SOME THEOREMS ON TIME CHANGE AND KILLING
OF MARKOV PROCESSES

By Masao Nacasawa AND KeNITI SATO

§1. Introduction and definitions.

It is known that a Markov process is transformed to another Markov process
by its continuous non-negative additive functional ¢, through time change or killing.®
On the other hand, ¢, is determined by an excessive function u(a)=M.[pc-,].
Moreover, if the Green measure of the process is expressed by g(a, b)m(db) and if
the process satisfies some additional conditions, then # has the Riesz representation:
u(a)=[g(a, b)n(db) with some measure n#. These results are found in the works of
Hunt [4], Volkonskii [13] and Meyer [9] under a general setup and in McKean-
Tanaka [7] in a concrete case. We want to study what meaning the measure »
or m has for the process obtained through time change or killing. In the course
of the study we need various generalizations of the resolvent equation and we are
compelled to give a unified form in their treatments which is given in §2. In §3
we state construction theorems of processes by time change and Kkilling and give
some lemmas concerning (sub)invariant measures. Further, it is proved that the
terminal measure® of the killed process is represented by K} (defined in §2) and
that a measure » is the terminal measure of the killed process with initial measure
n if and only if » is an invariant measure of the process obtained through time
change. In §4, G and K?, defined in §2, are represented using a kernel function
g%(a, b) under some regularity conditions for the Green kernel g.(a, b). In §5 we prove
that the Riesz measure 7 is a subinvariant measure of the process obtained through
time change by the corresponding additive functional and give some sufficient con-
ditions for the measure to be invariant. And also the meanings of » for Kkilled
process are discussed. In order to obtain a necessary and sufficient condition for the
measure # to be invariant, we need some considerations on the adjoint process of the
process obtained through time change or killing, which is given in §6. The neces-
sary and sufficient condition is stated in §7. The adjoints of the processes are
also treated in [4], [8], [11] and [13].

We use the notations and terminologies of Dynkin’s book [2] unless specifically
mentioned. Concerning a (temporally homogeneous) Markov process X=(x:, {, M., Pa, 0;)
with state space (E, 33), we denominate, for brevity, the following conditions:

M,. E is a locally compact Hausdorff space with a countable base and B is
the smallest ¢-algebra containing all the open subsets of E.

Received May 6, 1963.
1) Terminologies and notations are found in the latter half of this section.
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M. P.[>0]=1, for ack.

M. For all o, x/(w) is right-continuous in #¢€[0, &).

M, X has the strict Markov property.

M. If ty(w) ] t(0)<&(w) for all weB, where t, are random variables inde-
pendent of the future (Markov times), then P.[x.,—:|B]=1% for all acE.

M. Fero=M..

Mv. fm,z:f]\,/ﬁt.s)

Ms. For all o, 2:(w) has limit from the left in £€(0, {).

Define the first hitting time to a set A, as

inf{f: 0=¢<{(w) and x(w)eA} if such ¢ exists,
ga(w)=
: {(w) if such t does not exist.

We call X to be conservative if P,[=c0]=1 for all aeFE, and to be recurrent if
P.lo4<{]=1 for all aeE and all non-empty open sets A.

We introduce definitions on some special measures. Let m and » be o-finite
measures on E. We say that m is an invariant measure for X, if and only if

1. 1) Pn[r.c Al=m(A)®

holds for all AeB and ¢>0. If the left-hand side in (1. 1) is not greater than the
right, m is called to be a subinvariant measure for X. We call n the Green measure
(of order zero) of (X, m) if and only if

1.2 Mm[gj xA(xc)dt]z (AP

holds for all AeB, and the terminal measure of (X, m) if and only if P,[{<co and
Z:—o does not exist]=0 and

(1. 3) Prl{<oco and o Al=n(A)

holds for all Ae%.
We call ¢(w) (wef;) continuous non-negative additive functional of X of order
a if and only if the followings are satisfied:

A (@) e 050 (w)=ps.(w), Tor wesy;
A:. ¢, is Ri;-measurable;®

As 0=pw)<oco, for wefy;

As Polpo=0]=1, for ackE;

As. o) is continuous in £

2) We write Po[4|B]=1 if and only if P4[B\A]=0.

3) ¢ is the family of B such that, for every finite measure m, there exist B; and
ByeM: satisfying B, S BS B, and Py[B,\B,]=0.

4) Pup[Bl=[zPo[Blm(da) and My]f]=[zMd[f]m(da).

5) a4 is the indicator function of set A.

6) We put Re=3 e+ J*
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If a=0, we omit the word “of order 07”.
Further we introduce some notations:

B(E)=the set of bounded 93-measurable functions;
C(E)=the set of bounded continuous functions;
By(E)=the set of fe B(E) with compact supports;
Co(E)=C(E)N By(E);

Bt(E)=the set of non-negative feB(E);

CH(E), Bf(E) and C/(E) are the meets with B*(E) of C(E), B,(E) and C,(E), res-
pectively. || f|| means supeez|f(a)|.

Let E and E be subsets of a larger space and let X and X be two Markov
processes with state spaces E and E, respectively. Then, we say that X and X are
mutually adjoint with respect to a o-finite measure m, if and only if

1. 4) m(E\E)=m(E\E)=0,
and
1.5) Sm Ma[f<x»>]g(a)m(da)=anf(ama[g(a‘m)lwda)”

for all feB,(E), geB,(E) and ¢>0.
Obviously, (1. 5) is equivalent to

(1. 6) j” sz(a>g<a>m<da)=Lngﬂa)c‘zg(a)m(da)
for all fe By(E), geBy(E) and a>0 (cf. [11]), where
(4
€7 G f(a)=MaU0 oot f(xt)dt],
~ 4
(1. 8) Ggg(a)=MaHO e-atg(am)dt].

