ON CONFORMAL MAPPINGS ONTO INCISED RADIAL SLIT DISKS

By Kôtaro Oikawa and Nobuyuki Suita

A plane domain cannot always be mapped conformally onto a radial slit disk. But it was shown by Strebel [5] and Reich [3] that it can be mapped onto an incised radial slit disk. We are interested in the problem: under what circumstances do these incisions occur. In the present paper we shall show that the occurrence depends only on a property of a neighborhood of the "boundary element" corresponding to the incision. The concept of such a boundary element was introduced recently by the second author $[8,9]$. We shall define it here in a somewhat different manner.

Statement of results.

1. Let Ω be a proper subdomain on the Riemann sphere, $\zeta \epsilon \Omega$, and γ be a boundary component of Ω. For the sake of simplicity assume $\zeta \neq \infty$. Let

$$
\mathcal{S}=\mathcal{S}(\Omega, \zeta, \gamma)
$$

be the family of the functions f with the following properties: f is regular and univalent on $\Omega, f(\zeta)=0, f^{\prime}(\zeta)=1$, and $f(\gamma)$ is the other boundary component of $f(\Omega)$.

We introduce the quantity

$$
R(\gamma)=R(\Omega, \zeta, \gamma)
$$

by

$$
\log R(\gamma)=\lim _{\epsilon \rightarrow 0}\left(\log \varepsilon+2 \pi \lambda\left(\Gamma_{\epsilon}^{*}\right)\right) .
$$

Here $\varepsilon>0$ satisfies $\left\{z||z-\zeta| \leqq \varepsilon\} \subset \Omega, \lambda\right.$ stands for extremal length, and Γ_{*}^{*} is the family of the locally rectifiable open arcs in $\Omega-\{z| | z-\zeta \mid \leqq \varepsilon\}$ joining γ and the circle $|z-\zeta|=\varepsilon$. By an open arc in a domain we mean a continuous mapping c of the open interval $(0,1)$ into the domain; it is said to join sets E_{0} and E_{1} if the "tails" $T_{0}=\cap_{\tau>0} \overline{\{c(t) \mid 0<t<\tau\}}$ and $T_{1}=\cap_{\tau>0} \overline{\{c(t) \mid 1-\tau<t<1\}}$ belong to E_{0} and E_{1} respectively.

The quantity $R(\gamma)$ is called the extremal radius of γ by Strebel [5], and its reciprocal is referred to as the capacity $c_{0 r}$ of γ in Sario-Oikawa [4]. It satisfies

[^0]$0<R(\gamma) \leqq \infty$. It depends on the reference point ζ. But the finiteness of $R(\gamma)$ is independent of ζ, and is equivalent to $\lambda\left(\Gamma_{6}^{*}\right)<\infty$ for some, or equivalently all, ε ([4; p. 36]).
2. If $R(\gamma)<\infty$, we know the unique existence of the function
$$
\varphi(z)=\varphi(z ; \Omega, \zeta, \gamma) \in \mathcal{S}
$$
with the following properties (Strebel [5], Reich [3], Oikawa [2], Suita [6], SarioOikawa [4; pp. 218-222]):
(a) $0 \in \varphi(\Omega) \subset\{w||w|<R(\gamma)\}$ and every component of $\partial \varphi(\Omega)-\varphi(\gamma)$ is either a point or a line segment on a ray $\arg w=$ const.
(b) $\varphi(\gamma)$ consists of the circle $|w|=R(\gamma)$ and possibly of a number of line segments (called incisions) on rays arg $w=$ const.
(c) The complement of any compact subset of $\partial \varphi(\Omega)-\varphi(\gamma)$ is an extremal (minimal) radial slit plane.
(d) The angular measure of the incisions is zero and, if Γ_{c}^{i} denotes the family of locally rectifiable open arcs in $\varphi(\Omega)-\{w| | w \mid \leqq \varepsilon\}$ joining $\varphi(\gamma) \cap\{w||w|<R(\gamma)\}$ and $\left\{w||w|=\varepsilon\}\right.$, then $\lambda\left(\Gamma_{\epsilon}^{i}\right)=\infty$.

