
SOME THEOREMS ON TIME CHANGE AND KILLING
OF MARKOV PROCESSES

BY MASAO NAGASAWA AND KENITI SATO

§1. Introduction and definitions.

It is known that a Markov process is transformed to another Markov process
by its continuous non-negative additive functional φt through time change or killing.υ

On the other hand, φt is determined by an excessive function u(a)=Ma[φζ-o].
Moreover, if the Green measure of the process is expressed by g(a, b)m(db) and if
the process satisfies some additional conditions, then u has the Riesz representation:
u(ά)=$g(a, b)n(dV) with some measure n. These results are found in the works of
Hunt [4], Volkonskii [13] and Meyer [9] under a general setup and in McKean-
Tanaka [7] in a concrete case. We want to study what meaning the measure n
or m has for the process obtained through time change or killing. In the course
of the study we need various generalizations of the resolvent equation and we are
compelled to give a unified form in their treatments which is given in §2. In §3
we state construction theorems of processes by time change and killing and give
some lemmas concerning (sub) invariant measures. Further, it is proved that the
terminal measure15 of the killed process is represented by K\ (defined in § 2) and
that a measure n is the terminal measure of the killed process with initial measure
n if and only if n is an invariant measure of the process obtained through time
change. In §4, Gλ

a and Kλ

a, defined in §2, are represented using a kernel function
gϊ(a, b) under some regularity conditions for the Green kernel ga(a, b). In § 5 we prove
that the Riesz measure n is a subinvariant measure of the process obtained through
time change by the corresponding additive functional and give some sufficient con-
ditions for the measure to be invariant. And also the meanings of n for killed
process are discussed. In order to obtain a necessary and sufficient condition for the
measure n to be invariant, we need some considerations on the adjoint process of the
process obtained through time change or killing, which is given in § 6. The neces-
sary and sufficient condition is stated in §7. The adjoints of the processes are
also treated in [4], [8], [11] and [13].

We use the notations and terminologies of Dynkin's book [2] unless specifically
mentioned. Concerning a (temporally homogeneous) Markov process X=(xt, ζ,Mt, Pα, θt)
with state space (E, SB), we denominate, for brevity, the following conditions:

Mi. E is a locally compact Hausdorff space with a countable base and 33 is
the smallest σ-algebra containing all the open subsets of E.

Received May 6, 1963.
1) Terminologies and notations are found in the latter half of this section.
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M2. Pα[C>0]=l, for aεE.

Ms. For all ω, xt(ω) is right-continuous in £e[0, ζ).
M4. X has the strict Markov property.
Ms. If τn(ω) t τ(ω)<ζ(ω) for all ωGJB, where τn are random variables inde-

pendent of the future (Markov times), then Pa[Xrn-^xτ\B] = l^ for all asE.
Me. 5Mί-M>=3Vtt.
Mi. 3Hί=5Vίί.3)

M8. For all ω, a?t(ω) has limit from the left in /€(0, ζ).

Define the first hitting time to a set A, as

inf{/: 0^ί<ζ(ω) and xt(ω)€A} if such ί exists,

ζ(ω) if such ί does not exist.

We call X to be conservative if Pα[C=0°]=:l for all #€£, and to be recurrent if
Pa[<?A<ζ\=l for all β€# and all non-empty open sets A.

We introduce definitions on some special measures. Let m and n be (/-finite
measures on E. We say that m is an invariant measure for X, if and only if

(1.1) Pm[

holds for all AGΪ& and £>0. If the left-hand side in (1. 1) is not greater than the
right, m is called to be a subinvariant measure for X. We call ^ the Green measure
(of order zero) of (X, m) if and only if

(1.2)

holds for all .4 €£8, and the terminal measure of (X, m) if and only if Pw[ζ<oo and
#ζ_o does not exist] =0 and

(1. 3) Pm[ζ<co and xζ-0eA]=n(A)

holds for all AeΆ
We call φt(ώ) (co€Ωt) continuous non-negative additive functional of X of order

a if and only if the followings are satisfied:

Ai. φs(oή-\-e~aSθsφt(ω) = φs+t(ώ), for

Az. ψt is 2lt-measurable;6)

As. 0^£>ί(α/)<oo, for ωzΩt]

A,. Pα[^0=0] = l, for a$E\
A 5. ψt(ώ) is continuous in t.

2) We write Pα[^|B]=l if and only if Pα[B\A]=0.
3) 3Hί is the family of B such that, for every finite measure m, there exist B1 and

satisfying B^B^B2 and Pm[52\5J=0.
4) Pm[B]=fEPa[B]m(da-) and Mmlf]=fE

5) χA is the indicator function of set A.
6) We put Sίί=9lί+on9l*
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If α=0, we omit the word "of order 0".
Further we introduce some notations:

B(E)=the set of bounded ^-measurable functions;
CCE)=the set of bounded continuous functions;
Bo(E) = the set of f$B(E} with compact supports;

£+(£)= the set of non-negative fsB(E)\

C+(E\ B+(E) and Q(E) are the meets with B*(E) of C(E), B0(E) and C0(E), res-
pectively. 1 1 / 1 1 means supαe#l/(<2)

Let E and E be subsets of a larger space and let X and X be two Markov
processes with state spaces E and E, respectively. Then, we say that X and X are
mutually adjoint with respect to a o -finite measure mt if and only if

(1. 4) m(E\E)=m(E\E)=Q,

and

(1.5) ( Ma[f(xt)]g(a)m(da)=(
JEf\β J Enfi

for all fsB0(E), gsBQ(E) ana />0.
Obviously, (1. 5) is equivalent to

(1.6) ί G'αf(α)g(α)m(dα)={ f(α)G°αg(α)m(dα)
J Er\£ J En£

for all f€B0(E), geB0(E) and α>0 (cf. [11]), where

(1. 7)

(1. 8)
ΓΓ ζ 1(1.8) G°g(β)==lVϊα 1 e~atg(xt)dt\.