Now we fix a Markov process X=(x:, {, M, Pq, 6;) with state space (E, B)
having the properties M;~M-, and go on throughout this paper.

§2. A generalization of the resolvent equation.

Let ¢i(w) and ¢ (w) be continuous non-negative additive functionals of X, and
put, for measurable f,

2. 1) U if(a)=MaUZ et f(x»)dso»]

and

" 7) Convention: Ma[f(z)]=Md[f(z,): 0<(], where Mo[F(): A] = [,F(0)Pafdw]. The
semi-group of the process X is defined by T f(@)=Ma[fxs)].



198 MASAO NAGASAWA AND KENITI SATO

¢
@.2) vifa=M| | e-snom fondp |
0 .
when the right-hand sides are defined. Clearly, U f and V?f are finite and bounded
if >0, 2=0 and feB(E). They satisfy the equation (2. 3) below, which is a gene-
ralization of the so-called resolvent equation.
THEOREM 2. 1. For any «, >0, 2, =0 and fe B(E), it holds that
2.3) Uef— Ui f4+-(a—=RULU; f+(A—w) ViUs f=0.
Before the proof, we prepare
LEMMmA 2.1 Let p(t) be a continuous non-decveasing mapping of [0, t,]

onto [0, po] (t, and p, may possibly be o). Put c(f)=sup{s: s<t, and p(s)=t} and c,
=sup{s: s<t, and p(s)<oo}. Then,

@. 9 j 1, P(t))dp(l‘)=g Se(®), Hat
[0,¢0) [0,p0)
holds for each non-negative measurable function f(t, s).

Proof. 1t is sufficient to prove (2. 4) for the function of the form f(¢ s)
=r0» &x{®)xro» 03(S) Where 0<a<c, and 0<b<p,. We have, obviously,

| o ot 0N O=(8)
where ti=aAsup{t: p)=b}=aANc(b),” and

| oo )=t

[0,20)
where f,=bAsup{t: c(¥)<a}. Provided that 0=¢<#, p(H)<s if and only if £=c(s).
Hence t,= b Asup{t: t<pa)} =b A pla). If c(b)<a, then we have b<p(a) and
pt)=p(cd)=b=t,. On the other hand, in case c(b)=a, we have b=p(a) and
p(t)=p(a)=t,. In both cases (2. 4) is verified.

REMARK. If 0=<#<p,, then plc(t))=¢ and c(#) is right-continuous and strictly
increasing. These are already used in the above proof.

Proof of Theorem 2.1. Put

(2.5) 7(w)= sup{s: s<{(w) and ¢s(w)=t}
and
2. 6) ai(w)= sup{s: s<(w) and ¢s(w)=t}.

8) This is an extension of Lemma 7.1 of Meyer [9].
9) tAs= min {¢, s}.
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Since {r,<s+e<{}={t<@ss:, S+e<L}€Rss, we have {r:=5<L}e€Rs:0EMs+o
=%Ms and z, is a random variable independent of the future. And so is ¢, By
virtue of Lemma 2. 1, the strict Markov property and Fubini’s theorem, we have

4

UiULf (@)= Ma e Uy f(x;)dgo,]

=Ma "gmat=tes [ f(x,t)dt]

[~ (*co §—r

=Ma

(oo c
=M. S gt SAt<or—o} dtM, [S e—‘ws_wsf(xs)d%]:l
0

t
ety dtS e—.so,tsos—mMsf(x,tﬂ)dsﬂ,t(ps]

0

4 4
=Ma —a’P(,-N’,: dSOtS e—ﬁﬁtvs-ﬂit'/’sf(xt_(_s)dsﬂasos:l

0

:Ma

[ (¢

=Ma

r g™« Po=0=mt fo, Sc o bes™Hs f(xs)dgos:l

e~Pes—Hds f(xs)d@sg g~ @Ry =Q-mgy dgm]‘

If >0, similar argument ylelds

sf@=M| | e U oy |

=Ma[Sc e—ﬂtﬂs'i‘f’sf(xs)dgosgs e~ @=Bet=(=mdt d¢£]
0 0
Accordingly,

(a—=PpUU @+Q@—pViU; f(a)

M (| et i emempri-ioone (@ p)dgrtG—pi) |

= MaUc e 8es=19s F(25)dps (1—g-(ﬂ—ﬂ>¢s—(1—ﬂ)¢’s)]
0

=U; fla)— Ui f(a),
thus (2. 3) holds for 4>0. Without loss of generalities, we may suppose f=0.
Then, VeU4f1 ViUt f and Ui f— U f+(a— B UUS f—Usf—Us f+(a—BUUS f, as 4| 0.
Hence, (2. 3) holds for =0, too, and the proof is complete.
COROLLARY. The following commutativity holds:
2.7 UiU; = UUL,
2.8 VeUs = VUL
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A slight extension of Theorem 2.1 is

THEOREM 2. 2. If Url(a) is bounded for some ay=0, then Uif 1s finite and
bounded for arbitrary a>0 and feB(E) and, furthermove, (2.3) remains true for
all feB(E) and all a, B, 4, p=0 such that a+i>0 and p+p>0.

Proof. By Theorem 2.1, we have
2.9 Usl=Usl—(a—ay)VEUs1
for «=0 and >0. Make § tend to zero, then (2. 9) turns out to
Uil=Upl—(a—a))ViUsl

because Ul is bounded. Hence the right-hand side of the above is bounded if
a>0, proving the first half of the theorem. In case a=0 or =0, (2. 3) is obtained
as the limit from the same formula with positive a and B, making use of the
dominated convergence theorem. Thus the proof is complete.

It must be noted that the above two theorems are valid for processes satisfying
My, My, and T oS M.

For later use, we introduce two operators K? and G?, which are special cases
of U} and V}

(2. 10) Kéf(a)=Man e~ f(x,) d‘Pt]

and

(2.11) Gif(a):MaUS grat=ise f(xt)dt].