The properties (a) and (b) mean that the image domain $\varphi(\Omega)$ is an incised radial slit disk with radius $R(\gamma)$. To be precise let us define an incision as a closed line segment I on a ray $\arg w=$ const such that $I \cap\{w||w|<R(\gamma)\}$ is a component of $\varphi(\gamma) \cap\{w||w|<R(\gamma)\}$. A point on the circle $|w|=R(\gamma)$ belonging to no incision will be referred to as a periphery point.

The properties (a) and (b) alone are insufficient to characterize the founctin φ. On the other hand some of the properties (a)-(d) can be deduced from others among them.

The property (c) can be stated in another form by means of the linear operator L_{0} (Ahlfors-Sario [1; p. 168]). Namely the condition (c) is equivalent to the following:
(c') For any closed analytic Jordan curve $\alpha \subset \Omega$ whose interior D is disjoint from $\gamma \cup\{\zeta\}$

$$
L_{0}(\log |\varphi|)=\log |\varphi|
$$

holds on $D \cap \Omega$ with respect to the operator L_{0} acting from α into $D \cap \Omega$.
For details we refer to [4; pp. 209 ff$].$
3. We now introduce a boundary element of a plane domain. As a consequence of Theorem 1 below it will be evident that our concept of boundary element coincides with the one introduced by Suita [8, 9]. In particular, if the domain is simply connected and hyperbolic, we are dealing with Carathédory's prime end.

Given an arbitrary proper subdomain Ω of the Riemann sphere, we shall write Δ for a subdomain of Ω whose relative boundary $c_{\Delta}=\Omega \cap \partial \Delta$ is a locally rectifiable simple open arc. Consider a family (base of a filter) \mathscr{D} of Δ 's satisfying the following conditions:
(I) For any $\Delta_{1}, \Delta_{2} \in \mathscr{D}$, there exists a $\Delta_{3} \in \mathscr{D}$ with $\Delta_{3} \subset \Delta_{1} \cap \Delta_{2}$.
(II) $\cap_{i \in \mathscr{D}} L=\phi$.
(III) For any $\Delta \in \mathscr{D}$, the extremal length of the family $\Gamma_{\Delta}=\left\{c_{\Lambda_{1}} \mid \Delta_{1} \subset \Delta, \Delta_{1} \in \mathscr{D}\right\}$ is finite.
(IV) A \mathscr{D} with (I)-(III) and finer than \mathscr{D} is always coarser than \mathscr{D}.

The terms finer and coarser are in the sense used commonly in the theory of filters. Two families \mathscr{D}_{1} and \mathscr{D}_{2} are said to be equivalent if each is finer than the other.

Definitions. An equivalence class e of families \mathscr{D} with (I)-(IV) will be called a boundary element of the domain Ω. A domain $\Delta \in \mathscr{D} \in e$ is referred to as a neighborhood of e. The set

$$
|e|=\bigcap_{\Delta \in \mathscr{A}} \overline{\bar{D}},
$$

independent of the choice of $\mathscr{D} \in e$, will be called the impression of e. It is a connected closed set on $\partial \Omega$. If $|e| \subset \gamma$, we shall simply say that e belongs to γ.

The argument in $\S \S 9,12$ shows that if $R(\gamma)<\infty$ there exists a boundary element belonging to γ.
4. Suppose Ω, ζ, γ and φ are as in $\S 2$. Given an e, the family $\{\varphi(\Delta) \mid \Delta \in \mathscr{D}\}$ for $\mathscr{D} \in e$ satisfies (I)-(IV) and determines a boundary element of $\varphi(\Omega)$ independent of the choice of \mathscr{D}. It will be denoted by $\varphi(e)$, the image of e under φ.

Theorem 1. If e belongs to $\gamma,|\varphi(e)|$ is either an incision or a periphery point. This correspondence is one-to-one from the set of boundary elements belonging to γ onto the set of incisions and periphery points.

