
KODAI MATH. SEM. REP.
22 (1970), 45-52

ON CONFORMAL MAPPINGS ONTO INCISED
RADIAL SLIT DISKS

BY KOTARO OlKAWA AND NOBUYUKI SuiTA

A plane domain cannot always be mapped conformally onto a radial slit disk.
But it was shown by Strebel 15] and Reich [3] that it can be mapped onto an
incised radial slit disk. We are interested in the problem: under what circumstances
do these incisions occur. In the present paper we shall show that the occurrence
depends only on a property of a neighborhood of the " boundary element " cor-
responding to the incision. The concept of such a boundary element was introduced
recently by the second author [8, 9]. We shall define it here in a somewhat different
manner.

Statement of results.

1. Let Ω be a proper subdomain on the Riemann sphere, ζeβ, and γ be a
boundary component of Ω. For the sake of simplicity assume ζ^oo. Let

be the family of the functions / with the following properties: / is regular and
univalent on £,/(ζ)=0, /'(ζ)=l, and/fr) is the other boundary component of f(Q).

We introduce the quantity

R(γ}=R(Ω, ζ, γ)

by

log Λ(7 )=Iίm (log e+2πλ(Γ*)).
e->0

Here ε>0 satisfies {z\\z-ζ\^ε}c:Ω, λ stands for extremal length, and Γ* is the
family of the locally rectifiable open arcs in Ω-{z\\z-ζ\^ε} joining r and the circle
\z— ζ|=e. By an open arc in a domain we mean a continuous mapping c of the
open interval (0, 1) into the domain; it is said to join sets £Ό and El if the " tails''
T<>= Πr>o Wf)|0<ί<r} and Tι=nr>o{c(ί)\l-τ<t<ϊ} belong to EQ and E1 respectively.

The quantity R(γ) is called the extremal radius of γ by Strebel [5], and its
reciprocal is referred to as the capacity c0r of γ in Sario-Oikawa [4]. It satisfies
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)^<χ>. It depends on the reference point ζ. But the finiteness of R(γ) is
independent of ζ, and is equivalent to λ(Γ*)<oo for some, or equivalently all, ε
([4; p. 36]).

2. If R(γ)<oo, we know the unique existence of the function

with the following properties (Strebel [5], Reich [3], Oikawa [2], Suita [6], Sario-
Oikawa [4; pp. 218-222]):

(a) Qeφ(Ω)c.{w\\w\<R(γ)} and every component of dφ(Ω)—φ(γ) is either a point
or a line segment on a ray arg w= const.

(b) φ(γ) consists of the circle \w\=R(γ) and possibly of a number of line seg-
ments (called incisions) on rays arg w= const.

(c) The complement of any compact subset of dφ(Ω)—φ(γ) is an extremal
(minimal) radial slit plane.

(d) The angular measure of the incisions is zero and, if Γ\ denotes the family
of locally rectifiable open arcs in φ(Ω)— {w\\w\^ε} joining φ(γ)f}{w\\w\<R(γ)} and
{w\\w\=ε}, then ^(Γ*) = oo.

The properties (a) and (b) mean that the image domain ψ(Ω) is an incised
radial slit disk with radius R(γ). To be precise let us define an incision as a closed
line segment / on a ray arg w= const such that Iΐ\{w\\w\<R(γ)} is a component of
ψ(γ)Γ\{w\\w\<R(γ)}. A point on the circle \w\=R(γ) belonging to no incision will
be referred to as a periphery point.

The properties (a) and (b) alone are insufficient to characterize the founctin φ.
On the other hand some of the properties (a)— (d) can be deduced from others
among them.

The property (c) can be stated in another form by means of the linear operator
LO (Ahlfors-Sario [1; p. 168]). Namely the condition (c) is equivalent to the following:

(c') For any closed analytic Jordan curve αc£? whose interior D is disjoint
from r\j{ζ]

holds on DΠΩ with respect to the operator L0 acting from a into DΠΩ.
For details we refer to [4; pp. 209 ff].

3. We now introduce a boundary element of a plane domain. As a conse-
quence of Theorem 1 below it will be evident that our concept of boundary element
coincides with the one introduced by Suita [8, 9]. In particular, if the domain is
simply connected and hyperbolic, we are dealing with Carathedory's prime end.

Given an arbitrary proper subdomain Ω of the Riemann sphere, we shall write
Δ for a subdomain of Ω whose relative boundary c^=ΩΠdΔ is a locally rectifiable
simple open arc. Consider a family (base of a filter) SO of J's satisfying the
following conditions:

(I ) For any Δ^ Δ2sg), there exists a Δ^S) with J 8cJιΠΛ
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(II)
(III) For any Je<p, the extremal length of the family ΓJ={^1|JιCJ, ΔλzS)} is

finite.
(IV) A 3) with (I)— (III) and finer than £) is always coarser than 3).
The terms finer and coarser are in the sense used commonly in the theory of

filters. Two families 3)ι and <D2 are said to be equivalent if each is finer than the
other.

