ECKMANN-FRÖLICHER CONNEXIONS ON ALMOST ANALYTIC SUBMANIFOLDS

BY KENTARO YANO

1. Almost analytic submanifolds.

We consider a 2*m*-dimensional differentiable manifold M_{2m} of class C^{∞} and with an almost complex structure F_{j}^{h} :

(1.1)
$$F_{j}^{i}F_{i}^{h} = -A_{j}^{h}$$

where A_j^h denotes a unit tensor and the indices h, i, j, \cdots run over the range 1, 2, \cdots , 2m. We call such a manifold an almost complex space.

It is well known that the condition for an almost complex structure to be induced from a complex structure is the vanishing of the Nijenhuis tensor [4]:

(1.2)
$$N_{ji}{}^{h} = F_{j}{}^{l}\partial_{l}F_{i}{}^{h} - F_{i}{}^{l}\partial_{l}F_{j}{}^{h} - (\partial_{j}F_{i}{}^{l} - \partial_{i}F_{j}{}^{l})F_{l}{}^{h}$$

where ∂_i denotes the partial differentiation with respect to the coordinates ξ^i . We call a complex space an almost complex space with vanishing Nijenhuis tensor.

We now consider a 2n-dimensional submanifold M_{2n} (2m > 2n):

(1.3)
$$\boldsymbol{\xi}^h = \boldsymbol{\xi}^h(\boldsymbol{\eta}^a)$$

of class C^{∞} where the indices a, b, c, \cdots run over the range $1, 2, \cdots, 2n$. If the transform by F_i^h of any vector tangent to M_{2n} is still tangent to M_{2n} , we call M_{2n} an almost analytic submanifold. A necessary and sufficient condition for M_{2n} to be almost analytic is

(1.4)
$$F_{i}{}^{h}B_{b}{}^{i} = 'F_{b}{}^{a}B_{a}{}^{h},$$

where ${}^{\prime}F_{b}{}^{a}$ is a certain tensor of M_{2n} and

$$B_a{}^h=\partial_a \xi^h; \qquad \partial_a=\partial/\partial \eta^a.$$

From (1.1) and (1.4), we find

Thus, we have [3]

THEOREM 1.1. An almost analytic submanifold in an almost complex space is an almost complex space.

On the other hand, by a straightforward computation, we have

(1.6)
$$B_c{}^j B_b{}^i N_{ji}{}^h = ' N_{cb}{}^a B_a{}^h$$

Received December 25, 1961.

KENTARO YANO

where

(1.7)
$$'N_{cb}{}^{a} = 'F_{c}{}^{d}\partial_{d}'F_{b}{}^{a} - 'F_{b}{}^{d}\partial_{d}'F_{c}{}^{a} - (\partial_{c}'F_{b}{}^{d} - \partial_{b}'F_{c}{}^{d})'F_{d}{}^{a}$$

is the Nijenhuis tensor of the almost analytic submanifold M_{2n} .

From (1.6) we have [3]

THEOREM 1.2. An almost analytic submanifold in a complex space is a complex space.

We now choose, at each point of the almost analytic submanifold M_{2n} , a vector C_{2n+1}^{h} which is not tangent to M_{2n} and put

$$C_{2n+2}^{h} = F_{i}^{h} C_{2n+1}^{i}$$

It is clear that C_{2n+2}^{h} is linearly independent of C_{2n+1}^{h} and is not tangent to M_{2n} . We next choose a third vector C_{2n+3}^{h} which is linearly independent of C_{2n+1}^{h} and C_{2n+2}^{h} and is not tangent to M_{2n} and put

$$C_{2n+4}^{h} = F_{i}^{h} C_{2n+3}^{i}.$$

It is clear that C_{2n+4}^{h} is linearly independent of C_{2n+1}^{h} , C_{2n+2}^{h} , C_{2n+3}^{h} and is not tangent to M_{2n} .

Continuing in this way we can choose 2m-2n vectors C_x^h which are linearly independent of each other and are not tangent to M_{2n} , where $x, y, z = 2n + 1, 2n + 2, \dots, 2m$.

We choose these vectors C_x^h as "affine normals" to the almost analytic submanifold M_{2n} . The affine normals satisfy

(1.8) $F_{i}{}^{h}C_{x}{}^{i} = {}^{\prime\prime}F_{x}{}^{y}C_{y}{}^{h},$ from which

Thus, we have

THEOREM 1.3. The affine normal space of an almost analytic submanifold admits an almost complex structure.