Theorem 2. A necessary and sufficient condition for $|\varphi(e)|$ to be a periphery point is that e has a neighborhood Δ and a harmonic function v on Δ such that

$$
\begin{equation*}
v>0 \tag{i}
\end{equation*}
$$

(ii) for any closed analytic Jordan curve $\alpha \subset \Delta$ whose interior Δ is disjoint from $c_{\Delta} \cup \gamma \cup\{\zeta\}$,

$$
L_{0} v=v
$$

holds on $D \cap \Delta$ with respect to the operator L_{0} acting from α into $D \cap \Delta$,

$$
\begin{equation*}
\lim _{z \rightarrow e} v(z)=0 \tag{iii}
\end{equation*}
$$

As a consequence, the property of $|\varphi(e)|$ being an incision depends only on a neighborhood of e.

Some properties of $\boldsymbol{\varphi}$.

5. We list further properties of the mapping φ needed for the proofs of our theorems,

Let Ω, ζ, γ be as in $\S 1$, and consider an exhaustion $0 \in \Omega_{1} \subset \Omega_{2} \subset \cdots \rightarrow \Omega$ towards γ. By this we mean that $\Omega=\cup_{n=1}^{\infty} \Omega_{n}$ and the relative boundary $\gamma_{n}=\Omega \cap\left(\partial \Omega_{n}\right)$ is a closed analytic Jordad curve in Ω_{n+1} separating γ from ζ. Write R_{n} for $R\left(\Omega_{n}, \zeta, \gamma_{n}\right)$ and $\varphi_{n}(z)$ for $\varphi\left(z ; \Omega_{n}, \zeta, \gamma_{n}\right)$.

The image domain $\varphi_{n}\left(\Omega_{n}\right)$ is a radial slit disk and has no incision.
We know that $\lim _{n \rightarrow \infty} R_{n}=R(\gamma)$ and, if $R(\gamma)<\infty, \lim _{n \rightarrow \infty} \varphi_{n}=\varphi$. More specifically we shall need the following:

If $R(\gamma)<\infty$, then $\log \left(R_{n} \| \varphi_{n}(z) \mid\right)$ increases with n and converges to $\log (R(\gamma) \| \varphi(z) \mid)$ as $n \rightarrow \infty$.
6. If we consider the family Γ_{6}^{*} in $\S 1$ on the image domain $\varphi(\Omega)$, the identity $2 \pi \lambda\left(\Gamma_{\text {: }}^{*}\right)=\log (R(\gamma) / \varepsilon)$ is well-known. This result is generalized as follows (Suita [7; p. 443]):

Under the assumption of $\S 2$, let S be a sector of the form $r<|w|<R(\gamma), \theta_{0}$ $<\arg w<\theta_{0}+\Theta$, for some $r(0<r<R(\gamma)), \theta_{0}$, and $\Theta>0$. Let Γ_{S} be the family of locally rectifiable open arcs in $S \cap \varphi(\Omega)$ joining $\varphi(\gamma)$ and $|w|=r$. Then

$$
\Theta \lambda\left(\Gamma_{S}\right)=\log \frac{R(\gamma)}{r}
$$

Some properties of the extremal length.

7. In addition to standard known properties of the extremal length we shall need some more.

Lemma 1. If every member of Γ passes through a point z_{0}, then $\lambda(\Gamma)=\infty$.
Proof. Cover the complement of $\left\{z_{0}\right\}$ by a countable number of closed disks K_{1}, K_{2}, \cdots which do not contain z_{0}. Let $\Gamma_{n}=\left\{c \in \Gamma \mid c \cap K_{n} \neq \phi\right\}$. It is well known that $\lambda\left(\Gamma_{n}\right)=\infty$. The lemma follows from: $\lambda\left(\Gamma^{\prime}\right)^{-1} \leqq \Sigma \lambda\left(\Gamma_{n}\right)^{-1}=0$.

