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ON |C, «|. SUMMABILITY FACTORS OF FOURIER SERIES
By RajeENDRA K. JAIN

1. Let X} @, be a given infinite series with its z-th partial sum S, and let
ta=14=na,. By {02} and {£2} we denote the xn-th Cesaro means of order a (a>—1)
of the sequences {S,} and {#,} respectively. The series 3 a, is said to be absolutely
summable (C, «) with index k, or simply summable |C, a|r (=1), if

(1.1 2w og—oni|F<oo  ([5].
Summability |C, a|; is the same as summability |C, «|. Since
ta=mn(o%—07-1),
condition (1.1) can also be written as

|22

1.2) P < oo

A sequence {i,} is said to be convex [7], if 4%2,=0, n=1,2,---, where 42,
=2n—Any1 and 422,=A4(42,).

2. Let f(#) be a periodic function with period 2z and integrable (L) over
(—m, 7). We assume without loss of generality that the constant term in Fourier
series is zero such that

O~ i (@n coS nt+ b, sin nt)= f An(?),

n=1

and
| rar=o.
We write
§O =/ @D+ f D27 @)

3. Cheng [2] established:
THEOREM A. If

3.1) S:Igé(u)ldu:O{t(log%)B}, =0

as —0, then the series
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An()
X og i 70
at the point t=x is summable |C, a|, 0=a<1.
Extending the above theorem, Dikshit [4] proved:

THEOREM B. If {A.} is a convex sequence such that the series Y, An/n is con-
vergent, then the series

AnAx(t)
n*~*(log n)?

Z

at t=x is summable |C, a|, 0=a <1, whenever condition (3.1) is satisfied.

The object of this paper is to generalise theorem B for summability |C, a|z.
We prove:

THEOREM. [f {Aa} is a convex sequence suck that 3, An/n is convergent, then the
series

AnAn(?)
ni-a(log n)P*

z

at t=x is summable |C, a|; where 0=a<1 and k=1, provided that
t 1\#

3.2) S [¢(u)|kdu=0{t(1og7) } p=0.
0

4. We require the following lemmas for the proof of our theorem.

Lemma 1. [3]. If 0<a<1, 0<t<2r and
Tu)= ij Az pcos pt,
p=1

then

O(n?) for all t>0.
Ta)= 1
O(nt=*) for t> e

LemMma 2. [1]. If 0=a=1 and 0=m=mn, then

©
A,

v=0

m
1Az a,

=0

= max
0spsm

LemMMA 3. Let 0<a<l and 0<t=2r. We write

M;(f)=—1,;‘£:14;:1uﬁ'(‘)‘éﬁfva COS i, B=0, k=1,
n v=2

Then
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4. 1) lO{n‘“ i vt (log u)‘ﬂ”c.d/l,} +O0{ni, (log n)~#*}+0(n=Y) for 0<i= —11;
Mat)= = .
4. 2) l !(m‘)“' Z: vi(log v)=#* 42, }-]~O{2nt “(log n)"#%}+O0(nt) for t> l

Proof. By Abel’s transformation, we have

My(t)= —— s {Eu(m) > At cos ,ut}

v=2

T7()2n 1 Az
Aznt~*(log n)?* Az 2'%(log 2)#®

where T4%(#) is the sequence defined in Lemma 1. So by Lemmas 1 and 2, for
0<t=1/n,

S 1 A o2 __njn_* -1
Mn(t)—O{ - ZA(“TW> ”}+O{ Azn'—(log n)"* }+O(n )

Azt cost,

n v=2

& v, n VA, Nhn )
ol Sz + Eose * B |10 gyt

y=2 v=2
But
n VA, m” » m®
”Z:z (log v)#® = IZ 42, W.LZ_L m)Ple } + O{ n mZ=2 (log m)*’* }

Hence, for 0<¢=<1/n, this gives (4. 1).
Also, for ¢>1/n,

th “A(—'z"——” -I-O{—M"L}—I—O(n“)

o 1
M ,,(t)—O{ =(log »)P Aznt~=(log n)P*

Ay =

vda, n va, r vA,
_Ol (nt) [Zz Y ‘“(log y)ﬁ/k + Z vz‘“(log l',)ﬁ/lc + Z vz‘“(log v)ﬁ/lc+1 }}

= =2 y=2

An

t*(log n)?« }-i—O(n'l)

+0{
But

> A B 1 n 1
§2 v =(log v)Pe {;24,2 ;_Iz ¢ (log p)*® }+O‘xn§_2 v'~*(log v)"* }
n Vv¥AaR, 7
—0{§2 (log v)*% }+O{ (log n)** }
This establishes (4. 2).