Now we fix a Markov process X=(xt, ζ, ̂ ίt, Pα, #0 with state space (E, 3$)
having the properties Mi—Mr, and go on throughout this paper.

§2. A generalization of the resolvent equation.

Let φt(ώ) and ψt(ώ) be continuous non-negative additive functionals of X, and
put, for measurable /,

(2.1) C/i/(fl)=MαΓ Γ e-*-*** f(xύd

and

7) Convention: Mα[/(^)]-Mα[/(^): σ<ζ], where Mα[F(ω):A\ = JAF(tojPα[dώ\. The
semi-group of the process X is defined by Ttf(ά)=Mα[f(xt)].
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(2. 2)

when the right-hand sides are defined. Clearly, Uif and VI f are finite and bounded
if α>0, Λ^O and /€#(£). They satisfy the equation (2. 3) below, which is a gene-
ralization of the so-called resolvent equation.

THEOREM 2. 1. For any α, /3>0, λ, μ^O and /€#(£), it holds that

(2. 3) t/ί/-t^/+(α-»£/i^/+W-/ι)^ϋ?/=0.

Before the proof, we prepare

LEMMA 2. 1.8) Let p(t) be a continuous non decreasing mapping of [0, t0]
onto [Q,po\ (t0 and PQ may possibly be oo). Put c(t)=sup{s: s<t0 and p(s)^t} and c0

=sup{s: s<t0 and p(s)<oo}. Then,

(2. 4) f f(t, P(t))dp(t) = ( f(c(t\ t)dt
J[0,<O) J[0,ί)o)

holds for each non-negative measurable function f ( t , s).

Proof. It is sufficient to prove (2. 4) for the function of the form f(t, s)
=&()> α)(0χco> &](s) where Q<a<cQ and 0<b<p0. We have, obviously,

Jco.co)

where ^ι^αΛsup{ίf:/?(0^^}=:^Λc(^),9) and

where ί2=6Λsup{£ c(ft<«}. Provided that Q^t<t0, p(t)^s if and only if ί^
Hence ί2 = ^ Λsup{ί: t<p(ά)} ==b /\p(a). If c(b)<a, then we have b<p(a) and
p(t1)=ρ(c(b))=b=tz. On the other hand, in case c(b)^a, we have b^p(d) and
P(tι)=p(ά)=tz. In both cases (2. 4) is verified.

REMARK. If Q^t<pQ, then p(c(t))=t and c(0 is right-continuous and strictly
increasing. These are already used in the above proof.

Proof of Theorem 2.1. Put

(2. 5) ΓίO)= sup{s: s<ζ(co) and ^s

and

(2. 6) *ί(fl>)= sup{5: 5<ζ(ω) and ψs

8; This is an extension of Lemma 7. 1 of Meyer [9].

9) *Λs= min {f, s}.
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Since {τt<s+e<ζ} = {t<φ8+*, s+ε<ζ}eίls+ε, we have {τt^s
=Ms and τt is a random variable independent of the future. And so is σt. By
virtue of Lemma 2. 1, the strict Markov property and Fubini's theorem, we have

Ui Uμ

βf(a) =

%-^«^-^«V(^4 OA^^

-MαΓ [ζ e-"-^-"-^

If ^>0, similar argument yields

Accordingly,

=MαΓ Γ

thus (2. 3) holds for Λ>0. Without loss of generalities, we may suppose /^O.
Then, VJUJ/T F?ί/?/and £7i/-£^/+(α-j9)Z7ίϊ/ί/--*C7ϊ/-L/S/+(α-ftl7ίt/J/, as ^ j 0.
Hence, (2. 3) holds for Λ=0, too, and the proof is complete.

COROLLARY. 77z# following commutativity holds:

(2. 7) C/i£/£ - Uλ

βUi,

(2. 8) 7jt/: - VίUi.
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A slight extension of Theorem 2. 1 is

THEOREM 2. 2. If £/Jβl(α) is bounded for some α0i^0, then Ua

0f is finite and
bounded for arbitrary α>0 and f$B(E) and, furthermore, (2.3) remains true for
all feB(E) and all a, β, λ, μ^O such that a+λ>Q and β+μ>0.

Proof. By Theorem 2. 1, we have

(2. 9) Ua

βl= Ua

β°l-(a-

for α^O and /3>0. Make β tend to zero, then (2. 9) turns out to

because C/j l is bounded. Hence the right-hand side of the above is bounded if
α>0, proving the first half of the theorem. In case α=0 or β=0, (2. 3) is obtained
as the limit from the same formula with positive a and β, making use of the
dominated convergence theorem. Thus the proof is complete.

It must be noted that the above two theorems are valid for processes satisfying
Mzy Mt, and ^t+oξ^Mt.

For later use, we introduce two operators Ki and G« which are special cases
of Ui and Vί;

(2. 10) J

and

(2. 11) (

Then, as corollaries of Theorem 2. 1, we have two formulae:

(2. 12) Ki-Kμ

β+(a-β)KλJζμ

β+(λ-μ)GΐKμ

β=Q,

(2. 13) G}

a-Gμ

β+(a-β)GίGμ

β+(λ--μ)Ka

λG
μ

β=Q,

which are reduced to the resolvent equations of Kλ

a and Gλ

a when λ=μ. The pro-
cesses having Kλ

a (or Gί) as their resolvent operators are described in the next
section.

§3. Time change and killing.

As is well known, a continuous non-negative additive functional serves as
time change function to construct a new Markov process. In fact, put £=<pc_o,
xt(ώ)=xτt(ω) (0^jί<ζ(α>)), and F={a: Pα[r0>0]=0}, where τt is defined by (2.5).