Then, as corollaries of Theorem 2.1, we have two formulae:
2. 12) K.~ K+ (a—PKiKs+(A—mGiK5=0,
(2.13) Gi—Gi+(a—p)GiGi+(A— K G =0,

which are reduced to the resolvent equations of K? and G? when i=p. The pro-
cesses having K2 (or G?) as their resolvent operators are described in the next
section.

§3. Time change and killing.

As is well known, a continuous non-negative additive functional serves as
time change function to construct a new Markov process. In fact, put £=¢.,,
Ty(w)=x.,(0) 0=t<€(w)), and F={a: Py[r,>0]=0}, where <, is defined by (2. 5).

LemmMma 3.1. F 1s nearly Bovel measurable (in the sense of [4]) and P.[% €F
for 0=t<Z|C>01=1 holds for any acE.

Proof. Put wux(a)=Ma[e=], then u<(a)=1 for acF and u*(a)<l for acE\F.
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Since u*(a) is a-excessive,'” u=(x,) is right-continuous with P,-measure 1 by Hunt
[4] and Doob [1], and we have

P.[us(x.,) is right-continuous in #<€|>0]=1.
On the other hand,
P.[u*(2.,)=1 for all rational r€[0, £) |{>0]=1.

Hence, Po[u*(x.)=1 for all ¢¢[0,{)|{>0]=1. Nearly Borel measurability of u*(a)
follows from excessivity by [4], and so is F.

Put @={w: &(w)eF for all te[0, &)}, then the restriction X°=(z, % 8, PY, 62)
of X to £ is again a Markov process satisfying Mi~Ma. Let He, Po(aeF) andd,
be #2, P%, and 69, respectively, and let 93 be the intersection of %(m) ranging

over all finite measures m, where %(m) is the completion of &3 with respect to .
Then we have

;I‘HEOREM 3. 1. X:(ﬁz, g, Heu Po, d) is a Markov process witNh state space
(F, BLFY) satisfying Mz, Ms, My, and Ms. The resolvent operator of X is K.

The proof is achieved by applying the same method as in [13] more carefully.

Another transformation by ¢, is killing or the formation of subprocess. The
next theorem is a special case of a theorem valid under weaker conditions on ¢;
(cf. [2], [9] and [12)]). '

THEOREM 3.2. There is a subprocess X =(&,, &, M., Pa, 6.) of X corresponding
to the multiplicative functional e=*t and satisfying My~M.. The resolvent operator
of X is G.

More generally, as indicated in [12], {U% a>0} is the system of the resolvent
operators for the process obtained through time change by ¢, and killing by 4¢;.

The rest of the section is devoted to some general properties of invariant,
subinvariant and terminal measures.

If m is an invariant measure for X, then

3.1) aS @ f(a)m(da)sz Aaym(da),  for feBi(E), a>0.
Conversely, we have

LEMMA 3. 2. If, for some ay>0,
3.2 aoSE G flaym(da) = S Ef (@)ym(da),  feB;(E),

then m is an invariant measure for X.

10) A non-negative function # is said to be a-excessive (relative to X), if Mq[eatz(z:)]
<u(a) holds aud the left member increases to the right as ¢} 0.
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Proof. (3.1) for all a=a, follows from the resolvent equation:
3.3 G f—Gof+(a—a)GLGof=0.
Noting that

S e f(a)m(da)=r et dtj T, f(@ym(da) and ig f(a)m(da)zr e dtS Raym(da),
E 0 E a JE 0 E

we have, by the one-to-one property of the Laplace transform,

3.4 SE T, f1 (a)m(da):SE Haym(da)

for any #¢S, where S is a set of Lebesgue measure zero. Using the second coun-

tability, S can be chosen to be common for all feB,(E). Let ¢{eS, we can find %,
outside S such that #+¢ is also not in S. Then

j T flaym(da) =j T:, Ty f(a)m(da):g Tigst f(a)m(da)——-g flaym(da),
E E E E
and (3. 4) holds for all £. Hence the proof is complete.

LemMA 3.3. A o-finite measure m is subinvariant for X, if and only if
3.5) of ciraman=| ama
E E

holds for all «>0 and feC(E).

Proof is essentially found in Hunt [4]. “Only if ” part is obvious, so we give
the proof of “if ” part. First, let us prove

3. 6) ae‘ﬂ‘S ) T,Gz+ﬁf<a)m(da)§aL Grosfl@ym(da),
for any «a, 3>0 and feCf(E). Define (non-negative) measure m, by
jE h(a)mo(da)zjb' (h(a)—aG2; h(a)m(da).
Then, since
| cuigamaa=| cu@maa
for any geB*(E), we have

ae‘ﬂ‘j TG, flaym(da) =ae“f“S s Te fl@ym(da)

= ae"r‘”jG,% T, fla)ym(da) gag G} flaymq(da) :ag G Aaym(da),

namely (3.6). Make a—co in (3.6). The left side estimates as
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lim inf ae‘ﬁ‘j TG, fl@ym(da) = im inf ae=s'Mu[G2,, f(@)] = e s Mul f(21)],
E @00

a—o0

using Fatou theorem, and the right side is

lim inf “L Go.a flaym(da) éSEf(a)m(da)

a— o0

by (3.5). Hence we have

|, TA@mda =| fama),  for all 0.

The terminal measure of the killed process X corresponding to e-¢: is repres-
sented by K¢, that is,

THEOREM 3. 3. Suppose that X is conservative and satisfies My, then
3.7 Ma[ f(d;-0): £<o0]=K2 fla)
holds for all aeE and fe B(E).

Proof. Without loss of generalites, f is assumed to be in C(E). Then we have

&2f@=M | wd—e [-m] | Rood—e |,
0 0
since the discontinuity points of x:(w) are at most countable. Hence,

Kt fl@)=Ma{lim 5 f@wa)(e~rin—e-rsm)]

—lim ¥, Ma[A&w): ih<t=(i+1)A]

hl0 =0
=Mal f(d;-0): 0<E<ool=Ma[f(d;-o): £<ool,
so that (3.7) is proved.

