is called the *extremal radius* of γ by Strebel [5], and its reciprocal is referred to as the *capacity* $c_{0\gamma}$ of γ in Sario-Oikawa [4]. It satisfies

Received October 6, 1969.

The work of the first author was sponsored by the U. S. Army Research Office-Durham, Grant DA-AROD-31-124-G855, University of California, Los Angeles.

 $0 < R(\gamma) \le \infty$. It depends on the reference point ζ . But the finiteness of $R(\gamma)$ is independent of ζ , and is equivalent to $\lambda(\Gamma_{\epsilon}^*) < \infty$ for some, or equivalently all, ε ([4; p. 36]).

2. If $R(\gamma) < \infty$, we know the *unique existence* of the function

$$\varphi(z) = \varphi(z; \Omega, \zeta, \gamma) \in \mathcal{S}$$

with the following properties (Strebel [5], Reich [3], Oikawa [2], Suita [6], Sario-Oikawa [4; pp. 218–222]):

- (a) $0 \in \varphi(\Omega) \subset \{w \mid |w| < R(\gamma)\}$ and every component of $\partial \varphi(\Omega) \varphi(\gamma)$ is either a point or a line segment on a ray arg w=const.
- (b) $\varphi(\gamma)$ consists of the circle $|w| = R(\gamma)$ and possibly of a number of line segments (called incisions) on rays arg w = const.
- (c) The complement of any compact subset of $\partial \varphi(\Omega) \varphi(\gamma)$ is an extremal (minimal) radial slit plane.
- (d) The angular measure of the incisions is zero and, if Γ^i_{\bullet} denotes the family of locally rectifiable open arcs in $\varphi(\Omega) \{w | |w| \le \varepsilon\}$ joining $\varphi(\gamma) \cap \{w | |w| < R(\gamma)\}$ and $\{w | |w| = \varepsilon\}$, then $\lambda(\Gamma^i_{\bullet}) = \infty$.

The properties (a) and (b) mean that the image domain $\varphi(\Omega)$ is an incised radial slit disk with radius $R(\gamma)$. To be precise let us define an *incision* as a closed line segment I on a ray arg w=const such that $I \cap \{w | |w| < R(\gamma)\}$ is a component of $\varphi(\gamma) \cap \{w | |w| < R(\gamma)\}$. A point on the circle $|w| = R(\gamma)$ belonging to no incision will be referred to as a *periphery point*.

The properties (a) and (b) alone are insufficient to characterize the founctin φ . On the other hand some of the properties (a)—(d) can be deduced from others among them.

The property (c) can be stated in another form by means of the linear operator L_0 (Ahlfors-Sario [1; p. 168]). Namely the condition (c) is equivalent to the following:

(c') For any closed analytic Jordan curve $\alpha \subset \Omega$ whose interior D is disjoint from $\gamma \cup \{\zeta\}$

$$L_0(\log|\varphi|) = \log|\varphi|$$

holds on $D \cap \Omega$ with respect to the operator L_0 acting from α into $D \cap \Omega$. For details we refer to [4; pp. 209 ff].

3. We now introduce a boundary element of a plane domain. As a consequence of Theorem 1 below it will be evident that our concept of boundary element coincides with the one introduced by Suita [8, 9]. In particular, if the domain is simply connected and hyperbolic, we are dealing with Carathédory's prime end.

Given an arbitrary proper subdomain Ω of the Riemann sphere, we shall write Δ for a subdomain of Ω whose relative boundary $c_{\Delta} = \Omega \cap \partial \Delta$ is a locally rectifiable simple open arc. Consider a family (base of a filter) \mathcal{D} of Δ 's satisfying the following conditions:

(I) For any Δ_1 , $\Delta_2 \in \mathcal{D}$, there exists a $\Delta_3 \in \mathcal{D}$ with $\Delta_3 \subset \Delta_1 \cap \Delta_2$.