Lemma 2. Let $\Gamma, \Gamma_{1}, \Gamma_{2}, \cdots$ be such that, for any $c_{n} \in \Gamma_{n}, n=1,2, \cdots$, there exists a $c \in \Gamma$ with $c \subset c_{1} \cup c_{2} \cup \cdots$. Then

$$
\lambda(\Gamma)^{1 / 2} \leqq \sum_{n=1}^{\infty} \lambda\left(\Gamma_{n}\right)^{1 / 2} .
$$

The case $\Gamma_{m}=\Gamma_{n}$ for $m \neq n$ is not excluded.
Proof. Use notations in Ahlfors-Sario [1; p. 220]. On considering all ρ with $A(\rho)=1$ we have $\lambda(I)^{1 / 2}=\sup _{\rho} L(\Gamma ; \rho) \leqq \sup _{\rho} \sum_{n} L\left(\Gamma_{n} ; \rho\right) \leqq \sum_{n} \sup _{\rho} L\left(\Gamma_{n} ; \rho\right)=\sum_{n} \lambda\left(\Gamma_{n}\right)^{1 / 2}$.

Lemma 3. Let E_{1}, E_{2}, E_{3} be sets on the closure of a domain Ω. Denote by $\Gamma_{j k}$ the family of locally rectifiable arcs in Ω joining E_{j} and E_{k}. Then,

$$
\lambda\left(\Gamma_{12}\right)<\infty, \lambda\left(\Gamma_{23}\right)<\infty \Rightarrow \lambda\left(\Gamma_{13}\right)<\infty .
$$

8. Proof of Lemma 3 will be divided into several steps. Given a closed disk $K \subset \Omega$, let $\Gamma_{j k}(K)=\left\{c \in \Gamma_{j k} \mid c \cap K \neq \phi\right\}$. We first show that if $\lambda\left(\Gamma_{j k}\left(K_{0}\right)\right)=\infty$ for some K_{0}, then the same is true for every K.

Take a simply connected domain D_{0} such that $K_{0} \cup K \subset D_{0}$ and $\bar{D}_{0} \subset \Omega$, and let $\Gamma_{j k}\left(D_{0}\right)=\left\{c \in \Gamma_{j k} \mid c \cap D_{0} \neq \phi\right\}$. It suffices to prove $\lambda\left(\Gamma_{j k}\left(D_{0}\right)\right)=\infty$. For this purpose take a simply connected domain D such that $\bar{D}_{0} \subset D$ and $\bar{D} \subset \Omega$. Consider the family Γ of closed rectifiable curves in the doubly connected domain $D-\bar{D}_{0}$ separating its boundary components, and the family Γ^{*} of locally rectifiable open arcs in $D-K_{0}$ joining its boundary components. For any $c_{0} \in \Gamma_{j k}\left(D_{0}\right), c_{1} \in \Gamma$ and $c_{2} \in \Gamma^{*}$, we can find a $c \in \Gamma_{j k}\left(K_{0}\right)$ such that $c \subset c_{0} \cup c_{1} \cup\left(-c_{1}\right) \cup c_{2} \cup\left(-c_{2}\right)$. Accordingly, by Lemma 2, $\lambda\left(\Gamma\left(K_{0}\right)\right)^{1 / 2} \leqq \lambda\left(\Gamma\left(D_{0}\right)\right)^{1 / 2}+2 \lambda(\Gamma)^{1 / 2}+2 \lambda\left(\Gamma^{*}\right)^{1 / 2}$. Since $\lambda(\Gamma)$ and $\lambda\left(\Gamma^{*}\right)$ are finite we conclude that $\lambda\left(\Gamma\left(D_{0}\right)\right)=\infty$.

Next, by the same argument as in the proof of Lemma 1, we see that $\lambda\left(\Gamma_{j k}\right)$ $=\infty$ if and only if $\lambda\left(\Gamma_{j k}(K)\right)=\infty$ for some K.

Let $\Gamma_{j}(K)$ be the family of locally rectifiable open arcs in $\Omega-K$ joining E_{j} and K. We shall prove that $\lambda\left(\Gamma_{j k}(K)\right)=\infty$ if and only if either $\lambda\left(\Gamma_{j}(K)\right)=\infty$ or $\lambda\left(\Gamma_{k}(K)\right)=\infty$.