DEFINITIONS. An equivalence class e of families £) with (I)— (IV) will be
called a boundary element of the domain Ω. A domain azQze is referred to as a
neighborhood of e. The set

H= n J,
Λ€£)

independent of the choice of <3)ee, will be called the impression of 0. It is a
connected closed set on dΩ. If MC/-, we shall simply say that e belongs to γ.

The argument in §§9, 12 shows that if R(γ)<oo there exists a boundary
element belonging to γ.

4. Suppose Ω, ζ, γ and 9 are as in §2. Given an e, the family {φ(Δ)\Δsg)} for
£)€£ satisfies (I)— (IV) and determines a boundary element of φ(Ω) independent of
the choice of 3). It will be denoted by ψ(e), the image of e under φ.

THEOREM 1. If e belongs to γ, \φ(e)\ is either an incision or a periphery point.
This correspondence is one-to-one from the set of boundary elements belonging to γ
onto the set of incisions and periphery points.

THEOREM 2. A necessary and sufficient condition for \φ(e)\ to be a periphery
point is that e has a neighborhood Δ and a harmonic function v on Δ such that

(i) t»0,

(ii) for any closed analytic Jordan curve αcJ whose interior Δ is disjoint
from ^UrUίC},

L0v=v

holds on D Γ) Δ with respect to the operator Lϋ acting from a into D Π d ,

(iii) lim v(z)=0.
z-*e

As a consequence, the property of \ψ(e)\ being an incision depends only on a
neighborhood of e.

Some properties of φ.

5. We list further properties of the mapping ψ needed for the proofs of our
theorems,
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Let Ω>ζ,γ be as in §1, and consider an exhaustion θ€$ιc£2c >Q towards
γ. By this we mean that Ω=\J%=ιΩn and the relative boundary γn=Ωn(dΩn) is a
closed analytic Jordad curve in Ωn+ι separating γ from ζ. Write Rn for R(Ωn, ζ, γn)
and φn(z) for φfa Ωn, ζ, γn)

The image domain φn(Ωn) is a radial slit disk and has no incision.
We know that limn^OQRn=R(γ) and, if R(γ)<oo, limn_>00^n=^. More specifically

we shall need the following:

If R(γ)<oo, then log (Rnl\ψn(z)\) increases with n and converges to \Qg(R(γ)l\φ(z)\)
as n—*oo.

6. If we consider the family Γ* in § 1 on the image domain φ(Ω), the identity
2πλ(Γ*)=log(R(γ)/έ) is well-known. This result is generalized as follows (Suita [7;
p. 443]):

Under the assumption of §2, let S be a sector of the form r<\w\<R(γ), ΘQ

<argw<Θ0+Θ, for some r (Q<r<R(γ))> 0Q, and <9>0. Let Γs be the family of
locally rectifiable open arcs in SΠφ(Ω) joining ψ(γ) and \w\=r. Then

Some properties of the extremal length.

7. In addition to standard known properties of the extremal length we shall
need some more.

LEMMA 1. If every member of Γ passes through a point z0, then λ(Γ)=oo.

Proof. Cover the complement of {z0} by a countable number of closed disks
Ai, K2, '- which do not contain *0. Let Γn={ceΓ\cnKn*ϊφ}. It is well known
that λ(Γn)=oo. The lemma follows from: λ(Γ)~l^Σ ^(Γn)"

1=0.

LEMMA 2. Let Γ, Γi, Γz, --be such that, for any cn£Γn, n=l,2, •••, there exists
a c$Γ with cc.Cι\Jc2\J'~. Then

The case Γm=Γn for m^n is not excluded.

Proof. Use notations in Ahlfors-Sario [1; p. 220]. On considering all p with
A(p)=l we have Λ(Γ)1/2=sup,L(Γ; |0):gsup,Σ«L(Γn; p)^ΣnSuppL(Γn, p)=Σnλ(Γn)

ί/Λ.

LEMMA 3. Let Eίt E2, E3 be sets on the closure of a domain Q. Denote by
the family of locally rectifiable arcs in Ω joining Ej and E^. Then
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8. Proof of Lemma 3 will be divided into several steps. Given a closed disk
KcΩ, let Γjk(K)={c€Γjk\cΓ\K*φ}. We first show that if λ(Γjk(Ko))=oo for some
KQ, then the same is true for every K.