- (II) $\bigcap_{\Delta \in \mathcal{D}} \Delta = \phi$.
- (III) For any $\Delta \in \mathcal{D}$, the extremal length of the family $\Gamma_{d} = \{c_{d_1} | \Delta_1 \subset \Delta, \Delta_1 \in \mathcal{D}\}$ is finite.
 - (IV) A \mathcal{D} with (I)-(III) and finer than \mathcal{D} is always coarser than \mathcal{D} .

The terms finer and coarser are in the sense used commonly in the theory of filters. Two families \mathcal{D}_1 and \mathcal{D}_2 are said to be *equivalent* if each is finer than the other.

Definitions. An equivalence class e of families \mathcal{D} with (I)-(IV) will be called a *boundary element* of the domain Ω . A domain $\Delta \in \mathcal{D} \in e$ is referred to as a *neighborhood* of e. The set

$$|e| = \bigcap_{\Delta \in \mathfrak{D}} \bar{\Delta},$$

independent of the choice of $\mathcal{D} \in e$, will be called the *impression* of e. It is a connected closed set on $\partial \Omega$. If $|e| \subset \gamma$, we shall simply say that e belongs to γ .

The argument in §§ 9, 12 shows that if $R(\gamma) < \infty$ there exists a boundary element belonging to γ .

4. Suppose Ω , ζ , γ and φ are as in § 2. Given an e, the family $\{\varphi(\Delta)|\Delta\in\mathcal{D}\}$ for $\mathcal{D}\in e$ satisfies (I)—(IV) and determines a boundary element of $\varphi(\Omega)$ independent of the choice of \mathcal{D} . It will be denoted by $\varphi(e)$, the *image* of e under φ .

Theorem 1. If e belongs to γ , $|\varphi(e)|$ is either an incision or a periphery point. This correspondence is one-to-one from the set of boundary elements belonging to γ onto the set of incisions and periphery points.

Theorem 2. A necessary and sufficient condition for $|\varphi(e)|$ to be a periphery point is that e has a neighborhood Δ and a harmonic function v on Δ such that

$$(i)$$
 $v>0$,

(ii) for any closed analytic Jordan curve $\alpha \subset \Delta$ whose interior Δ is disjoint from $c_{\Delta} \cup \gamma \cup \{\zeta\}$,

$$L_0 v = v$$

holds on $D \cap \Delta$ with respect to the operator L_0 acting from α into $D \cap \Delta$,

(iii)
$$\lim_{z \to c} v(z) = 0.$$

As a consequence, the property of $|\varphi(e)|$ being an incision depends only on a neighborhood of e.

Some properties of φ .

5. We list further properties of the mapping φ needed for the proofs of our theorems,

Let Ω, ζ, γ be as in § 1, and consider an exhaustion $0 \in \Omega_1 \subset \Omega_2 \subset \cdots \to \Omega$ towards γ . By this we mean that $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$ and the relative boundary $\gamma_n = \Omega \cap (\partial \Omega_n)$ is a closed analytic Jordad curve in Ω_{n+1} separating γ from ζ . Write R_n for $R(\Omega_n, \zeta, \gamma_n)$ and $\varphi_n(z)$ for $\varphi(z; \Omega_n, \zeta, \gamma_n)$.

The image domain $\varphi_n(\Omega_n)$ is a radial slit disk and has no incision.

We know that $\lim_{n\to\infty} R_n = R(\gamma)$ and, if $R(\gamma) < \infty$, $\lim_{n\to\infty} \varphi_n = \varphi$. More specifically we shall need the following:

If $R(\gamma) < \infty$, then $\log (R_n/|\varphi_n(z)|)$ increases with n and converges to $\log (R(\gamma)/|\varphi(z)|)$ as $n \to \infty$.