The if-part is evident. For the proof of the only-if part, let K^{\prime} be a closed disk in Ω containing K in its interior. Let Γ be the family of closed rectifiable curves in Int $\left(K^{\prime}\right)-K$ separating ∂K^{\prime} from K. For arbitrary $c_{j} \in \Gamma_{j}(K), c_{k} \in \Gamma_{k}(K)$, $c_{0} \in \Gamma$, there exists a $c \in \Gamma_{j k}(K)$ such that $c \subset c_{j} \cup c_{k} \cup c_{0}$. By Lemma 2 we obtain $\lambda\left(\Gamma_{j k}(K)\right)^{1 / 2} \leqq \lambda\left(\Gamma_{j}(K)\right)^{1 / 2}+\lambda\left(\Gamma_{k}(K)\right)^{1 / 2}+\lambda\left(\Gamma^{1 / 2}\right.$. Since $\lambda(\Gamma)<\infty$ we infer that either $\lambda\left(\Gamma_{j}^{\prime}(K)\right)=\infty$ or $\lambda\left(\Gamma_{k}(K)\right)=\infty$.

The assertion of Lemma 3 is now verified as follows: $\lambda\left(\Gamma_{12}\right)<\infty$ and $\lambda\left(\Gamma_{23}\right)$ $<\infty$ imply $\lambda\left(\Gamma_{12}(K)\right)<\infty, \lambda\left(\Gamma_{23}(K)\right)<\infty$, so that $\lambda\left(\Gamma_{1}(K)\right)<\infty, \lambda\left(\Gamma_{3}(K)\right)<\infty$. Thus $\lambda\left(\Gamma_{13}(K)\right)<\infty$ and therefore $\lambda\left(\Gamma_{13}\right)<\infty$.

Proof of Theorem 1.

9. As the first step of the proof we shall show the following:

If E is an incision or a singleton consisting of a periphery point, there exists a family \mathscr{D} of 4 's which satisfies (I)-(III) and

$$
\bigcap_{\Delta \in \mathscr{D}} \overline{\varphi(\Delta)}=E .
$$

Without loss of generality we may assume that E is an interval $[r, R(\gamma)]$ on the real axis; here $0<r<R(\gamma)$ if E is an incision and $r=R(\gamma)$ otherwise. There exists a sequence of points $r_{n} \in \varphi(\Omega)$ on the real axis such that $0<r_{1}<r_{2}<\cdots, \lim r_{n}$ $=r$. For a neighborhood of a point r_{n} we take $N_{n}=\left\{w| | \log w-\log r_{n} \mid<\theta_{n}\right\}$ such that $\bar{N}_{n} \subset \varphi(\Omega)$. We may assume, on taking a subsequence if necessary, that $\theta_{n} / 2>\theta_{n+1}, n=1,2, \cdots$, and that the \bar{N}_{n} are pairwise disjoint.

Consider the sectors $S_{n}=\left\{w\left|r_{n}<|w|<R(\gamma), \theta_{n}\right| 2<\arg w<\theta_{n}\right\}, S_{n}^{\prime}=\left\{w\left|r_{n}<|w|<R(\gamma)\right.\right.$,
$\left.-\theta_{n}<\arg w<-\theta_{n} / 2\right\}$, and a quadrilateral $Q_{n}=\left\{w\left|\theta_{n}\right| 2<\left|\log w-\log r_{n}\right|<\theta_{n},|w|<r_{n}\right\}$. Since $\bar{Q}_{n} \subset \varphi(\Omega)$ we can take $a_{n}>0$ so small that the quadrilaterals $Q_{n}^{\prime}=\left\{w \in S_{n} \mid r_{n}\right.$ $\left.<|w|<r_{n}+a_{n}\right\}$ and $Q_{n}^{\prime \prime}=\left\{w \in S_{n}^{\prime}\left|r_{n}<|w|<r_{n}+a_{n}\right\}\right.$ are in $\varphi(\Omega)$. Let Q_{n}^{*} be the quadrilateral which is the union of $Q_{n}, Q_{n}^{\prime}, Q_{n}^{\prime \prime}$, and the common sides. Observe that the $Q_{n}^{*}, n=1,2, \cdots$, are pairwise disjoint.