LEMMA 3. 1. F is nearly Borel measurable (in the sense of [4]) and
for 0^<ζ I ζ>0] = l holds for any

Proof. Put ua(ά)=M.a[e-aτ']y then ua(ά)=l for azF and ua(a)<l for azE\F.
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Since ua(ά) is α-excessive,10) ua(xt) is right-continuous with Pα-measure 1 by Hunt
[4] and Doob [1], and we have

Pa[ua(xτt) is right-continuous in /<ζ|ζ>0] = l.

On the other hand,

Pα[wβ(#rr)=l for all rational re[0, ζ) | ζ>0] = l.

Hence, Pα[^rί)=l for all ίe[0, ζ) | ζ>0] = l. Nearly Borel measurability of u«(ά)
follows from excessivity by [4], and so is F.

Put Ω={ω: xt(ώ)sF for all ίe[0, ζ)}, then the restriction X°=(xl ζ°, Ml Pa,

of X to Ω is again a Markov process satisfying Mi^Mi. Let 3VU
be 3Vt;f, P°α, and 0°τί, respectively, and let 3d be the intersection of SB(m) ranging
over all finite measures m, where 2E(m) is the completion of £6 with respect to m.
Then we have

THEOREM 3. 1. X=(xt, ζ, 5VU Pα, θt) is a Markov process with state space
(F, 3B[F]) satisfying Mz, M3, M4, and MQ. The resolvent operator of X is K°a.

The proof is achieved by applying the same method as in [13] more carefully.
Another transformation by φt is killing or the formation of subprocess. The

next theorem is a special case of a theorem valid under weaker conditions on φt

(cf. [2], [9] and [12]).

THEOREM 3.2. There is a subprocess X=(xt, ζ, ΛU Pa, θt) of X corresponding
to the multiplicative functional e~φt and satisfying M%~Mi. The resolvent operator
of X is Gl

More generally, as indicated in [12], (Uλ

a\ α>0} is the system of the resolvent
operators for the process obtained through time change by φt and killing by λφt.

The rest of the section is devoted to some general properties of invariant,
subinvariant and terminal measures.

If m is an invariant measure for X, then

(3. 1) a{ Glf(o)m(da)= { f(ά)m(da), for /€£0
+(E), a>0.

JE J E

Conversely, we have

LEMMA 3. 2. //, for some α0>0,

(3.2) α0ί GlJ(a)m(da)Λ f(ά)m(da\
J E J E

then m is an invariant measure for X.

10) A non-negative function u is said to be α-excessive (relative to X), if M.a[β-atu(xt)}
^u(a) holds aud the left member increases to the right as t \ 0.
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Proof. (3. 1) for all a^a<) follows from the resolvent equation:

(3. 3) G0

aof-G0

af+(a0-a)G0

aoG°J=Q.

Noting that

G°af(a)m(da)=( e~at dt( Ttf(d)m(dd) and — { f(ά)m(dά)= Γ e~at dt( f(a)m(da),
Jo J E & J E Jo J E

we have, by the one-to-one property of the Laplace transform,

(3.4) ( Ttf(ά)m(da)={ f(d)m(dά)
J E J E

for any t$S, where 5 is a set of Lebesgue measure zero. Using the second coun-
tability, S can be chosen to be common for all fsB^E). Let /eS, we can find U
outside 5 such that tQ+t is also not in 5. Then

f Ttf(ά)m(dά) = { Tt0Ttf(ά)m(dά)=( Tto+tf(a)m(dά)={ f(a)m(da),
J E J E J E J E

and (3. 4) holds for all t. Hence the proof is complete.

LEMMA 3. 3. A σ-finite measure m is subinvariant for X, if and only if

(3.5) a{ Gϊf(ά)m(dά)^[ f(a)m(dά)
J E J E

holds for all α>0 and

Proof is essentially found in Hunt [4]. " Only if " part is obvious, so we give
the proof of " if " part. First, let us prove

(3.6) aerf>\ TtG°a+βf(a)m(da)^a{ G°a+βf(a)m(da),
J E J E

for any a, β>0 and f^Q(E). Define (non-negative) measure mύ by

f h(ά)m0(da)={ (h(a)-aG°a+βh(a))m(da).
J E J E

Then, since

f (?a+βg(ά)m(dά) = ( G0

βg(a)m0(da)
J E J E

for any g€B+(E), we have

aerV ( TtGί+βf(ά)m(da)=aer^[ G"a+β Ttf(ά)m(da)

= ae-v(&tTtf(a)m*(da)^a\&JW

namely (3. 6). Make a— >oo in (3. 6). The left side estimates as
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lim inf aerV ( TtG°a+βf(a)m(da) = lim inf ae-^Mm[G°a+β f(xt)] ^
OJ-»oo J E Cύ->oo

using Fatou theorem, and the right side is

lim inf α f G°a+β f(a)m(da) ^ ( f(a}m(dά}
Λ-+OO J E J E

by (3. 5). Hence we have

{ Ttf(a}m(dά)^{ f(ά)m(da\ for all
J E J E

The terminal measure of the killed process X corresponding to e~φt is repres-
sented by K°19 that is,

THEOREM 3. 3. Suppose that X is conservative and satisfies M8, then

(3. 7) ήα[M-o): ζ<oo]=#;/(α)

holds for all as E and fsB(E).

Proof. Without loss of generalites, / is assumed to be in C(E). Then we have

K\f(a)=W^f(xύd(^^

since the discontinuity points of xt(ω) are at most countable. Hence,

=lim Σ
Λ J O ι=0

]=Aβ[/(fl&{.β): ζ<oo],

so that (3. 7) is proved.