6. If we consider the family Γ^*_{ϵ} in §1 on the image domain $\varphi(\Omega)$, the identity $2\pi\lambda(\Gamma^*_{\epsilon})=\log(R(\gamma)/\epsilon)$ is well-known. This result is generalized as follows (Suita [7; p. 443]):

Under the assumption of § 2, let S be a sector of the form $r < |w| < R(\gamma)$, θ_0 <arg $w < \theta_0 + \Theta$, for some $r(0 < r < R(\gamma))$, θ_0 , and $\Theta > 0$. Let Γ_S be the family of locally rectifiable open arcs in $S \cap \varphi(\Omega)$ joining $\varphi(\gamma)$ and |w| = r. Then

$$\Theta \lambda(\Gamma_S) = \log \frac{R(\gamma)}{r}$$
.

Some properties of the extremal length.

7. In addition to standard known properties of the extremal length we shall need some more.

Lemma 1. If every member of Γ passes through a point z_0 , then $\lambda(\Gamma) = \infty$.

Proof. Cover the complement of $\{z_0\}$ by a countable number of closed disks K_1, K_2, \cdots which do not contain z_0 . Let $\Gamma_n = \{c \in \Gamma | c \cap K_n \neq \phi\}$. It is well known that $\lambda(\Gamma_n) = \infty$. The lemma follows from: $\lambda(\Gamma)^{-1} \leq \sum \lambda(\Gamma_n)^{-1} = 0$.

LEMMA 2. Let Γ , Γ_1 , Γ_2 , \cdots be such that, for any $c_n \in \Gamma_n$, $n=1, 2, \cdots$, there exists $a \in \Gamma$ with $c \subseteq c_1 \cup c_2 \cup \cdots$. Then

$$\lambda(\Gamma)^{1/2} \leq \sum_{n=1}^{\infty} \lambda(\Gamma_n)^{1/2}.$$

The case $\Gamma_m = \Gamma_n$ for $m \neq n$ is not excluded.

Proof. Use notations in Ahlfors-Sario [1; p. 220]. On considering all ρ with $A(\rho)=1$ we have $\lambda(\Gamma)^{1/2}=\sup_{\rho}L(\Gamma;\rho)\leq \sup_{\rho}\sum_{n}L(\Gamma_{n};\rho)\leq \sum_{n}\sup_{\rho}L(\Gamma_{n};\rho)=\sum_{n}\lambda(\Gamma_{n})^{1/2}$.

Lemma 3. Let E_1 , E_2 , E_3 be sets on the closure of a domain Ω . Denote by Γ_{jk} the family of locally rectifiable arcs in Ω joining E_j and E_k . Then

$$\lambda(\Gamma_{12}) < \infty$$
, $\lambda(\Gamma_{23}) < \infty \Rightarrow \lambda(\Gamma_{13}) < \infty$.

8. Proof of Lemma 3 will be divided into several steps. Given a closed disk $K \subset \Omega$, let $\Gamma_{jk}(K) = \{c \in \Gamma_{jk} | c \cap K \neq \phi\}$. We first show that if $\lambda(\Gamma_{jk}(K_0)) = \infty$ for some K_0 , then the same is true for every K.

Take a simply connected domain D_0 such that $K_0 \cup K \subset D_0$ and $\overline{D}_0 \subset \Omega$, and let $\Gamma_{jk}(D_0) = \{c \in \Gamma_{jk} | c \cap D_0 \neq \phi\}$. It suffices to prove $\lambda(\Gamma_{jk}(D_0)) = \infty$. For this purpose take a simply connected domain D such that $\overline{D}_0 \subset D$ and $\overline{D} \subset \Omega$. Consider the family Γ of closed rectifiable curves in the doubly connected domain $D - \overline{D}_0$ separating its boundary components, and the family Γ^* of locally rectifiable open arcs in $D - K_0$ joining its boundary components. For any $c_0 \in \Gamma_{jk}(D_0)$, $c_1 \in \Gamma$ and $c_2 \in \Gamma^*$, we can find a $c \in \Gamma_{jk}(K_0)$ such that $c \subset c_0 \cup c_1 \cup (-c_1) \cup c_2 \cup (-c_2)$. Accordingly, by Lemma 2, $\lambda(\Gamma(K_0))^{1/2} \leq \lambda(\Gamma(D_0))^{1/2} + 2\lambda(\Gamma)^{1/2} + 2\lambda(\Gamma^*)^{1/2}$. Since $\lambda(\Gamma)$ and $\lambda(\Gamma^*)$ are finite we conclude that $\lambda(\Gamma(D_0)) = \infty$.