Let \mathscr{D}_{n} be the family of those $\Delta \subset \Omega$ for which $\varphi\left(c_{\Delta}\right)$ is contained in $Q_{n}^{*} \cup S_{n} \cup S_{n}^{\prime}$ and has tails T_{0} and T_{1} respectively is \bar{S}_{n} and \bar{S}_{n}^{\prime}. By the result quoted in $\S 6$, we have $\lambda\left(\Gamma_{s_{n}}\right)<\infty, \lambda\left(\Gamma_{S n^{\prime}}\right)<\infty$. Clearly the following three families have finite extremal length: (1) arcs in Q_{n}^{*} joining sides on $|w|=r_{n}$, (2) arcs in Q_{n}^{\prime} joining sides on $\arg w=\theta_{n} / 2$, arg $w=\theta_{n}$, (3) similar arcs in $Q_{n}^{\prime \prime}$. We conclude by Lemma 2 that $\lambda\left\{c_{\Delta} \mid \Delta \in \mathscr{D}_{n}\right\}=\infty$.

It is obvious that $\mathscr{D}=\cup_{n=1}^{\infty} \mathscr{D}_{n}$ has the required properties.
10. We shall say that Δ is distinguished if the tails T_{0} and T_{1} of $\varphi\left(c_{4}\right)$ are singletons consisting of different periphery points.

Given a family \mathscr{D} with (I)-(III) and $\cap_{\triangle \in \mathscr{D} \varphi(\overline{(\Delta)}} \subset \gamma$, the subfamily of the distinguished 4 's in \mathscr{D} satisfies (I)-(III) and is finer than \mathscr{D}.

For the proof, take $\varepsilon>0$ with $K_{0}=\{z| | z-\zeta \mid \leqq \varepsilon\} \subset \Omega$, and chose $\Delta_{0} \in \mathscr{D}$ with $K_{0} \cap \bar{\Delta}_{0}=\phi$. It suffices to show that the family \mathscr{D}^{*} of all distinguished $\Delta \in \mathscr{D}$ with $\Delta \subset \Delta_{0}$ satisfies (I)-(III) and is finer than \mathscr{D}.

Let $\mathscr{D}_{0}=\left\{\Delta \in \mathscr{D} \mid \Delta \subset \Delta_{0}\right\}$. As is well known, if \mathscr{D}_{1} is the family of all $\Delta \in \mathscr{D}_{0}$ such that the tail T_{0} or T_{1} of $\varphi\left(c_{\Delta}\right)$ consists of more than one point, then $\lambda\left(\left\{c_{4} \mid \Delta \in \mathscr{D}_{1}\right\}\right)$ $=\infty$. Next let \mathscr{D}_{2} be the family of those $\Delta \in \mathscr{D}_{0}-\mathscr{D}_{1}$ such that T_{0} or T_{1} of $\varphi\left(c_{4}\right)$ lies on an incision. By the property (d) in $\S 2$ and Lemma 3 the family of arcs in Δ_{0} joining any disk in Δ_{0} and the incisions has infinite extremal length. By an argument similar to that in the proof of Lemma 1 we then conclude that $\lambda\left(\left\{c_{\Delta} \mid \Delta \in \mathscr{D}_{2}\right\}\right)=\infty$.

Now let $\mathscr{D}^{*}=\mathscr{D}_{0}-\mathscr{D}_{1}-\mathscr{D}_{2}$. It clearly satisfies (I)-(III) and is finer than \mathscr{D}. Every distinguished $\Delta \in \mathscr{D}_{0}$ belongs to \mathscr{D}^{*}. Conversely every $\Delta \in \mathscr{D}^{*}$ is distinguished, for, if not, the T_{0} and T_{1} of $\varphi\left(c_{4}\right)$ consist of the same point and therefore $\lambda\left(\left\{c_{A_{1}} \mid \Delta_{1} \subset \Delta\right\}\right)=\infty$ by Lemma 1, contradicting the condition (III). Thus this \mathscr{D}^{*} is what we set out to obtain.
11. Suppose \mathscr{D} satisfies (I)-(III) and is such that

$$
E=\bigcap_{\Delta \in \mathscr{\mathscr { D }}} \overline{\varphi(\Delta)}
$$

is an incision or a singleton consisting of a periphery point. Let w_{0} be the point such that $\left\{w_{0}\right\}=E \cap\{w| | w \mid=R(\gamma)\}$.