Theorem 3. 3 implies that thei terminal measure of X is identical with the
Green measure (of order one) of X. This is the basis for the next

THEOREM 3. 4. Suppose that X is conservative and satisfies My, and let n be a
o-finite measure on E. Then the following two statements arve mutually equivalent,

(1) n is itself the terminal measure of (X, n);

(ii) = is concentrated on F and an invariant measure for X.

Proof. Assume that # satisfies (i). Then we have, by Theorem 3. 3,
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3.8 jE K ﬂa)n(da)sz Aa)n(da)
for all feBy(E). Since P.[x.,e F]=1, we have n(E\F)=0. For,

| romaa=\ K r@mad -] [ e paode|
=MnUf e (rf )(x,,)dt] =Man et f(xq)dt]

=LK;’f(a)n(da)=Lf(a)n(da).
Herice (3. 8) is now read as
SF K‘If(a)n(da)=Lf(a)n(da),

implying # is an invariant measure for X by Lemma 3. 2.

§4. Representation of G? and K:.

In this section we make two assumptions. The first one is the existence of a
o-finite measure m and a non-negative (possibly infinite) 53X Ys-measurable function
gx(a, b) such that, for any feBy(E),

@1 Gof@)= | a.ia, D) MOMaD).

Here «a, is a fixed non-negative number and the both sides of (4. 1) are supposed to
be finite. The function g.,(a, b) is assumed to be, as a function of a, ay-excessive
and a,-harmonic in E\b.*¥-!®» Given a continuous non-negative additive functional
oi(w), our second assumption'® is the existence of a o-finite measure # satisfying

4. 2) MaUz et dga;] = S . Jay(@, D)n(db) < oo, ack.

We assume that (4. 2) does not identically reduce to zero.
We shall prove that the measures m and # together with appropriate modifica-
tions of g.,(a, b) permit us to represent the operators Gi, and K.

TueoreM 4. 1. For all feB(E), K¢ f is finite and represented as

“.3) Ka‘°f(a)=SE 02, b) OB, acE.

11) A function # is said to be a-harmonic (relative to X) in E\b, if Ma[e-u(z,)]
=u(a), o=ov, holds for every open set U containing b.

12) Sufficient conditions for this assumption are treated in Kunita-Watanabe [6].

13) For a sufficient condition, see Meyer [9].
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A similar theorem is found in Meyer [9], and a close problem is also treated
by Motoo [10]. In the Brownian case, it is also proved in McKean-Tanaka [7]. Our
proof is based on the next fundamental lemma which, as well as its proof, is due
to Tanaka (cf. [5]).

LemMAa 4. 1. If n has no mass outside of an open set U, then

4. 4) P.lo:=0, for all tel0, ov)]=1, ackE.
Proof. Put
4. 5) p(a)=Ma[Sc et dgm:l.
0

By the strict Markov property and (4. 2) we have

o [4 [4
Ma[g i d,pt]: M“U gt d%]_ Ma[g gt d%]
0 0 474

=p(a)—Male 7 p(x,,,)]
=L (Ge(@) B~ M0 g, (0, BY)(dD).

The integration in the last member can be restricted to U and vanishes since
0ey(@, b) is ap-harmonic in E\b. Thus (4. 4) is proved.

According to the work of Meyer [9], a non-negative and finitely valued func-
tion u(a) has the representation u(a)=M.[¢)] by a continuous non-negative additive
functional ¢¢ of order «,, if and only if it has the following properties: (i) # is -
excessive; (i) If {e,} is a non-decreasing sequence of random variables independent
of the future,

M.l mu(x,,)] | Ma[e™"u(x,)], n1co

where o= lim g,. Moreover, ¢ is determined by # uniquely up to P,-measure zero
for all acE. These remarkable results imply

LemMA 4. 2. For any fe B(E), there exists a continuous non-negative additive
Sunctional ¢i(w) such that

(4
“.6) M [ eeast || gua @
0 E
holds. Such ¢f is unique up to Pa.-measure zero for all ackE.

Proof of Theorem 4.1. Let V be a closed set and ¢} denote ¢/ when f=y.

Put U,={a: p(a, V)<1/n} where p is a metric compatible with the topology of E.
Then we have Pulov, 1 ov]=1, on acount of M; and closedness of V. Therefore we
have, by Lemma 4. 1,

) P.[¢V=0, for all t€[0, oy)]=1, {for ack.
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We shall prove that

13
4. 8 Pa[goi’=j Zy(xs)de¥, for all te[0, C):Izl, for acE.
0

Put U={a: p(a, V)>¢} where ¢ is a positive constant. Define a sequence of random

variables independent of the future;

T1=0vy,
{ Ton—1+0cy,_10v if 72,0<¢
Ton=
if TZn—l%C)
72n+072n0‘l] if T <§
Tzn+1:[
if TznZC’
for n=1,2, ---. By virtue of M;, we have lim,_., t.={, Po-almost certainly.

MU‘ Xv(ws)dsoi’]=Ma[§ S xu<ws>d<pz]

=0 E

=3 Malg¥ o ¢Fiit T <C= 5 MalMac,, 6%, J1=0

by (4. 7). Letting ¢ tend to zero, we have
MU: Lov(@)dg? | =0,
so that
“.9) Ma[soz-a]=MaU: Xv(xs)d¢§’].14’
The both sides in (4. 9) are finite since they do not exceed
e"“‘MaUu e s dgoz’]ée““ S ) Gao(@, D)n(db)< co.