Theorem 3. 3 implies that the terminal measure of X is identical with the
Green measure (of order one) of X. This is the basis for the next

THEOREM 3. 4. Suppose that X is conservative and satisfies M8, and let n be a
σ-finite measure on E. Then the following two statements are mutually equivalent]

( i ) n is itself the terminal measure of (X, n);
(ii) n is concentrated on F and an invariant measure for X.

Proof. Assume that n satisfies (i). Then we have, by Theorem 3. 3,
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(3.8) f Klf(ά)n(dά)=\ f(d)n(dά)
J E J E

for all /€#(,(£). Since Pa[xf^F] = l, we have n(E\F)=0. For,

er»(χf f)(x

= i #»
J E

= f(d)n(dά).
E

Hence (3. 8) is now read as

K\f(d)n(dd}=\ f(ά}n(da\
F J F

implying n is an invariant measure for X by Lemma 3. 2.

§4. Representation of G*a and Ki.

In this section we make two assumptions. The first one is the existence of a
(7-finite measure m and a non-negative (possibly infinite) 53 x immeasurable function
gao(a, b) such that, for any f€BQ(E),

J(a)= f 0βo(β, b)f(b)m(db).
J .E

(4. 1)

Here α0 is a fixed non-negative number and the both sides of (4. 1) are supposed to
be finite. The function gaQ(a, b) is assumed to be, as a function of a, a0 -excessive
and tfo-harmonic in jE\^.n)'12) Given a continuous non-negative additive functional
φt(ω\ our second assumption13) is the existence of a ^-finite measure n satisfying

(4.2) M α α o ί ^ gao(a, b)n(db)<oo,
E

We assume that (4. 2) does not identically reduce to zero.
We shall prove that the measures m and n together with appropriate modifica-

tions of gaQ(a, b) permit us to represent the operators Gλ

ao and Ka

λ\

THEOREM 4. 1. For all f$B(E), K^f is finite and represented as

(4.3) K?f(ά)= gaQ(a,b)f(b)n(db),
E

11) A function u is said to be α-harmonic (relative to X) in £\£, if M.a[e-aσu(xa)]
=u(a), σ=σu, holds for every open set U containing b.

12) Sufficient conditions for this assumption are treated in Kunίta-Watanabe [6].
13) For a sufficient condition, see Meyer [9].
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A similar theorem is found in Meyer [9], and a close problem is also treated
by Motoo [10]. In the Brownian case, it is also proved in McKean-Tanaka [7]. Our
proof is based on the next fundamental lemma which, as well as its proof, is due
to Tanaka (cf. [5]).

LEMMA 4. 1. If n has no mass outside of an open set U, then

(4. 4) Pα[?>ί=0, for all /€[0, σσ)] = l,

Proof. Put

(4.5)

By the strict Markov property and (4. 2) we have

(0«0(«, b)-Ma[er ugβQ(x b)])n(db).

The integration in the last member can be restricted to U and vanishes since
g«0(α, b) is αo-harmonic in E\b. Thus (4. 4) is proved.

According to the work of Meyer [9], a non-negative and finitely valued func-
tion u(a) has the representation u(ά)=Ma[φi-l] by a continuous non-negative additive
functional ψ^ of order α0, if and only if it has the following properties: (i) u is α0-
excessive; (ii) If {σn} is a non-decreasing sequence of random variables independent
of the future,

Ma[e-aoσnu(xσn)] j M.a[e-aoau(Xe)], n | oo

where σ= lim σn. Moreover, ψ^ is determined by u uniquely up to Pα-measure zero
for all azE. These remarkable results imply

LEMMA 4. 2. For any fsB(E\ there exists a continuous non-negative additive
functional φf

t(ώ) such that

(4. 6) Mα[jQ

ζ e-t dφf^=^ qa,(a, b)f(b)n(db)

holds. Such φ{ is unique up to Pa-measure zero for all

Proof of Theorem 4. 1. Let V be a closed set and φv

t denote φ{ when f=χv.

Put Un = {a: p(a, V)<l/n} where p is a metric compatible with the topology of E.
Then we have Pa[0un ί ^r] = l, on acount of M5 and closedness of V. Therefore we
have, by Lemma 4. 1,

(4.7) PαK=0, for all *€[0, σv)] = l, for asE.
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We shall prove that

(4. 8) Pjφζ=[XvfaWφΐ, for all f€[0, ζ)Ί = l, for atE.

Put U={a: p(a, V)>ε} where ε is a positive constant. Define a sequence of random
variables independent of the future;

ζ if ran.!^C,

C if r2n^C,

for «=1, 2, •••. By virtue of M5, we have \imn^τn=ζ, Pα-almost certainly. Hence

Mα I %u(Xs)dφs l^Mal Σ \ %u(Xs)dφ]LJo J L^=ιJr2n_1

by (4. 7). Letting ε tend to zero, we have

so that

(4. 9) M«[pF-J=

The both sides in (4. 9) are finite since they do not exceed

er 'uj f e~«*s dφϊ\^<f* \ ga,(a, b)n(db)<oo.

From this we can easily see (4. 8).
Next we shall prove

(4. 10) MαlT e~aot χv(xt)dφ= ga()(a, b)n(db),

from which we can derive (4. 3) with the standard use of Dynkin's lemma ([2]
Lemma 1. 2). Let Vι be a closed set outside V. Using

Vβ"φΓ = Γ er '
o Jo

14) Notation: t'=t/\ζ(ω).
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and the same relation replacing V by VΊ, we have

s-

^MαΓfVα°s dφs- Γ e~a*sdφv

s- fV«°s dφv

= gao(a,9b)(l-χv(b)-χVl(b))n(db).
J E

Make Vι swell to E\F, then the last member above tends to zero and we get
(4. 10). Thus the proof of Theorm 4. 1 is complete.