The vectors $B_b{}^h$ and $C_y{}^h$ being linearly independent of each other, we can form a matrix $(B^a{}_i, C^x{}_i)$ inverse to $(B_b{}^h, C_y{}^h)$.

If we have a vector v^h at a point of the almost analytic submanifold M_{2n} , we can project v^h on the submanifold and get

$$(1.10) 'v^h = B_a{}^h B^a{}_i v^i$$

or

$$(1.11) 'v^{h} = B_{a}^{h'} v^{a},$$

where

$$(1.12) 'v^a = B^a{}_i v^i$$

Now we assume that there is given an affine connexion Γ_{ji}^{h} in the almost complex space M_{2m} and denote by ∇_{j} the covariant differentiation with respect

 $\mathbf{54}$

to the connexion Γ_{ji}^{h} ; for example

(1.13)
$$\nabla_j v^h = \partial_j v^h + \Gamma^h_{ji} v^j$$

for a contravariant vector v^h .

Take a vector field v^h of M_{2m} which is tangent to M_{2n} :

$$v^h = B_a{}^h' v^a$$

and consider its covariant differential

$$\delta v^h = d(B_a{}^h v^a) + \Gamma^h_{\mu} B_c{}^j d\eta^c B_b{}^i v^b$$

along M_{2n} . The covariant differential δv^h is not necessarily tangent to M_{2n} and so we consider the projection $B_a{}^h B^a{}_i \delta v^i = B_a{}^h \delta' v^a$ of δv^h on the tangent plane to M_{2n} , then we have

(1.14)
$$\delta' v^a = B^a{}_b \delta v^b = d' v^a + '\Gamma^a{}_{cb} d\eta^c \, 'v^b,$$

where

(1.15)
$$\Gamma^a_{cb} = (B_c{}^j B_b{}^i \Gamma^h_{ji} + \partial_c B_b{}^h) B^a{}_h.$$

The T_{cb}^{a} define an affine connexion on the almost analytic submanifold M_{2n} which we call an induced affine connexion on M_{2n} .

The covariant derivatives of $B_b{}^h$ and $C_x{}^h$ along the almost analytic submanifold M_{2n} are respectively given by

(1.16)
$$\begin{aligned} & \mathcal{V}_c B_b{}^h = \partial_c B_b{}^h + B_c{}^j B_b{}^i \Gamma_{ji}^h - \Gamma_{cb}^a B_a{}^h, \\ & \mathcal{V}_c C_y{}^h = \partial_c C_y{}^h + B_c{}^j C_y{}^i \Gamma_{ji}^h. \end{aligned}$$

Equation (1.15) and the first of (1.16) show that $'\!\mathcal{V}_c B_b{}^h$ are, as vectors of M_{2m} , normal to M_{2n} and consequently we can put

where $H_{cb}{}^{x}$ are so-called second fundamental tensors of M_{2n} with respect to affine normals $C_{x}{}^{h}$ and (1.17) is the equation of Gauss.

On the other hand, the equation of Weingarten takes the form

(1.18)
$${}^{\prime} \nabla_c C_y{}^h = -K_c{}^a{}_y B_a{}^h + L_c{}_y{}^x C_x{}^h.$$

2. Eckmann-Frölicher connexion.

If we can introduce an affine connexion Γ_{ji}^h in M_{2m} such that

$$(2.1) \nabla_j F_i^h = 0$$

and

(2.2)
$$S_{ji}{}^{h} = \frac{1}{2}(\Gamma_{ji}^{h} - \Gamma_{ij}^{h}) = 0,$$

then we have

(2.3)
$$N_{ji}{}^{h} = 0,$$

because N_{ji}^{h} can be written as

KENTARO YANO

(2.4)
$$N_{ji}{}^{h} = F_{j}{}^{l} \nabla_{l} F_{i}{}^{h} - F_{i}{}^{l} \nabla_{l} F_{j}{}^{h} - (\nabla_{j} F_{i}{}^{l} - \nabla_{i} F_{j}{}^{l}) F_{l}{}^{h}$$

with respect to a symmetric affine connexion.