0

From this we can easily see (4. 8).
Next we shall prove

4. 10 Ma[gz et Xv(xt)d%]:gv Jao(a, D)n(db),

Hence

from which we can derive (4. 3) with the standard use of Dynkin’s lemma ([2]

Lemma 1.2). Let V; be a closed set outside V. Using

&

124 t’
5 e‘“““dﬂ:S s Xy ()d zgj o0 Ly (23)dis
0 0

0

14) Notation: #'=¢tA{(w)-
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and the same relation replacing V by Vi, we have

¢ 4
OéMaU e XV(xs)dSDs—s e* dgo?]
0 0
(4 4 z
e R e e
0 0 0

=SEgao(a,'bxl—zv(b)—xv1<b>>n<db>.

Make V; swell to E\V, then the last member above tends to zero and we get
(4. 10). Thus the proof of Theorm 4.1 is complete.

Put
(4
4.11) 0., ©)=gu (@, D~ [ it 1
0
when the right-hand side is well-defined. Then the following theorem holds.

THEOREM 4. 2. Fix acE and 1=0. Then, for (m-+n)-almost every b, g2(a, b)
is well-defined, finite, non-negative, and not greater than g.(a,b). And we have

4.12) Gznf<a>=ng;q<a, B f Bym(db), feBy(E),
and
4.13) Kz~f<a)=ng;<a, B) FByn(db), feB(E).

Proof. Without loss of generality we suppose feBy(E). Changing the order of
integrations we get

LMaU:e—‘”’"“’& ey b)dgoz] FBym(ab)

4
=MU e““““’tGﬂ.,f(xc)dsoc]=K3"'Gﬂof(d)-
0

On the other hand we have
4. 14) GL =G fAK5G, f=0.

This is a special case of (2.13) if a,>0, and if a,=0, is obtained by approximation
of a, from above. (4.14) implies finiteness of each term, and we can see that
(4.12) holds and that, for m-almost every b, gi(a, b) is well-defined, finite, non-
negative and not greater than g.,(a, ). The rest of the proof is similar if we use
Theorem 4. 1,



208 MASAO NAGASAWA AND KENITI SATO
§5. The properties of measure n——sufficient conditions.

We continue to make the same assumptions as in the preceding section.
Further we assume that «, is positive and that for any beE, m satisfies

5. 1) aoj m(da)gea, b)=1,
E

which implies, by Lemma 3. 2, that m is an invariant measure for X and

5.2) aLGﬁﬂa)m(da):Lf(a)M(da),

for any a>0 and feB(E).

We shall study what properties » has for the processes X and X obtained
through time change and killing by ¢; respectively. First we prepare a lemma
due to M. Motoo.*® OQur proof is different from his.

LemMA 5. 1. n is concentrated on F, i.e., n(E\F)=0.
Proof. By virtue of Theorem 4. 1,
4 {-0
| gute @ =m [ o nt@idp || 7 eritn oiapat |-,
E\F 0 0
.ince P.[z.,€eF]=1. Integrate with s, then use (5. 1), we have #n(E\F)=0 im-

mediately.

TueoreMm 5. 1. For any a>0 and fe By(E), we have
5.3) aL K3 faym(da)= j fayn(da).

Proof. We prove this for fe Bf (E). First note that
6.4 K5 f—Kj f+(a—a))GiK 5 f=0,

which is a special case of (2.12). Integrate the formula with m and let 8 tend to
zero. Then by the monotone convergence theorem, the second term tends to
— [z K& fla)ym(da), which is equal to —(1/ao)[zf(@)n(da) by (5.1), Theorem 4.1 and
Lemma 5.1. Similarly, the third term tends to (1/ay—1/a)fzf(@)n(da), while the
first tends to [ K&f(aym(da). This proves (5. 3).

THEOREM b. 2. For any «, >0 and feB;(E), n and m satisfy

5.5) « j  Keftan(da) éL Aayn(da),

5.6) “L szw)n(da)éjEf(a)m(da),

15) Private communication,
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5.7 ﬁL Gi flaym(da) éLf(cl)M(da)-

(5.5) and (5.7) mean that n and m arve subinvariant measures for X and X, ves-
pectively.

Proof. Integrating the formula K§f—K’f—aK:{K:=0 by the measure fm, and
using the preceding theorem, we obtain

5.9 L fayn(da)— ﬁL K? f(a)m(da)——aL K fla)n(da)=O0.

Letting B decrease to zero, (5. 5) follows. To prove (5. 6), we start from the formula
(5.9) G f—Gs f+(a—PGG; f—aKG; f=0,

a special case of (2.13). Integrating with m, then using the preceding theorem
and (5. 2), we have

5. 10) L f(a)m(da)—/?L G f(a)m(da)—aL G: flayn(da) =0,

from which (5. 6) follows as § tends to zero. (5. 7) is a direct consequence of (5. 10).
Lemma 3. 3 completes the proof.

In many cases, we can replace inequalities in (5.5) and (5. 6) by equalities.
We shall give some sufficient conditions. The necessary and sufficient conditions
are treated in §7 in more restricted situations.

THEOREM 5. 3. Suppose that at least one of the following conditions s satisfied:

(i) m is a finite measuve,

(ii) » is a finite measure and it holds that for any acF,

(5. 11) P.lpco=00]=1;

(i) X s comservative and recurvent and G maps B(E) into C(E);

(iv) There is a constant k>0 such that km(A)<n(A) for every Aess;

(v) For some a>0, [Kf(aym(da) is finite for every feCS(E);

(vi) For some a>0, it holds that

5.12) lim pj K# flaym(da)=0, for feCiE).
Blo E

Then, for all a>0, we have

(5. 13) aL K ?.f(d)%(da)=Lf(a)n(da), Jor feBy(E),

and

(5. 14) n 1S an invariant measure for X.
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Furthermore, if X is conservative and satisfies My, then
(5. 15) the terminal measure of (X, n) is n itself.

Conversely, (5. 14) implies (5. 12) for all «>0.