Take a simply connected domain D0 such that K0\jKc.D0 and DodΩ, and let
Γjk(Do)={c€Γjk\cΓiDo^φ}. It suffices to prove λ(Γ^(D0))=oo. For this purpose
take a simply connected domain D such that D0c:D and Dc.Ω. Consider the
family Γ of closed rectifiable curves in the doubly connected domain D—D0 sepa-
rating its boundary components, and the family Γ* of locally rectifiable open arcs
in D—Ko joining its boundary components. For any cQeΓjk(Do), c^Γ and czeΓ*,
we can find a cGΓjk(K0) such that cccolMU(— Cι)Uc 2 U(— c2). Accordingly, by
Lemma 2, ^(Γ(Xo))1/2^^(Γφ0))1/2+2^(Γ)1/2+2/ί(Γ*)1/2. Since λ(Γ) and Λ(Γ*) are
finite we conclude that λ(Γ(DQ))=oo.

Next, by the same argument as in the proof of Lemma 1, we see that λ(Γjk)
=00 if and only if λ(Γ jjc(K'))=co for some K.

Let Γj(K) be the family of locally rectifiable open arcs in Ω~K joining E3 and
K. We shall prove that λ(Γjk(K))=oo if and only if either λ(Γj(Ky) = <χ> or

The if -part is evident. For the proof of the only-if part, let K' be a closed
disk in Ω containing K in its interior. Let Γ be the family of closed rectifiable
curves in lnt(K')—K separating dKf from K. For arbitrary cj€Γj(K), ckeΓk(K),
c0€Γ, there exists a c£Γjk(K} such that cdCj\Jck{JCo. By Lemma 2 we obtain
2(Γjk(K))1/2^λ(Γj(K)Y/2+λ(Γk(K)γ/2+λ(n1/2. Since λ(Γ)<oo we infer that either
λ(Γj(K))=oo or λ(Γk(K))=oo.

The assertion of Lemma 3 is now verified as follows: λ(Γ12)<co and Λ(Γ23)
<co imply λ(Γ12(K))<oo, ^(Γ23(^:))<oo, so that Λ(Γι(/0)< oo, 2(Γs(K))<oo. Thus
λ(Γu(K))<oo and therefore ^(Γ18)<oo.

Proof of Theorem 1.

9. As the first step of the proof we shall show the following:
If E is an incision or a singleton consisting of a periphery point, there exists

a family 2) of ΔJs which satisfies (I)— (III) and

Π <p(Δ)=E.
Δ£&

Without loss of generality we may assume that E is an interval [r, R(γ)] on
the real axis; here 0<r<R(γ) if E is an incision and r—R(γ) otherwise. There
exists a sequence of points rn€φ(Ω) on the real axis such that 0<n<r2< , lim rn

=r. For a neighborhood of a point rn we take Nn={w\\\Qgw—\Qgrn <θn} such
that Nndφ(Ω). We may assume, on taking a subsequence if necessary, that
θn/2>θn+ι, n=l, 2, •••, and that the Nn are pairwise disjoint.

Consider the sectors Sn={w\rn<\w\<R(γ), 0w/2<arg w<θn}, Sr

n={w\rn<\w\<R(γ)1
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w<—θn/2}, and a quadrilateral Qn={w\θn/2<\log w—log rn\<θn, \w\<rn}.
Since Qncφ(Ω) we can take αw>0 so small that the quadrilaterals Qή = {w£$n\rn

<\w\<rn+an] and Qn={wsSrn\rn<\w\<rn+an} are in p(£). Let Q% be the quadri-
lateral which is the union of Qn, Q'nί Q", and the common sides. Observe that the
Qί, w=l, 2, ••-, are pairwise disjoint.

Let ^)n be the family of those zfcί?_for which £>(<;„) is contained in Qf USWUS«
and has tails TO and TΊ respectively is Sw and Si. By the result quoted in §6, we
have λ(ΓSn)<oo, λ(ΓSn>)<oo. Clearly the following three families have finite ex-
tremal length: (1) arcs in Qί joining sides on \w\=rn, (2) arcs in Q'n joining sides
on arg w=θnβ, arg w=θn, (3) similar arcs in Q" . We conclude by Lemma 2 that

It is obvious that £D=\J%=ltDn has the required properties.

10. We shall say that A is distinguished if the tails T0 and 7\ of φ(cΔ) are
singletons consisting of different periphery points.

Given a family 3) with (I)— (III) and Γ\^^φ(Δ)dγt the subfamily of the dis-
tinguished Δ's in 2) satisfies (I)— (III) and is finer than <2).

For the proof, take ε>0 with KQ={z\\z—ζ\^ε}c:Ω, and chose Δ&3) with
KoΓ\Δo=Φ It suffices to show that the family .££)* of all distinguished ΔsQ) with
JcJo satisfies (I)— (III) and is finer than g).

