REMARK ON GALOIS THEORY OF SIMPLE RING

By Akira Inatomi

1. Bortfeld [1] proved the following: Let D be a division ring which has (left) finite dimensionality over a division subring L of D and we suppose that the center C of D is an infinite field. If L is the invariant ring of an automorphism ω of D, then, for each intermediate division subring T between L and A, there exists an automorphism ρ such that T is an invariant ring of ρ .

Recently, Nagahara and Tominaga [2] extended this therorem to simple rings, in case the commutator of an invariant ring is a division ring.

In this note, we shall prove that Nagahara and Tominaga's result is still valid in the case where the commutator is a simple ring.

2. By a simple ring, we shall mean a two sided simple ring with a unit element satisfying minimum condition for left ideals, and we suppose that its center is an infinite field. Let A be a simple ring which has finite dimensionality over a subring S of A. If S is the invariant ring of a group \mathfrak{G} of automorphisms of A and $V_A(S)$ is simple ring then

$$(A:S) \ge (\mathfrak{G}:\mathfrak{J})(V_A(S):C),$$

where \Im is a subgroup which consists of all the inner automorphisms of \Im and C is the center of A.

LEMMA. Let B be a finite-dimensional simple algabra over center K and F be a subfield contained in K. If F is the invariant field of an automorphism ω of B, and $(K:F) < \infty$ then B is commutative.

Proof. Since $(K:F) = m < \infty$, K is a finite Galois extension of F. Let \overline{K} be a field isomorphic with K. Then

$$B \underset{F}{\times} \overline{K} \simeq e_1 \overline{B} \oplus e_2 \overline{B} \oplus \cdots \oplus e_m \overline{B}$$

where e_1, \dots, e_m are mutually orthogonal idempotent elements and $\overline{B} \simeq B$. If u_1, \dots, u_m be basis of \overline{K} over F, then $B \times_F K \ni a = \sum_{i=1}^m a_i u_i$, where $a_i \in B$. And we can extend ω to the automorphism $\overline{\omega}$ of $B \times_F K$ in the following way:

$$a^{\overline{\omega}} = \sum_{n=1}^{m} a_n^{\omega} u_n.$$

Then, the invariant ring of $\overline{\omega}$ is \overline{K} in $B \times_F K$. Clearly, $\overline{\omega}(e_i) = e_j$; that is, $\overline{\omega}$ induces the permutation of (e_1, \dots, e_m) . This permutation is cyclic. Indeed, if it has a cyclic component $(e_{i_1}, e_{i_2}, \dots, e_{i_r})$, where r < m, then.

$$\overline{\boldsymbol{\omega}}(xe_{i_1}+\cdots+xe_{i_r})=xe_{i_1}+\cdots+xe_{i_r},$$

Received May 20, 1962.

for $x \in \overline{K}$. Hence we may suppose that $\overline{\omega}(e_i) = e_{i+1}$, where $1 \leq i \leq m-1$ and $\overline{\omega}(e_m) = e_1$. If, for $y \in \overline{B}$, $\overline{\omega}(e_i y) = e_{i+1} y'$ then, by $y \to y'$, an automorphism of \overline{B} is given and this automorphism leaves \overline{K} fixed elementwise, so it is an inner automorphism σ_{λ_i} , where $\lambda_i \in \overline{B}$ and $1 \leq i \leq m$. Let us take an element z of B such that $\sigma_{\lambda_m} \cdots \sigma_{\lambda_2} \sigma_{\lambda_1}(z) = z$ and let

$$t = e_1 z + e_2 \sigma_{\lambda_1}(z) + e_3 \sigma_{\lambda_2} \sigma_{\lambda_1}(z) + \cdots + e_m \sigma_{\lambda_{m-1}} \sigma_{\lambda_{m-2}} \cdots \sigma_{\lambda_1}(z).$$

Then, clearly, $\overline{\omega}(t) = t$, so $z \in \overline{K}$. But, if *B* is non-commutative, the element *z* such as above is taken outside of \overline{K} , so \overline{B} is commutative. Thus *B* is commutative.

THEOREM. Let A be a simple ring which has finite dimensionality over a simple subring S, and let $V_A(S)$ be a simple ring. If S is the invariant ring of an automorphism ω of A then, for each intermediate ring T between A and S, there exists an automorphism ρ such that T is an invariant of ρ .

Proof. Clearly, $V_A(S)$ is ω -normal, and, in $V_A(S)$, ω -invariant ring is $S \frown V_A(S)$. Since $S \frown V_A(S)$ is contained in the center of $V_A(S)$, $V_A(S)$ is a field. Hence, from the result of Nagahara and Tominaga, the above fact holds good.

References

- BORTFELD, R., Ein Satz zur Galoistheorie in Schiefkörpern, J. reine u. angew. Math. 201 (1959), 196-206.
- [2] NAGAHARA, T., AND H. TOMINAGA, On Galois and locally Galois extensions of simple rings. Math. J. Okayama Univ. 10 (1961), 143-166.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.