Proof. Keeping in mind the formula (5. 8) and Lemma 3. 2, (5.12) for some
a, (5.12) for all a, (5. 13) for some «, (5. 13) for all «, and (5.14) are mutually
equivalent. As to (5. 15) Theorem 3. 4 is applied. Since || Kf||=1/2) || f]l, @) is
sufficient for (v), which obviously implies (vi). Noting that [» Kf(e)n(da)< co for

feBi(E) by (5.5), (iv) is also sufficient for (v). Hence it remains to prove that (ii)
and (iii) are sufficient conditions. Now assume (ii) and let 0=f<1. It follows that

“L K —f)(a)n(da)égF (1—f@)n(da),

which, combined with (5. 5), implies (5.13), since aK%1(a)=1 on F. In order to
prove the sufficiency of (iii), we need a

LeMmma 5. 2.9 If (iii) is assumed, any continuous additive functional ¢,, not
identically zero, satisfies
(5. 16) P.p.=c0]=1,  for acE.

Proof. Put u(a)=1—M,[e*~]. Then u is a bounded excessive function, for

Mo[u(x:)]=1—M,[e-“~=¢)]. Lower semi-continuity of # follows since G? maps B(E)
into C(E). Take a and b arbitrarily. Then

w(@)=Ma[u(x.,)], for any open U containing &.
Letting U | b, we find

u(a)= lim inf u(c)=wu(b)
¢c—b
by the recurrence and lower semi-continuity. Thus # is a constant function. Hence
const.=Mu[e #=]=Mo[M.,[e~?=]]=Ma[e~ =92 ] 5Py [0, <c0] as t—oo,

so that Pu[p.=0 or oo]=1 and P.[¢..=0]=const. On the other hand P.[¢..=0]=0
for aeF and the proof of the lemma is complete.

Making use of the above lemma, let us finish the proof of Theorem 5. 3. Take
a compact set V so large that

M[r et xy(xt)dgot]zjv Gu(@, BYn(db)

0

is not identically zero. Put @,=[§Xy(xs)dyps, then the previous lemma implies that
P.[g.=00]=1. Hence, by the suffciency of (ii), we have

16) This lemma as well as its proof is due to H. Tanaka (private communication).
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(5.17) lﬁ}flg ,Bj K flaym(da)=0, for feBy(F),
E
where
I?zﬂa):Ma[r st f(xt)d@].
0
For any feBy(E), take V containing the support of . Then,
Refo=M| |7 et fwodo |2 K2 o),
0
whence,
lim ﬁj K flaym(da) =0,
8lo E
which completes the proof.

We cannot prove the analogous sufficient conditions for the validity of
(5. 18) aj‘ G f(a)n(da)zj flaym(da), for a>0, feBy(E),
F E

until some additional assumptions are imposed in the next section. Here we men-
tion only the following

THEOREM 5. 4. Suppose that (iv) holds true or that one of the followings is
satisfied:

(vii) j G f(a)m(da) is finite for every a>0 and feCi(E);
E
(viii) For every a>0,
(5. 19) lim ,BS Gif@m(da)=0,  for feCHE).
slo E

Then, (5. 18) holds true and
(5. 20 the Green measure of (X, w) is the measure m.

(viii) is also a necessary condition.

These are proved similarly to the corresponding parts of the proof of Theorem
5.3 by making use of (5. 10).

§6. The adjoints of X and X.

We shall study the adjoint processes of X and X with respect to appropriate
measures. For the purpose we need to assume the existence of the adjoint process
X of X and continuous additive functional ¢, of X.'» To be precise, let X and ¢,

17) We denote the quantities of X by putting A on.
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be originally given, we assume the existence of X, ¢:, g.(@, b), m, and n with the
following properties: 1) X is a Markov process with state space (E, $3) satisfying
My~M.. 2) ¢: is a continuous non-negative additive functional of X. 3) m and n
are o-finite measures on E. 4) {g.(a, b): a>0} is a family of non-negative (possibly
infinite) Bx B-measurable functions such that, as a function of q, g.(a, b) is a-
harmonic in E\b and a-excessive relative to X, while, as a function of , a-harmonic
in E\a and a-excessive relative to X. 5) G° and G? is expressed as

6. 1) sz<a>=L g.(a, ) fBym(db),
6.2) @2f(b)=jF Fl@ym(da)gsa, 53
6) For some a,>0
4
6. 3) Kl(a)= Ma[jo et dgat:l = jE gao(a, b)n(db)

holds and is bounded in @, and similarly, for some &,>0,
et
6. 4 Ri1) EM,{ j o dqst]:j n(da)gay(a, B)
0 E

holds and is bounded in 5. We assume that (6. 3) and (6. 4) are not identically
Zero.

(6.1) and (6. 2) imply that X and X are mutually adjoint with respect to .
We shall prove that X and X, which is obtained from X through time change by
¢, are mutually adjoint with respect to #, and that X and X, killed process of X
by ¢ are mutually adjoint with respect to m. These results have intimate con-
nections with a part of Hunt (§17, §18 in [4]) and Meyer [8].

By Theorem 2.2, it follows from the assumption above that K¢f and K¢f are
bounded for any a>0 and fe B(E).

LEMMA 6. 1. If U is open in the intrinsic topology'® induced by X or X, then
m(U)>0.

Proof is immediate, because Gy (@)>0 or Gy(a)>0 if acU.
Let us denote Fo=FNF where F'={a: Pa[#,>0]=0}. Then,
LEMMA 6. 2. n is concentrated on F,, i.e., n(E\F;)=0.

Proof. To prove n(E\F)=0 under the present assumption, we may carry over
the proof of Lemma 5.1, replacing the use of (5.1) by

L m(da)gay(a, B)=Ci.1(E)>0.