For any distinguished $\Delta \in \mathscr{D}$, the end points of $\varphi\left(c_{\Delta}\right)$ determine two closed arcs on the circle $|w|=R(\gamma)$. Let A_{Δ} be the one for which Δ is contained in the interior of the closed Jordan curve $\varphi\left(c_{\Delta}\right) \cup A_{\Delta}$. Evidently $w_{0} \in A_{\Delta}$.

We infer that w_{0} is not an end point of the arc A_{Δ}.
Suppose w_{0} is an end point of A_{4}. If \mathscr{D}^{*} is the family of distinguished $\Delta \in \mathscr{D}$,
then $\left\{w_{0}\right\}=\cap_{\Delta \in \mathscr{D}^{*}} \bar{A}_{\iota^{\prime}}$. Thus, for every $\Delta_{1} \in \mathscr{D}^{*}, \Delta_{1} \subset \Delta, w_{0}$ is an end point of $A_{\Delta_{1}}$. By
 for \mathscr{D}^{*}.
12. We are ready to prove Theorem 1.

First we shall show that, given a boundary element e with $|e| \subset \gamma,|\varphi(e)|$ is either an incision or a singleton consisting of a periphery point. It suffices to verify that $A=|\varphi(e)| \cap\{|w||w|=R(\gamma)\}$ is a singleton, for $|\varphi(e)|$ is known to be a connected subset of $\varphi(\gamma)$. Take a $\mathscr{D} \in e$ arbitrarily and let \mathscr{D}^{*} be the family of distinguished $\Delta \in \mathscr{D}$. It satisfies (I)-(IV) and $\mathscr{D}^{*} \in e$. Clearly $A \subset A_{\Delta}$ for every $\Delta \in \mathscr{D}^{*}$. Now suppose A is not a singleton but an arc. By (d) in $\S 2$, we can find a periphery point $w_{0} \in A$ different from the end points of A. By the method used in $\S 9$, we can construct a $\tilde{\mathscr{D}}$ which satisfies (I)-(III), is finer than \mathscr{D}, and is such that

$$
\cap_{\Delta \in \mathscr{D}} \overline{\varphi(\Delta)}=\left\{w_{0}\right\} .
$$

\mathscr{D}^{*} cannot be finer than \mathscr{D}; this contradicts the condition (IV) for \mathscr{D}^{*}. We conclude that A is a singleton.

Next, to prove that the correspondence stated in Theorem 1 is onto, it suffices to show that the family \mathscr{D} constructed in $\S 9$ satisfies (IV). Let $\widetilde{\mathscr{D}}$ meet (I)-(III) and be finer than \mathscr{D}. We may assume that every $\tilde{\Delta} \in \tilde{D}$ is distinguished. Clearly

$$
\bigcap_{\tilde{\mathscr{A}} \in \tilde{\mathscr{A}}} \overline{\varphi(\tilde{\Lambda})}=|\varphi(e)|
$$

holds. Thus every $\tilde{\Delta} \in \tilde{\mathscr{D}}$ has the property stated in $\S 11$, so that it is possible to find a $\Delta \in \mathscr{D}$ with $\Delta \subset \tilde{\Delta}$. We infer that \mathscr{D} is finer than $\tilde{\mathscr{D}}$; this shows that \mathscr{D} satisfies (IV).

Finally, the correspondence is one-to-one. In fact, given e and \tilde{e} with $|\varphi(e)|$ $=|\varphi(\tilde{e})|$, take $\mathscr{D} \in e$ and $\tilde{D} \in \tilde{e}$ consisting only of distinguished Δ 's. The reasoning used in the above paragraph shows that one is finer than the other, that is $e=\tilde{e}$.