Put

(4. 11) gi.(a, b)=gao(a, b)-λ

when the right-hand side is well-defined. Then the following theorem holds.

THEOREM 4. 2. Fix asE and >feO. Then, for (m+ri)- almost every b, g^a, b)
is well-defined, finite, non-negative, and not greater than g«0(<2, b). And we have

(4. 12) GiJ(a)= gl(a, b}f(b)m(db),
J E

and

(4. 13) #?/(<i)= f gl.(a, b)f(U)n(db\
J E

Proof. Without loss of generality we suppose f$Bί(E). Changing the order of
integrations we get

aoi-^ gao(xt,

-αoί -*" Gl J(xt}dφ = K? Gl f(ά).

On the other hand we have

(4. 14) Gί./-Gίβ/+^?Gl,/=0.

This is a special case of (2. 13) if α0>0, and if tf0=0, is obtained by approximation
of #o from above. (4. 14) implies finiteness of each term, and we can see that
(4. 12) holds and that, for m-almost every b, g*0(a, b) is well-defined, finite, non-
negative and not greater than gaQ(a, b). The rest of the proof is similar if we use
Theorem 4. 1,
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§5. The properties of measure n - sufficient conditions.

We continue to make the same assumptions as in the preceding section.
Further we assume that aQ is positive and that for any bzE, m satisfies

(5. 1) aQ m(da)Qao(a, b) = l,
J E

which implies, by Lemma 3. 2, that m is an invariant measure for X and

(5.2) a( Glf(ά)m(da}={ f(d)m(da\
J E J E

for any α>0 and f€B0(E).
We shall study what properties n has for the processes X and X obtained

through time change and killing by φt, respectively. First we prepare a lemma
due to M. Motoo.15) Our proof is different from his.

LEMMA 5. 1. n is concentrated on F, i.e., n(E\F)=Q.

Proof. By virtue of Theorem 4. 1,

f

Jnce Pα[Λ?rί€jP] = l. Integrate with m, then use (5. 1), we have n(E\F)=0 im-
mediately.

THEOREM 5. 1. For any α>0 and fsB^E), we have

(5.3) αf K«J(ά)m(dά)={ f(ά)n(da\
J E J F

Proof. We prove this for /e£0

+(E). First note that

(5. 4) K°βf-K«if+(a-a0)Gβ

aK«if=Q,

which is a special case of (2. 12). Integrate the formula with m and let β tend to
zero. Then by the monotone convergence theorem, the second term tends to
—ϊEKa

0°f(a)m(da), which is equal to —(l/ao)fFf(ά)n(dά) by (5. 1), Theorem 4. 1 and
Lemma 5. 1. Similarly, the third term tends to (L/aQ—l/ά)fFf(ά)n(da), while the
first tends to $E Ka

0f(a)m(da). This proves (5. 3).

THEOREM 5. 2. For any α, /3>0 and feBf(E), n and m satisfy

(5.5) a{ K«af(ά)n(dά)^{ f(d)n(da\
J F JF

(5.6) a{ Glf(ά)n(dά)^{ f(ά)m(da)y
J F J E

15) Private communication.
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(5.7) β( Glf(a)m(dd}^( f(d)m(da\
J E J E

(5. 5) and (5. 7) mean that n and m are subinυariant measures for X and X, res-
pectively.

Proof. Integrating the formula Kβ

Qf—Kβf—aKβ

0K
β=Q by the measure βm, and

using the preceding theorem, we obtain

(5.8) f f(ά)n(da)-β{ Kίf(a)m(dά)-a{ Kβf(a)n(da)=Q.
J F J E JF

Letting β decrease to zero, (5. 5) follows. To prove (5. 6), we start from the formula

(5. 9) G f-&pf+(a-β)(?aGϊf-aKίGϊf=Q,

a special case of (2. 13). Integrating with m, then using the preceding theorem
and (5. 2), we have

(5. 10) f f(ά)m(da)-β[ Ga

βf(d)m(da)-a{ Ga

βf(a)n(da) = 0,
J E J E JF

from which (5. 6) follows as β tends to zero. (5. 7) is a direct consequence of (5. 10).
Lemma 3. 3 completes the proof.

In many cases, we can replace inequalities in (5. 5) and (5. 6) by equalities.
We shall give some sufficient conditions. The necessary and sufficient conditions
are treated in §7 in more restricted situations.

THEOREM 5. 3. Suppose that at least one of the following conditions is satisfied:

( i ) m is a finite measure]

(ii) n is a finite measure and it holds that for any a^F,

(5.11) Pαfo>c-o = oo] = l;

(iii) X is conservative and recurrent and G°a maps B(E) into C(E);

(iv) There is a constant &>0 such that km(A)^n(A) for every Λζ^o;

(v) For some α>0, ίEK°af(a)m(da) is finite for every /€C0
+(£);

(vi) For some α>0, it holds that

(5. 12) lim β{ Kβf(a)m(da)=Q, for fsQ(E\
β|0 JE

Then, for all α>0, we have

(5.13) αf K°J(a)n(da)=( f(ά)n(da\ for /€#„(£),
JF JF

and

(5.14) n is an invariant measure for X,
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Furthermore, if X is conservative and satisfies M8, then

(5.15) the terminal measure of (X, n) is n itself.

Conversely, (5.14) implies (5. 12) for all α>0.