Next, by the same argument as in the proof of Lemma 1, we see that $\lambda(\Gamma_{jk}) = \infty$ if and only if $\lambda(\Gamma_{jk}(K)) = \infty$ for some K.

Let $\Gamma_j(K)$ be the family of locally rectifiable open arcs in $\Omega - K$ joining E_j and K. We shall prove that $\lambda(\Gamma_{jk}(K)) = \infty$ if and only if either $\lambda(\Gamma_j(K)) = \infty$ or $\lambda(\Gamma_k(K)) = \infty$.

The if-part is evident. For the proof of the only-if part, let K' be a closed disk in Ω containing K in its interior. Let Γ be the family of closed rectifiable curves in $\mathrm{Int}(K')-K$ separating $\partial K'$ from K. For arbitrary $c_j\in\Gamma_j(K)$, $c_k\in\Gamma_k(K)$, $c_0\in\Gamma$, there exists a $c\in\Gamma_{jk}(K)$ such that $c\subset c_j\cup c_k\cup c_0$. By Lemma 2 we obtain $\lambda(\Gamma_{jk}(K))^{1/2} \leq \lambda(\Gamma_j(K))^{1/2} + \lambda(\Gamma_k(K))^{1/2} + \lambda(\Gamma)^{1/2}$. Since $\lambda(\Gamma) < \infty$ we infer that either $\lambda(\Gamma_j(K)) = \infty$ or $\lambda(\Gamma_k(K)) = \infty$.

The assertion of Lemma 3 is now verified as follows: $\lambda(\Gamma_{12})<\infty$ and $\lambda(\Gamma_{23})<\infty$ imply $\lambda(\Gamma_{12}(K))<\infty$, $\lambda(\Gamma_{23}(K))<\infty$, so that $\lambda(\Gamma_{1}(K))<\infty$, $\lambda(\Gamma_{3}(K))<\infty$. Thus $\lambda(\Gamma_{13}(K))<\infty$ and therefore $\lambda(\Gamma_{13})<\infty$.

Proof of Theorem 1.

9. As the first step of the proof we shall show the following:

If E is an incision or a singleton consisting of a periphery point, there exists a family \mathcal{D} of Δ 's which satisfies (I)—(III) and

$$\bigcap_{\Delta \in \mathcal{D}} \overline{\varphi(\Delta)} = E.$$

Without loss of generality we may assume that E is an interval $[r, R(\gamma)]$ on the real axis; here $0 < r < R(\gamma)$ if E is an incision and $r = R(\gamma)$ otherwise. There exists a sequence of points $r_n \in \varphi(\Omega)$ on the real axis such that $0 < r_1 < r_2 < \cdots$, $\lim r_n = r$. For a neighborhood of a point r_n we take $N_n = \{w | |\log w - \log r_n| < \theta_n\}$ such that $\bar{N}_n \subset \varphi(\Omega)$. We may assume, on taking a subsequence if necessary, that $\theta_n/2 > \theta_{n+1}$, $n=1, 2, \cdots$, and that the \bar{N}_n are pairwise disjoint.