LemMmA 4. If (3.2) holds, then, for k=1,

(i) {S l¢<t)ldz‘} (n-*(log ny}
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and, for k=1 and 0<a<l,
£ k
(i) {Sl/nl”tﬁi)Ldt} —0{(log 7Y},

Proof of (i). By Holder’s inequality, we have

{S:/n|¢(t)ldt}k§{S;/nlsﬁ(t)lkdt] { S:’"dt]"“

=Oi£1£g__nl’” 1 }zo[(logn)"l_

”n nk—l nk

Proof of (ii). Again, Hélder’s inequality gives that
R TR

n \/n I : F2=17k)

i

(5, e o[ (oe ) T, Jroff, s (oe )}

—0(1)+0fn"(log n)ﬂ}+o{aog )P S/_j.‘.}

IIA

But

=0{(log n)#}, since 0<a<1.
Thus (ii) is evident.

LEMMA 5 [6]. If {A.} is @ comvex sequence such that Y, An/n<oo, then
37 log (1A 1)dan=0(1),  m—co.
n=1

5. Proof of the theorem. Since the case k=1 of the theorem is due to Dikshit
[4], we prove the theorem for £>1 only.

The case a=0 being trivial, we take 0<a<1l. We denote the »-th Cesaro
mean of order a of the sequence {#°2,A.()(log %) #*} by Czx(f). Then we have to
show that

6.1 2 _IC_‘;,:‘)_I’“_ <oco.

Now,

s 2 = __1_ n o ATLu2, cos v
Gih)= T So ) As u;z (log v)¥® a

2[4, e

T

=L4+12, say.
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By Minkowski’s inequality, it is therefore sufficient to prove that

1|k
5.2) sl o,
n
and
Li]r
(5.3) M | nl <oo

Proof of (5.2). Using (4. 1), we have
Em=ialr Usoalolr & i) +o (e oG
{5157 B ) [
+o[Z ([ toemr ) ]+ o[£ 3w (v ) T7F

={M%/k+M;/k+M§/k}k’ Say.

S

Il

Now, applying lemmas 4 (i) and 5, we get

=0 £ 1o ((ipoiar) (5 i) |

=0_£] 1 _(logn)ﬁ <Z": vieda, )"]

| 2, pithe "k =, (log v)P’*
2 (logw)f [ 2 [ v'*(dA,)V% e l®
= O _1.Z=2 n1+k(1+n) ,§2 ( (IOg V)ﬁ/k >(Alzv)1 1/k } :I

_ ~ m (log n)ﬁ n )Jk(1+a)A/2,, ]{ n }k—l]
=0\ Z s | 5 og oy ) 154>

AT (logm)f [ & Vo443, }]
= O _nZ=:2 n1+k(1+a) o (log v)p

_ O [~ m yk(1+n)sz m (lOg n)ﬁ
T LA (ogu)y 2, nitkateo
—~o| 5]

_»=2

=0Q), as m—co,

Next, using lemma 4 (i) again, we write
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o] £ g (1 wore) |
~o[ Edegr ]

-o[Z5]

=0(), as m—oo,

and

(f (log 7)? >=O(1), as m—oo.

1+2
n=2 &

This proves (5. 2).
Proof of (5.3). Applying (4. 2), we have

SR =5 L 2 wolao(me 5t
+0(Fmar) o)
o2 T S ) |
+O[n§2 711 (S:/n |¢§?l ' (logz;;)ﬂ/k di) ]W

rol £ (o) Y

={Ni/k+N;/k+N§/k}k’ say.

Using lemmas 4 (ii) and 5, we get

N=o[ £ (] B ar) (52 )]
~o[ £ 982 (5 o))

~O 5 Gom 3 (M) ]

L n=

A& (ogm) (& veda, || k-1
o[ £ SR St )]
A [& (ogm)p 2 V442, ]
——O_nZ=2 n1+ka v=2 (lOgV)ﬂ
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-~ movke 4, & (log n)f
N O[»é (log v)? nZJ 0 e ]

=0[i Azu]

y=2

=0(1), as m—oo,

Lastly, applying lemma 4 (ii) again, we have

N2=O[§2i’f—- (logln)" <Sln l¢(f)| dt) ]

= [ﬁzi—k (log e (logn)]

-o[£5]

=0(), as m—oo,

And obviously

N3=O<i n11+k> o),  as m—oo,

This proves (5. 3).
Thus the proof of the theorem is complete.

The author is much indebted to Dr. P. L. Sharma for his kind help and
valuable suggestions during the preparation of this paper and is also thankful to
the referee for his kind suggestions.
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