Let g)Q={Δ€£)\Δc.Δo}. As is well known, if ̂  is the family of all z/e^}0 such
that the tail TO or 7\ of ψ(cj) consists of more than one point, then λ({cΔ\Δ^3)^)
=00. Next let £)2 be the family of those ^£^}Q—^)ι such that T0 or TΊ of ψ(cΔ)
lies on an incision. By the property (d) in § 2 and Lemma 3 the family of arcs in
Jo joining any disk in J0 and the incisions has infinite extremal length. By an
argument similar to that in the proof of Lemma 1 we then conclude that

Now let £)*=g)o— g)ι— 3)2. It clearly satisfies (I)— (III) and is finer than 3).
Every distinguished J€^)0 belongs to ££)*. Conversely every Je^)* is distinguished,
for, if not, the T0 and 7\ of φ(cΔ} consist of the same point and therefore
Λ({θιlΛιCzί})=oo by Lemma 1, contradicting the condition (III). Thus this )̂* is
what we set out to obtain.

11. Suppose 3) satisfies (I)— (III) and is such that

E=Γ\ ψ(Δ)
ΔS®

is an incision or a singleton consisting of a periphery point. Let wύ be the point
such that {w»}=EΓ[{w\\w\=R(γ)}.

For any distinguished Δz<3), the end points of φ(cj) determine two closed
arcs on the circle \w\=R(γ). Let AΔ be the one for which Δ is contained in the
interior of the closed Jordan curve φ(cΔ)\jAΔ. Evidently w^AΔ.

We infer that w0 is not an end point of the arc AΔ.
Suppose Wo is an end point of A4. If £)* is the family of distinguished
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then {wo}=Γ\te&*A4. Thus, for every Δι$3)*j ΛcJ, wϋ is an end point of AΔΓ By
Lemma 1 we obtain λ({cΔl\Δι£3)*, Ac J})=oo, in contradiction of the condition (III)
for 3)*.

12. We are ready to prove Theorem 1.
First we shall show that, given a boundary element e with \e\dγ, \φ(e)\ is

either an incision or a singleton consisting of a periphery point. It suffices to
verify that A=\φ(e)\ Π{\w\\w\=R(γ)} is a singleton, for \ψ(e)\ is known to be a con-
nected subset of φ(γ). Take a <£)ze arbitrarily and let £)* be the family of
distinguished As3). It satisfies (I)—(IV) and £)*€£. Clearly AaAΔ for every
Je.0*. Now suppose A is not a singleton but an arc. By (d) in §2, we can find
a periphery point w^A different from the end points of A. By the method used
in §9, we can construct a 3) which satisfies (I)—(III), is finer than 3), and is such
that

<£* cannot be finer than 3)\ this contradicts the condition (IV) for £)*. We con-
clude that A is a singleton.

Next, to prove that the correspondence stated in Theorem 1 is onto, it suffices
to show that the family S) constructed in §9 satisfies (IV). Let 3) meet (I)-(III)
and be finer than S). We may assume that every Δ$3) is distinguished. Clearly

holds. Thus every Δz§) has the property stated in §11, so that it is possible to
find a Δ^S) with JcJ. We infer that 3) is finer than 3)\ this shows that 3)
satisfies (IV).

Finally, the correspondence is one-to-one. In fact, given e and e with \φ(e)\
— \φ(e)\, take <S)ze and 3)£e consisting only of distinguished J's. The reasoning
used in the above paragraph shows that one is finer than the other, that is e=e.

Proof of Theorem 2.

13. The necessity is evident. A Δ with ζ$J and the restriction v of log \ψ\
to Δ qualify.

To prove the sufficiency we may assume without loss of generality that the
given Δ is distinguished and such that ζφ J, and v is defined and positive on Δ U CΔ.
Since Δ is distinguished the function

& \ψ(z)\

has vanishing limit as z tends to γ along CΔ. Therefore, given e>0, there exists
a compact set Cεcβ such that #<ε on c4Π(β—C«). On the other hand? on the set
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^ΠCe, we have minz;>0 and max^<oo, so that there exists a constant Me such
that u<MeV on c^πCe. As a consequence

u<MεVJrε on Cj.

Consider an exhaustion ζ€Ωn ΐ Ω towards γ. Since ««(«)=log (R(γn)l\φn(z)|)
increases with n,un<M*v+ε on ^n^w. This inequality holds on γnt\Δ as well,
for un=0 there. Furthermore, we have the identity Lo(un—Mεv)=un—MεV, where
the operator L0 acts from (CΔ Π Ωn) U (γn Π Λ) into Δ Π £?n By the maximum-principle
for Lo we obtain un<M*v+ε in Δr\Ωn On letting n^oo we deduce

u<M*v+ε on J.

As 2:—>0, lim &^ε and, therefore, lim #^0. The inequality lim u^O is trivial
and a fortiori

lim u=Q

as 0—->£. This shows that \φ(e)\ is not an incision.
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