Consider the sectors $S_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < \arg w < \theta_n\}, S'_n = \{w | r_n < |w| < R(\gamma), \theta_n/2 < R(\gamma), \theta_n/2 < R(\gamma), \theta_n/2 < R(\gamma)\}$

 $-\theta_n < \arg w < -\theta_n/2$, and a quadrilateral $Q_n = \{w | \theta_n/2 < | \log w - \log r_n| < \theta_n, |w| < r_n\}$. Since $\bar{Q}_n \subset \varphi(\Omega)$ we can take $a_n > 0$ so small that the quadrilaterals $Q'_n = \{w \in S_n | r_n < |w| < r_n + a_n\}$ and $Q''_n = \{w \in S'_n | r_n < |w| < r_n + a_n\}$ are in $\varphi(\Omega)$. Let Q^*_n be the quadrilateral which is the union of Q_n, Q'_n, Q''_n , and the common sides. Observe that the $Q^*_n, n = 1, 2, \cdots$, are pairwise disjoint.

Let \mathcal{D}_n be the family of those $\Delta \subset \Omega$ for which $\varphi(c_d)$ is contained in $Q_n^* \cup S_n \cup S_n'$ and has tails T_0 and T_1 respectively is \overline{S}_n and \overline{S}_n' . By the result quoted in § 6, we have $\lambda(\Gamma_{S_n}) < \infty$, $\lambda(\Gamma_{S_{n'}}) < \infty$. Clearly the following three families have finite extremal length: (1) arcs in Q_n^* joining sides on $|w| = r_n$, (2) arcs in Q_n' joining sides on arg $w = \theta_n/2$, arg $w = \theta_n$, (3) similar arcs in Q_n'' . We conclude by Lemma 2 that $\lambda\{c_d|\Delta\in\mathcal{D}_n\}=\infty$.

It is obvious that $\mathcal{D} = \bigcup_{n=1}^{\infty} \mathcal{D}_n$ has the required properties.

10. We shall say that Δ is distinguished if the tails T_0 and T_1 of $\varphi(c_d)$ are singletons consisting of different periphery points.

Given a family \mathcal{D} with (I)—(III) and $\bigcap_{A \in \mathcal{D}} \overline{\varphi(A)} \subset \gamma$, the subfamily of the distinguished Δ 's in \mathcal{D} satisfies (I)—(III) and is finer than \mathcal{D} .

For the proof, take $\varepsilon > 0$ with $K_0 = \{z \mid |z - \zeta| \le \varepsilon\} \subset \Omega$, and chose $\Delta_0 \in \mathcal{D}$ with $K_0 \cap \bar{\Delta}_0 = \phi$. It suffices to show that the family \mathcal{D}^* of all distinguished $\Delta \in \mathcal{D}$ with $\Delta \subset \Delta_0$ satisfies (I)—(III) and is finer than \mathcal{D} .

Let $\mathcal{D}_0 = \{ \Delta \in \mathcal{D} | \Delta \subset \Delta_0 \}$. As is well known, if \mathcal{D}_1 is the family of all $\Delta \in \mathcal{D}_0$ such that the tail T_0 or T_1 of $\varphi(c_d)$ consists of more than one point, then $\lambda(\{c_d|\Delta \in \mathcal{D}_1\}) = \infty$. Next let \mathcal{D}_2 be the family of those $\Delta \in \mathcal{D}_0 - \mathcal{D}_1$ such that T_0 or T_1 of $\varphi(c_d)$ lies on an incision. By the property (d) in §2 and Lemma 3 the family of arcs in Δ_0 joining *any* disk in Δ_0 and the incisions has infinite extremal length. By an argument similar to that in the proof of Lemma 1 we then conclude that $\lambda(\{c_d|\Delta \in \mathcal{D}_2\}) = \infty$.

Now let $\mathcal{D}^* = \mathcal{D}_0 - \mathcal{D}_1 - \mathcal{D}_2$. It clearly satisfies (I)—(III) and is finer than \mathcal{D} . Every distinguished $\mathcal{D} \in \mathcal{D}_0$ belongs to \mathcal{D}^* . Conversely every $\mathcal{D} \in \mathcal{D}^*$ is distinguished, for, if not, the T_0 and T_1 of $\varphi(c_d)$ consist of the same point and therefore $\lambda(\{c_{d_1}|\mathcal{J}_1\subset\mathcal{J}\})=\infty$ by Lemma 1, contradicting the condition (III). Thus this \mathcal{D}^* is what we set out to obtain.