Proof. Keeping in mind the formula (5. 8) and Lemma 3. 2, (5. 12) for some
a, (5. 12) for all a, (5.13) for some α, (5. 13) for all a, and (5. 14) are mutually
equivalent. As to (5. 15) Theorem 3.4 is applied. Since || K°af\\^(l/a) \\f\\, (i) is
sufficient for (v), which obviously implies (vi). Noting that $FK°af(a)n(da)<oo for
f€B£(E) by (5. 5), (iv) is also sufficient for (v). Hence it remains to prove that (ii)
and (iii) are sufficient conditions. Now assume (ii) and let O^/^l. It follows that

ίS\ (l-f(ά))n(da),
JF

which, combined with (5. 5), implies (5. 13), since aK«l(ά)=l on F. In order to
prove the sufficiency of (iii), we need a

LEMMA 5. 2.16) If (iii) is assumed, any continuous additive functional φt, not
identically zero, satisfies

(5. 16) Pα|>oo=oo] = l, for

Proof. Put u(a)=l— Ma[e~φc°]. Then u is a bounded excessive function, for
Ma[u(xt)] = l— Mαfc"^00"*^]. Lower semi-continuity of u follows since G°a maps B(E)
into C(E). Take a and b arbitrarily. Then

u(a)^Ma[u(xau)], for any open U containing b.

Letting U | b, we find

by the recurrence and lower semi-continuity. Thus u is a constant function. Hence

const. =Mα[^-H = Mα[M^[^-H]=Mα[^-c^-?)ί)]-^Pα[^oo<oo] as ί->oo,

so that Pα[y>oo=0 or oo] = l and Pα[^oo=0]= const. On the other hand pa[φ00=Q]=Q
for asF and the proof of the lemma is complete.

Making use of the above lemma, let us finish the proof of Theorem 5. 3. Take
a compact set V so large that

Mα e-aotXv(xt)dφt =1 QaQ(a, b)n(db)

is not identically zero. Put φt=ίo^v(^s)dφs, then the previous lemma implies that
pa[φoΰ=oo] = l. Hence, by the suffciency of (ii), we have

16) This lemma as well as its proof is due to H. Tanaka (private communication).
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(5.17) \imβ{ Klf(ά)m(da)=Q, for feB0(E),
/UO J E

where

For any fsBZ(E), take V containing the support of /. Then,

whence,

limβ( Kίf(ά)m(dά)=$,
/UO J E

which completes the proof.

We cannot prove the analogous sufficient conditions for the validity of

(5.18) a{ Gϊf(ά)n(da)={ f(a)m(dά), for α>0, feB0(E),
JF J E

until some additional assumptions are imposed in the next section. Here we men-
tion only the following

THEOREM 5. 4. Suppose that (iv) holds true or that one of the fallowings is
satisfied:

(vii) Glf(d)m(dd) is finite for every α>0 and /€C0
+(£);

J E

(viii) For every α>0,

(5.19) \imβ\ Ga

βf(a)m(dά)=Q, for /eC0

+(£).
/Uo JE '

Then, (5. 18) holds true and

(5. 20) the Green measure of (X, n) is the measure m.

(viii) is also a necessary condition.

These are proved similarly to the corresponding parts of the proof of Theorem
5. 3 by making use of (5. 10).

§6. The adjoints of X and X.

We shall study the adjoint processes of X and X with respect to appropriate
measures. For the purpose we need to assume the existence of the adjoint process
X of X and continuous additive functional φt of Z.17) To be precise, let X and φt

17) We denote the quantities of %. by putting Λ on.
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be originally given, we assume the existence of j£, φt, ga(a, b\ m, and n with the
following properties: 1) X is a Markov process with state space (E, 56) satisfying
Λfι~M7. 2) φt is a continuous non-negative additive functional of X. 3) m and n
are ^-finite measures on E. 4) {g«($, 6): α>0} is a family of non-negative (possibly
infinite) 5B X SB-measurable functions such that, as a function of a, ga(a, b) is α-
harmonic in E\b and α-excessive relative to X, while, as a function of b, α-harmonic
in E\a and α-excessive relative to X. 5) Gl and GJ is expressed as

(6.1) G'/(α)=f ga(a,b)f(b)m(db),
JE

(6. 2) Gϊ/(*)= f f(a)m(dd)gΛ(a, £).18)

Jtf

6) For some α0>0

(6. 3) ϋΓj l(β)=MαΓ Γ e-'t dφλ = ( qa,(a, b)n(db)

holds and is bounded in a, and similarly, for some α0>0,

(6. 4) £f l(ft) = ή6Q* <r* ' <Φ« ]= j^ n(da)g^(a, b)

holds and is bounded in &. We assume that (6. 3) and (6. 4) are not identically
zero.

(6. 1) and (6. 2) imply that X and X are mutually adjoint with respect to m.
We shall prove that X and ,̂ which is obtained from % through time change by

φt, are mutually adjoint with respect to n, and that % and X, killed process of A*
by φt, are mutually adjoint with respect to m. These results have intimate con-
nections with a part of Hunt (§17, §18 in [4]) and Meyer [8].

By Theorem 2. 2, it follows from the assumption above that Ka

0f and Ka

0f are
bounded for any α>0 and fsB(E).

LEMMA 6. 1. If U is open in the intrinsic topology1^ induced by X or X, then
m(U)>Q.

Proof is immediate, because G^(tf)>0 or G^(«)>0 if asU.

Let us denote FQ=FΓ\P where P={a: Pα[£0>0]=0}. Then,

LEMMA 6. 2. n is concentrated on F0, i.e., n(E\Fo)=Q.

Proof. To prove n(E\F)=0 under the present assumption, we may carry over
the proof of Lemma 5. 1, replacing the use of (5. 1) by

18) As to the sufficient conditions for this, see Hunt [4] and Meyer [8].
19) Defined in Dynkin [3].



TIME CHANGE AND KILLING OF MARKOV PROCESSES 213

Similarly, we have n(E\P)=Q.