18) As to the sufficient conditions for this, see Hunt [4] and Meyer [8].
19) Defined in Dynkin [3].
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Similarly, we have n(E\E")=0.
LemmA 6.3. For any a>0 and fe B(E),

©.5) K‘;f(a)=L 0.(a, b) fByn(db),

6. 6) K:;f(b):j Aam(dag.(a, b).

Fo

Proof. Note that

0@, B=g.(a, b)+(a—ﬁ)L 0u(a, OmdOgs(c, B)
6.7
0@, b)+(a—ﬁ)L 05(@, Im(derga(c, b)

holds for all ¢ and b if a>pB. For, (6. 7) is evident from the resolvent equation
for any a and m-almost every b but, by excessivity, the both sides of (6.7) are
continuous in & in the intrinsic topology induced by X. Hence, by Lemma 6. 1,
(6. 7) is valid for all @ and b.

Let us prove (6. 5), while (6. 6) is proved in the same way. If a=a,, (6.5) is
found in Theorem 4. 1. If a<a,, then, using (6, 7),

L 0.(a, b) F)n(db)

=Sga0(a, b)f(b)n(db>+<a0—a>ﬂga<a, MO ny(c, b) FEYn(db)

=K; fla)+(ao—a)GIK§ f(a)= K5 f(a).
If a>a,, then

K A(@)+(a—a) G 3 fl) = K@) =jgao<a, 8) fb)n(db)
=jga<a, b)f(b)n(db)+(a—ao)”ga(a, OmdS)gag(c, &) FEYn(db)

=fga(a, B) F(b)n(db)+(a—ag) GKs* fa),

which completes the proof.

Define gi(a, b) as in §4 and §i(a, b) similarly, i.e.,

¢
(6. 8) gXia, b)=g.(a, b)—XMaU e~ g (2, b)dgot],
0

. 14
6.9 3@, b)=g.(a, b)—beUO et g, (a, mdsat].
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Then, as shown in Theorem 4. 2,

(6. 10) Kiflo=| _gila, b feyn(ab)
6. 11) Rsf®)= | famdaia, v,
612 Gif@=|_oia, b seymias),
6.13) Cifty= famdaia, b,

for all a>0, 2=0 and fe B(E).

THEOREM 6. 1. For any a=0 and 1=0 such that a+2>0 and for any f, g
€B\(E), we have

(6. 15) | Kirag@nao~{  soRigwna.
For any a>0 and 2=0,
©6.16) [ cirag@man~{ sociaomi
holds. In other words, the processes with {K% 2>0} and {K: 1>0} as their
resolvents are mutually adjoint with respect to n, and the processes with resolvents
{Gl: a>0} and {Gi a>0} are mutually adjoint with vespect to m.

Proof. Fix a>0. In order to obtain (6. 15), it is sufficient to verify that
6.17) [ [o@ntdaraica, o) syt~ [o@niaariica, o sermcan.

First we note that g.(a, b)=gX(a, b)=0 and g.(a, b)=§X(a, b)=0 for n X n-almost every
(a, b). Rewriting K¢f=K:f—1K:K:f, we have

jg:,(a, b)f(b)n(db)=jga(a, b)f(b)n(db)—zgggaw, On(de)gc, b) fon(db).

On the other hand, integrating Kig=Ksg—iK:Ksg with fn, we have, since ¢ is
arbitrary,

S@zw, b)f(b)n(db>=gga<a, b)f(b)n(db)—iggga(a, On(degic, b) f yn(db)
for n-almost every a. Put
(@)= S(gz,(a, By—gi(a, b)) Fb)n(db).

Then ueL.(dn) and we have, for n-almost every a,
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u(@)= -lggga(a, c)n(de)(gilc, b)—gilc, b)) f(b)n(db)

= —Zgga(a, oulc)n(de)= — K u(a).

Hence, || #||-=2|| K¢|| || #|]|.2”> Therefore, for 2<1/|| K¢||, || # ||«=0, ie., u=0 n-
almost everywhere. Thus (6. 17) is verified for 2<1/|| K3||.

Suppose that (6. 17) is valid for 2=4,>0. Rewriting K{f=K¢% f+(A—A)K{Ksf
we have on the one hand

Sgi(a, b) fbyn(db)

- ng:(a, b)f(b)n(db)+(zo—z>8ng:(a, On(de)gi(c, b) fByn(db),

and, on the other, integrating Kjg=K5.g+(A—A)K;Ksg with fn, it follows that,
since ¢ is arbitrary,

S@xa, 5) £ (byn(dby
=S§i°(a, b)f(b)n(db)Jr(lo—l)SSﬁi"(a, On(dogic, b) fbyn(db)

=ng:<a, b) F BYn(db)+(la— ) Sggi"(a, On(de)§ic, b) fbyn(dd)
for n-almost every a. Put
v(a>=8(gz<a, B)—§(a, b)) fbyn(db).

Then v=(2—A)Kw, implying ||v||-=(| 0—4|/20) || v ||.. Hence, for 2<24, v=0n
almost everywhere. Accordingly, (6. 17) is true for all 2=0 and «>0. If a=0 and
2>0, (6. 15) is verified through approximation of « from above.

Making use of G!f=Gf—iK:G'f and Gig=Glg—iK:Gog, the proof of (6. 16) is
carried as above except obvious changes. Hence Theroem 6. 1 is proved.

Quite similarly we are able to prove the following formulae.

THEOREM 6. 2. For any a=0 and 1=0 such as a+1>0, and for f, geBo(E),
we have

6.18) SF Gif(a)g(a)n(da)=SEf(b)K‘;g(b)Mdb)
and
6. 19) SE Ke f(a)g(a)m(da)zSF FB)CigByn(db).

20) The norm in L.(dn) is denoted by || « ||ee-
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§7. The properties of measure n——necessary and sufficient conditions.

Under the assumptions stated in the first paragraph of §6, we study once more
the properties of n treated in §5. Although the assumptions are stronger than
those in §5 in several respects, they are weaker in that the invariance of the measure
m for X is not assumed.