11. Suppose \mathcal{D} satisfies (I)—(III) and is such that

$$E = \bigcap_{\Delta \in \mathcal{D}} \overline{\varphi(\Delta)}$$

is an incision or a singleton consisting of a periphery point. Let w_0 be the point such that $\{w_0\} = E \cap \{w | |w| = R(\gamma)\}.$

For any distinguished $\Delta \in \mathcal{D}$, the end points of $\varphi(c_d)$ determine two closed arcs on the circle $|w| = R(\gamma)$. Let A_d be the one for which Δ is contained in the interior of the closed Jordan curve $\varphi(c_d) \cup A_d$. Evidently $w_0 \in A_d$.

We infer that w_0 is not an end point of the arc A_a .

Suppose w_0 is an end point of A_4 . If \mathcal{D}^* is the family of distinguished $A \in \mathcal{D}$,

then $\{w_0\} = \bigcap_{A \in \mathcal{D}^*} \overline{A}_A$. Thus, for every $\Delta_1 \in \mathcal{D}^*$, $\Delta_1 \subset \Delta$, w_0 is an end point of A_{d_1} . By Lemma 1 we obtain $\lambda(\{c_{d_1} | \Delta_1 \in \mathcal{D}^*, \Delta_1 \subset \Delta\}) = \infty$, in contradiction of the condition (III) for \mathcal{D}^* .

12. We are ready to prove Theorem 1.

First we shall show that, given a boundary element e with $|e| \subset \gamma$, $|\varphi(e)|$ is either an incision or a singleton consisting of a periphery point. It suffices to verify that $A = |\varphi(e)| \cap \{|w||w| = R(\gamma)\}$ is a singleton, for $|\varphi(e)|$ is known to be a connected subset of $\varphi(\gamma)$. Take a $\mathcal{D} \in e$ arbitrarily and let \mathcal{D}^* be the family of distinguished $A \in \mathcal{D}$. It satisfies (I)—(IV) and $\mathcal{D}^* \in e$. Clearly $A \subset A_{\mathcal{A}}$ for every $A \in \mathcal{D}^*$. Now suppose A is not a singleton but an arc. By (d) in § 2, we can find a periphery point $w_0 \in A$ different from the end points of A. By the method used in § 9, we can construct a $\widetilde{\mathcal{D}}$ which satisfies (I)—(III), is finer than \mathcal{D} , and is such that

$$\bigcap_{\Delta \in \tilde{\mathcal{Q}}} \overline{\varphi(\Delta)} = \{w_0\}.$$

 \mathcal{D}^* cannot be finer than \mathcal{D} ; this contradicts the condition (IV) for \mathcal{D}^* . We conclude that A is a singleton.

Next, to prove that the correspondence stated in Theorem 1 is onto, it suffices to show that the family \mathcal{D} constructed in §9 satisfies (IV). Let $\tilde{\mathcal{D}}$ meet (I)—(III) and be finer than \mathcal{D} . We may assume that every $\tilde{\mathcal{A}} \in \tilde{\mathcal{D}}$ is distinguished. Clearly

$$\bigcap_{\widetilde{A}\in\widetilde{\mathfrak{D}}}\overline{\varphi(\widetilde{A})}=|\varphi(e)|$$

holds. Thus every $\tilde{\Delta} \in \tilde{\mathcal{D}}$ has the property stated in §11, so that it is possible to find a $\Delta \in \mathcal{D}$ with $\Delta \subset \tilde{\Delta}$. We infer that \mathcal{D} is finer than $\tilde{\mathcal{D}}$; this shows that \mathcal{D} satisfies (IV).