LEMMA 6. 3. For any α>0 and fεB(E),

(6.5) Klf(ά)={ g.(a, V)f(b)n(db),
JFo

(6. 6) K«Qf(b)= f f(a)n(dά)ga(a, b).
JFo

Proof. Note that

Qβ(a, b) = ga(a, b)+(a—β) g«(a, c)m(dc)gβ(c, b)
JE

(6.7)

= ga(a, V)+(a-β){ gβ(a, c)m(dc)ga(c, b)

holds for all a and b if α>/3. For, (6. 7) is evident from the resolvent equation
for any a and m-almost every b but, by excessivity, the both sides of (6. 7) are
continuous in b in the intrinsic topology induced by X. Hence, by Lemma 6. 1,
(6. 7) is valid for all a and b.

Let us prove (6. 5), while (6. 6) is proved in the same way. If α=α0, (6. 5) is
found in Theorem 4. 1. If α<α0, then, using (6, 7),

fo
ga(a,b)f(b)n(db)

= flf.,(β, b)f(b)n(db)+(a,-a)ga(a, c)m(dc)ga<)(c, b)f(b)n(db)

=K?β.a)+(at-ά)GtKί f(ά)=K',J(a).

If α>α0, then

(a, b)f(b)n(db)

U(β, c)m(dc)ga<>(c, b)f(b)n(db)

= {ga(a,b)f(b)n(db)+(a-aί>)G'>aKί'f(a),

which completes the proof.

Define g*(a, b) as in § 4 and gl(a, b) similarly, i.e.,

(6. 8) gl(a, b) = ga(a, b) -λM.1 ( * er«> -*n ga(Xt, b)dφtl,

(6. 9) gXa, b) = g.(a, b) - Λft»Γ «-««-* ga(a, xt)d
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Then, as shown in Theorem 4. 2,

(6. 10) Klf(a)= f flί(fl, b)f(b)n(db\
J FQ

(6.11) &/(&)=[ AaWdaWίa, b\
JίΌ

(6.12) Gi/(fl)=f ffi(β, b)f(V)m(db\
JE

(6. 13) Gi/(*)= f(ά)m(da)Ά(<*, b),

for all α>0, Λ^O and feB(E).

= f
JE

THEOREM 6. 1. For any α^O *md Λ^O swc/z ί̂ «ί α+>ί>0 α^J for any /,
eBQ(E), we have

(6.15) f #?
JFo J Fo

For any α>0 and >ί^0,

(6.16) ί Gif(ά)g(a)m(da)={ f(b)Gig(b)m(db)
J E JE

holds. In other words, the processes with {Ka

λ: >ί>0} and {Ka

λ: Λ>0} as their
resolvents are mutually adjoint with respect to n, and the processes with resolvents
{Gλ

a: tf>0} and {G«: α>0} are mutually adjoint with respect to m.

Proof. Fix α>0. In order to obtain (6. 15), it is sufficient to verify that

(6. 17) ί (g(a)n(dά)gi(a, b)f(b)n(db)=((g(a)n(da)fc(<*, b)f(b)n(db).

First we note that ga(a, b)^gi(a, b)^Q and g«(a, b)^qλ

a(a, b)^Q for nx ^-almost every
(β, b). Rewriting Ka

λf=Ka

0f—/ίKa

0K
a

λf, we have

a(a, c)n(dc)gi(c, b)ffln(db).

On the other hand, integrating K"g=Klg—λKa

λKig with fn, we have, since g is
arbitrary,

fc(c, b)f(b)n(db)

for n-almost every a. Put

u(a)=fa(a, δ)-0ί(«, b))f(b)n(db).

Then uςLoJίdri) and we have, for n-almost every a,
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a(a, c)n(dc)(gλ

a(c, b)-gλ

a(c, b)}f(b)n(db)

215

Hence, || u |U^|| K*0 \

a(a, c)u(c)n(dc)=—ΛKa

0u(ά).

||co.20) Therefore, for λ<l/\\Kϊ MU=0, i.e., w=0
almost everywhere. Thus (6. 17) is verified for 2 < l / \ \ K a

Q \ \ .
Suppose that (6. 17) is valid for λ=λ0>0. Rewriting Ka

λf=Ka

λJ^Γ(λ,-λ)Ka

λΛK
a

if
we have on the one hand

fi(β, b)f(b)n(db}

and, on the other, integrating
since g is arbitrary,

(«, b)f(b)n(db)

fί(c, b)f(b)n(db\

λ)&a

λR*λtg with /w, it follows that,

= QΪ(<*, b)f(b)n(db)+(λ0-Z)

for n-almost every α. Put

-Λ(fl, b))f(b)n(db).

(c, b)f(b)n(db)

(c, b)f(b)n(db)

Then z ^^o-^)^^, implying || v |U^(| Λ-^ I/Λ) I I 0 l U Hence, for ^<2Λ, 0=0 «
almost everywhere. Accordingly, (6. 17) is true for all Λ^O and α>0. If α=0 and
Λ>0, (6. 15) is verified through approximation of a from above.

Making use of Gif=Gίf-λKϊGif and G?

ag=G°ag-λKa

λG°ag, the proof of (6. 16) is
carried as above except obvious changes. Hence Theroem 6. 1 is proved.

Quite similarly we are able to prove the following formulae.

THEOREM 6. 2. For any α^O and Λ^O such as α-H>0, and for f, g£B0(E),

we have

(6.18)

and

(6.19)

Glf(a)g(a)n(da)=( f(b)Kϊg(b)m(db)
Q JE

K"λf(a)g(a)m(da)=( f(b)Gλ

ag(b)n(db).
jFo

20) The norm in LJ^dn) is denoted by
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§7. The properties of measure n - necessary and sufficient conditions.