Concerning the validity of (5. 13) we have

TuaEOREM 7. 1. The following statements are equivalent:

7.1 n is an invariant measuve for X ;

(7. 2) X is conservative;

(7. 3) Pu[l=00, p.=00]=1, for every ack,

7.4 Pafps_,=00]=1, for n-almost every ack,.

First, we prepare

Lemma 7.1. If ack, then n(U)>0 for any U contarming a and being open in
the intrinsic topology induced by X.

Proof. Suppose n(U)=0. Then, we can prove Pu[p,=0 for t<dzy]=1in the
same way as in the proof of Theorem 4. 1. This contradicts to aeF, since Pu[65y

>0]=L1

Proof of Theorem 7.1. Pafp;_,=co]=1 is equivalent to aK’1(¢)=1. Because
(7. 5) S K f(a)n(da)=S A@R L (@n(da) for feBi(E),
Fo Fo

(7. 1) and (7. 4) are equivalent. Obviously (7. 3) implies (7. 2), and (7. 2) implies (7. 4),
so that it remains to prove that (7. 3) follows from (7. 4). Suppose that (7. 4) holds.
Then, by Lemma 7. 1, the point ¢ at which aR’l(a¢)=1 are dense on F in the in-
trinsic topology induced by X. On the other hand aR’l(a) is continuous in the
topology, since it is a-excessive relative to X. Hence aK%1(a)=1 for all aeF. Next,
let us prove Py[€=co]=1 on F. If it be not true, then P.[p,_,=c0]>0%" for some
¢, which is absurd, since M,[¢;] <e*'MJ[[ie**dps]<e**Kl(a)<oco. Thus (7. 3) holds,
completing the proof.

Next we give a theorem concerning (5. 18).

THEOREM 7. 2. Each of the following conditions is equivalent to (5. 18):
(7. 6) Pu[l=0c0, p,=c0]=1 for every acE;
(7.7 Pofps_,=oo]=1 for m-almost every ackE.

Proof is omitted, because it is similar to that of Theorem 7.1 using Lemma

21). t=tAL
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6.1 and Theorem 6. 2 instead of Lemma 7.1 and Theorem 6. 1.
CorOLLARY. (5. 18) implies (5. 13).

The conditions in the above theorems can be stated in terms of G. Namely,
if X is conservative, P,[¢:_,=co]=1 if and only if lim,,,aG:1(¢)=0. For, we have

(7. 8) aGi1+21K1—1=0,

which follows from G:1—Gl4(a—w)GiG+2K:6G1=0 and Gil=1/pu.
We give some sufficient conditions for (5. 18), but (ii), (iii) and (iv) are unsatis-
factory, since they explicitely include conditions on X.

THEOREM 7. 3. Suppose that (5.1) holds. Then, each of the followings is
sufficient for (5. 18):

(1) m s finite and Puloi-o=c0]l=1 for any ack;
(ii) m is finite and Palps_,>01=1 for any ack;
(ii) n s finite, Polpe-o=00l=1 for any acF, and Pa[p;-,>01=1 for any ackE;
iv) X is conservative and recurrent, and Ge maps B(E) into C(E).
Proof. Let (i) be met. Then, by Theorem 5.4, Theorem 7.2 and the sym-
metricity of X and X,
lim /38 s flaym(da)=0, for feBi(E).
E
Let a compact set V be sufficiently large, then make 8]0 in
ﬁS G;l(a)m(da)gﬁg G;l(a)m(da)er(E\V):,BS Caty(@m(da)-+m(E\V).
E 4 E

Thus we have (5. 19), hence (5. 18) is valid. The sufficiency of (ii) or (iii) is proved,
combining Theorems 5.3, 7.1 and 7. 2 by the lemma below. Lemma 5. 2 and
Theorem 7. 2 imply the sufficiency of (iv).

LEMMA 7. 2. Suppose Polps_,=c0l=1 for aeF. Then Pi¢;_=col=1 for all
beE at which Psp:-,>0]=1.

Proof. We need only note
. et N N ¢
aK;’l(b):aMb[S e-“f’tdgbt]:aMb[th[S e—“wdgﬁ;]]
0 0
=Py [2,<E]=Ps[ps_,>0].

In self-adjoint case (i.e. X=X), the above theorems are reduced to much sim-
pler form. In the case of the Brownian motion, McKean-Tanaka [7] has treated

the condition for Pu[¢.,=oc0]=1.
It may be of use to give a remark that Pu[p;o=o00]=1 does not necessarily
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imply Pa[gb@_o:oo]:l, as an example shows. Let X and X be the deterministic
motions on the real line with velocity one to the right and to the left, respectively.
Let m be the Lebesgue measure and #» be its restriction to [0, c0). Then they
satisfy all the assumptions in the beginning of §6. The additive functionals of X
and X corresponding to » are

t t
%:S Yy o(@ds and @:S Koo )ds.
0 0

It is easy to see that P.[p.=oc]=1 for all @, while P,[p..<co]=1 for all @, and
gi(a, b)=gu(a, b)

0, for b>a,
gma0-a=il-w), for  b>az=0,
T emecmwn, for  b>a, a<0, b=0,
ga—ad for b>a, a<0, b<0.
Therefore,
K&’f(a)zemS:e—“’f(b)db for a=0,
K‘%f(a)ze—wgzewf(b)db, for =0,
thus,

K1 (a)=1, XSK?f(a)n(da) = S(l —e~1) fla)n(da),

AR (@) =1—e¢0, xSK‘;f (@yn(da) = S fay(da).

That is, X is conservative and # is not invariant measure for )?, though subin-
variant. X is not conservative but has an invariant measure #. In this example,
the state spaces F (of X) and F (of X) are not identical, since 0 belongs to F but
not to E.
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