Finally, the correspondence is one-to-one. In fact, given e and \tilde{e} with $|\varphi(e)| = |\varphi(\tilde{e})|$, take $\mathfrak{D} \in e$ and $\tilde{\mathfrak{D}} \in \tilde{e}$ consisting only of distinguished \mathcal{D} 's. The reasoning used in the above paragraph shows that one is finer than the other, that is $e = \tilde{e}$.

Proof of Theorem 2.

13. The necessity is evident. A Δ with $\zeta \notin \Delta$ and the restriction v of $\log |\varphi|$ to Δ qualify.

To prove the sufficiency we may assume without loss of generality that the given Δ is distinguished and such that $\zeta \notin \overline{A}$, and v is defined and positive on $\Delta \cup c_{d}$. Since Δ is distinguished the function

$$u(z) = \log \frac{R(\gamma)}{|\varphi(z)|}$$

has vanishing limit as z tends to γ along c_4 . Therefore, given $\varepsilon > 0$, there exists a compact set $C_{\varepsilon} \subset \Omega$ such that $u < \varepsilon$ on $c_4 \cap (\Omega - C_{\varepsilon})$. On the other hand, on the set

 $c_A \cap C_e$, we have min v > 0 and max $u < \infty$, so that there exists a constant M_e such that $u < M_e v$ on $c_A \cap C_e$. As a consequence

$$u < M_{\varepsilon}v + \varepsilon$$
 on c_{Δ} .

Consider an exhaustion $\zeta \in \Omega_n \uparrow \Omega$ towards γ . Since $u_n(z) = \log |R(\gamma_n)/|\varphi_n(z)|$ increases with n, $u_n < M_t v + \varepsilon$ on $c_d \cap \Omega_n$. This inequality holds on $\gamma_n \cap \Delta$ as well, for $u_n = 0$ there. Furthermore, we have the identity $L_0(u_n - M_t v) = u_n - M_t v$, where the operator L_0 acts from $(c_d \cap \Omega_n) \cup (\gamma_n \cap \Delta)$ into $\Delta \cap \Omega_n$. By the maximum-principle for L_0 we obtain $u_n < M_t v + \varepsilon$ in $\Delta \cap \Omega_n$. On letting $n \to \infty$ we deduce

$$u < M_{\varepsilon}v + \varepsilon$$
 on Δ .

As $z\rightarrow e$, $\lim u\leq \varepsilon$ and, therefore, $\lim u\leq 0$. The inequality $\lim u\geq 0$ is trivial and a fortiori

$$\lim u = 0$$

as $z \rightarrow e$. This shows that $|\varphi(e)|$ is not an incision.

REFERENCES

- [1] Ahlfors, L. V., and L. Sario, Riemann surfaces. Princeton Univ. Press (1960).
- [2] Оікаwa, K., Remarks to conformal mappings onto radially slit disks. Sci. Papers Coll. Gen. Ed. Univ. Tokyo 15 (1965), 99-109.
- [3] REICH, E., On radial slit mappings. Ann. Acad. Sci. Fenn. Ser. A. I. 296 (1961), 12 pp.
- [4] SARIO, L., AND K. OIKAWA, Capacity functions. Springer-Verlag (1969).
- [5] Strebel, K., Die extremale Distanz zweier Enden einer Riemannschen Fläche. Ann. Acad. Sci. Fenn. Ser. A. I. 179 (1955), 21 pp.
- [6] Suita, N., On radial slit disc mappings. Kōdai Math. Sem. Rep. 18 (1966), 216–228.
- [7] ———, On slit rectangle mappings and continuity of extremal length. Ibid. 19 (1967), 425-438.
- [8] ——, On continuity of extremal distance and its applications to conformal mappings. Ibid. **21** (1969), 236-251.
- [9] ———, Carathéodory's theorem on boundary elements of an arbitrary plane region. Ibid. 411-416.

University of Tokyo, University of California, Los Angeles, and Tokyo Institute of Technology.