Under the assumptions stated in the first paragraph of § 6, we study once more
the properties of n treated in §5. Although the assumptions are stronger than
those in § 5 in several respects, they are weaker in that the invariance of the measure
m for X is not assumed.

Concerning the validity of (5. 13) we have

THEOREM 7. 1. The following statements are equivalent:

(7. 1) n is an invariant measure for X\

(7. 2) % is conservative]

(7. 3) Pα[ζ = oo, 000=00]=!, for every β€F;

(7.4) Pα[$ζ_0=oo] = l, for n-almost every a€F0.

First, we prepare

LEMMA 7. 1. If #eF, then n(U)>0 for any U containing a and being open in
the intrinsic topology induced by X.

Proof. Suppose n(U)=Q. Then, we can prove pa[φt=Q for t<σE\π] = l in the
same way as in the proof of Theorem 4. 1. This contradicts to <2eF, since Pa[σE\u

Proof of Theorem 7. 1. Pa[φi-Q=^>] = l is equivalent to aK°al(a) = l. Because

(7.5) ( Klf(a)n(dά)=\ f(a)&H(ά)n(da) for
JFo JFo

(7. 1) and (7. 4) are equivalent. Obviously (7. 3) implies (7. 2), and (7. 2) implies (7. 4),
so that it remains to prove that (7. 3) follows from (7. 4). Suppose that (7. 4) holds.
Then, by Lemma 7. 1, the point a at which afc°al(a) = l are dense on F in the in-
trinsic topology induced by X. On the other hand aK°al(ά) is continuous in the
topology, since it is α-excessive relative to X. Hence aK°al(a) = l for all a$P. Next,
let us prove Pα[ζ = oo] = l on P. If it be not true, then Pα[#'ί-o=c)0]>021) for some
t, which is absurd, since ^La[φt]^eatMa[ί!e-aSdφs]^eatKa

Ql(a)<oo. Thus (7. 3) holds,
completing the proof.

Next we give a theorem concerning (5. 18).

THEOREM 7. 2. Each of the following conditions is equivalent to (5. 18):

(7. 6) Pα[ζ = oo, 000=00] = ! for every asE]

(7. 7) Pα[$£_0 = oo] = l for m-almost every asE.

Proof is omitted, because it is similar to that of Theorem 7. 1 using Lemma

21). ί=
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6. 1 and Theorem 6. 2 instead of Lemma 7. 1 and Theorem 6. 1.

COROLLARY. (5. 18) implies (5. 13).

The conditions in the above theorems can be stated in terms of G«. Namely,
if J[ is conservative, Pα[0ί_0=oo]=l if and only if \imaloaGλ

al(ά)=Q. For, we have

(7. 8)

which follows from Gλ

al-G0

μl+(a-μ)Gλ

aGll+λ&ΐGll=Q and G°l=l/μ.
We give some sufficient conditions for (5. 18), but (ii), (iii) and (iv) are unsatis-

factory, since they explicitely include conditions on X.

THEOREM 7. 3. Suppose that (5. 1) holds. Then, each of the followings is
sufficient for (5. 18):

(i) m is finite and Pαt^ζ-o^oo]^! for any

(ii) m is finite and Pα[9ζ_0>0] = l for any

(iii) n is finite, Pa[<pc~o=°°] — 1 for any a$F, and Pa[φξ~(ί>0] = l for any a$E\

(iv) j£ is conservative and recurrent, and Gl maps B(E) into C(E).

Proof. Let (i) be met. Then, by Theorem 5. 4, Theorem 7. 2 and the sym-
metricity of X and X,

limβ( Ga

βf(ά)m(da)=Q, for feB}(E).
β i o JE

Let a compact set V be sufficiently large, then make β J 0 in

β( Ga

βl(a)m(da)^β( Ga

βl(a)m(dά)+m(E\V)=β( Ga

β^v(ά)m(dά)+m(E\V).
J E J v JE

Thus we have (5. 19), hence (5. 18) is valid. The sufficiency of (ii) or (iii) is proved,
combining Theorems 5. 3, 7. 1 and 7. 2 by the lemma below. Lemma 5. 2 and
Theorem 7. 2 imply the sufficiency of (iv).

LEMMA 7. 2. Suppose f>α[&-0=°o] = l for asF. Then Pb[φp.ΰ=oo] = l for all
at which Pδ[0;

Proof. We need only note

^In self -adjoint case (i.e. X=X], the above theorems are reduced to much sim-
pler form. In the case of the Brownian motion, McKean-Tanaka [7] has treated
the condition for Pα[^«,=oo]=l.

It may be of use to give a remark that Pα[>ζ-o=oo] = l does not necessarily
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imply Pα[^-o=°°] = l» as an example shows. Let X and X be the deterministic
motions on the real line with velocity one to the right and to the left, respectively.
Let m be the Lebesgue measure and n be its restriction to [0, oo). Then they
satisfy all the assumptions in the beginning of §6. The additive functional of X
and X corresponding to n are

φt and - —Γφt ^ co,oo)

It is easy to see that Pα[^oo—oo] = l for all a, while Pα[^00<oo] = l for all a, and

g«(tf, b)=gλ

a(a, b)

0, for b>a,

^-α(δ-α)-^Cδ-α) for

g-αCδ-α)-^ for

^_α(&_α) .£or

b>a,

Therefore,

Klf(a)=e*a(~
Jα

er**f(b)db for β^

for <2^0,

thus,

(= (l-e-λa)f(ά)n(dά),

λ(ft°λf(ά)n(da) = \f(ά)n(dά).
J J

That is, X is conservative and n is not invariant measure for X, though subin-
variant. % is not conservative but has an invariant measure n. In this example,
the state spaces F (of X) and P (of J?) are not identical, since 0 belongs to F but
not to P.
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