Proof of Theorem 2.

13. The necessity is evident. A Δ with $\zeta \not \ddagger \Delta$ and the restriction v of $\log |\varphi|$ to Δ qualify.

To prove the sufficiency we may assume without loss of generality that the given Δ is distinguished and such that $\zeta \not \ddagger \bar{J}$, and v is defined and positive on $\Delta \cup c_{\Delta}$. Since Δ is distinguished the function

$$
u(z)=\log \frac{R(\gamma)}{|\varphi(z)|}
$$

has vanishing limit as z tends to γ along c_{Δ}. Therefore, given $\varepsilon>0$, there exists a compact set $C_{\varepsilon} \subset \Omega$ such that $u<\varepsilon$ on $c_{4} \cap\left(\Omega-C_{6}\right)$. On the other hand, on the set
$c_{A} \cap C_{e}$, we have $\min v>0$ and $\max u<\infty$, so that there exists a constant M_{e} such that $u<M_{\varepsilon} v$ on $c_{\Delta} \cap C_{\varepsilon}$. As a consequence

$$
u<M_{\varepsilon} v+\varepsilon \text { on } c_{\Delta} .
$$

Consider an exhaustion $\zeta \in \Omega_{n} \uparrow \Omega$ towards γ. Since $u_{n}(z)=\log \left(R\left(\gamma_{n}\right) /\left|\varphi_{n}(z)\right|\right)$ increases with $n, u_{n}<M_{\varepsilon} v+\varepsilon$ on $c_{\Delta} \cap \Omega_{n}$. This inequality holds on $\gamma_{n} \cap \Delta$ as well, for $u_{n}=0$ there. Furthermore, we have the identity $L_{0}\left(u_{n}-M_{\varepsilon} v\right)=u_{n}-M_{c} v$, where the operator L_{0} acts from $\left(c_{A} \cap \Omega_{n}\right) \cup\left(\gamma_{n} \cap \Delta\right)$ into $\Delta \cap \Omega_{n}$. By the maximum-principle for L_{0} we obtain $u_{n}<M_{\varepsilon} v+\varepsilon$ in $\Delta \cap \Omega_{n}$. On letting $n \rightarrow \infty$ we deduce

$$
u<M_{\varepsilon} v+\varepsilon \text { on } \Delta .
$$

As $z \rightarrow e, \lim u \leqq \varepsilon$ and, therefore, $\lim u \leqq 0$. The inequality $\lim u \geqq 0$ is trivial and a fortiori

$$
\lim u=0
$$

as $z \rightarrow e$. This shows that $|\varphi(e)|$ is not an incision.

References

[1] Ahlfors, L. V., and L. Sario, Riemann surfaces. Princeton Univ. Press (1960).
[2] Oikawa, K., Remarks to conformal mappings onto radially slit disks. Sci. Papers Coll. Gen. Ed. Univ. Tokyo 15 (1965), 99-109.
[3] Reich, E., On radial slit mappings. Ann. Acad. Scı. Fenn. Ser. A. I. 296 (1961), 12 pp .
[4] Sario, L., and K. Oikawa, Capacity functions. Springer-Verlag (1969).
[5] Strebel, K., Die extremale Distanz zweier Enden einer Riemannschen Fläche. Ann. Acad. Sci. Fenn. Ser. A. I. 179 (1955), 21 pp.
[6] Suita, N., On radial slit disc mappings. Kōdai Math. Sem. Rep. 18 (1966), 216228.
[7] , On slit rectangle mappings and continuity of extremal length. Ibid. 19 (1967), 425-438.
[8] , On continuity of extremal distance and its applications to conformal mappings. Ibıd. 21 (1969), 236-251.
[9] - Carathéodory's theorem on boundary elements of an arbitrary plane region. Ibid. 411-416.

University of Tokyo,
University of California, Los Angeles, and
Tokyo Institute of Technology.

[^0]: Received October 6, 1969.
 The work of the first author was sponsored by the U. S. Army Research Office-Durham, Grant DA-AROD-31-124-G855, University of California, Los Angeles.