Conversely if the Nijenhuis tensor vanishes, we can introduce an affine connexion $\Gamma_{j_i}^n$ which satisfies (2.1) and (2.2). Indeed, we first introduce a Riemannian metric in M_{2m} and denote by $\mathring{\nabla}_j$ the covariant differentiation with respect to this Riemannian metric. If we put

(2.5)
$$\Gamma_{ji}^{h} = \mathring{\Gamma}_{ji}^{h} - \frac{1}{4} (\mathring{\mathcal{P}}_{j}F_{i}^{l} + \mathring{\mathcal{P}}_{i}F_{j}^{l})F_{l}^{h} + \frac{1}{4} (\mathring{\mathcal{P}}_{j}F_{l}^{h} - \mathring{\mathcal{P}}_{l}F_{j}^{h})F_{i}^{l}$$

where $\mathring{\Gamma}_{j_i}^{\hbar}$ are Christoffel symbols, then we have

$$\nabla_{i}F_{i}^{h}=0$$

and

(2.6)
$$S_{ji}{}^{h} = \frac{1}{2} (\Gamma_{ji}^{h} - \Gamma_{ji}^{h}) = \frac{1}{8} N_{ji}{}^{h},$$

which show that if the Nijenhuis tensor vanishes, then the Γ_{ii}^{h} defined by (2.5) satisfies (2.1) and (2.2).

We call such an affine connexion Eckmann-Frölicher connexion [1], [2].

Now suppose that there is given an Eckmann-Frölicher connexion $\Gamma_{j_i}^n$ in M_{2m} and define the induced affine connexion Γ_{cb}^a on M_{2n} by (1.15). Then from (1.4) we find, by covariant differentiation along M_{2n} ,

$$F_{i}{}^{h}H_{cb}{}^{x}C_{x}{}^{i} = ('\nabla_{c}'F_{b}{}^{a})B_{a}{}^{h} + 'F_{b}{}^{d}H_{cd}{}^{x}C_{x}{}^{h},$$

from which

- and (2.8)

$$H_{cb}{}^{y}{}^{\prime\prime}F_{y}{}^{x} = H_{cd}{}^{x}{}^{\prime}F_{b}{}^{d}$$

by virtue of (1.8).

On the other hand, we have from (1.15)

(2.9)
$$\begin{split} {}^{\prime}S_{cb}{}^{a} &= \frac{1}{2}({}^{\prime}\Gamma^{a}_{cb} - {}^{\prime}\Gamma^{a}_{bc}) \\ &= B_{c}{}^{j}B_{b}{}^{i}B^{a}{}_{h}S_{ji}{}^{h} \\ &= \frac{1}{8}B_{c}{}^{j}B_{b}{}^{i}B^{a}{}_{h}N_{ji}{}^{h} \\ &= \frac{1}{8}{}^{\prime}N_{cb}{}^{a}. \end{split}$$

Thus we have

THEOREM 2.1. Affine connexion induced on an almost analytic submanifold from an Eckmann-Frölicher connexion with respect to affine normals is also an Eckmann-Frölicher connexion.

56

From the equation of Gauss

we find

$$B_{c}^{i}B_{b}^{i}S_{ji}^{h} - S_{cb}^{a}B_{a}^{h} = \frac{1}{2}(H_{cb}^{x} - H_{bc}^{x})C_{x}^{h}$$

 $H_{cb}{}^x = H_{bc}{}^x$

or

(2.10)

by virtue of

$$S_{ji}{}^{h} = rac{1}{8} N_{ji}{}^{h}, \qquad 'S_{cb}{}^{a} = rac{1}{8} 'N_{cb}{}^{a}$$

and

$$B_c{}^jB_b{}^iN_{ji}{}^h = 'N_{cb}{}^aB_a{}^h.$$

Thus we have

THEOREM 2.2. The second fundamental form of an almost analytic submanifold in an almost complex space with Eckmann-Frölicher connexion with respect to affine normals is symmetric

Now from (2.8) and (2.10), we find

 $H_{cd}{}^{x}{}^{\prime}F_{b}{}^{d}-H_{bd}{}^{x}{}^{\prime}F_{c}{}^{d}=0$

or

(2.11) $H_{cb}{}^{x} + {}^{\prime}F_{c}{}^{e}{}^{\prime}F_{b}{}^{d}H_{ed}{}^{x} = 0,$

from which

THEOREM 2.3. For an almost analytic submanifold in an almost complex space with an Eckmann-Frölicher connexion, the second fundamental tensor with respect to affine normals is pure with respect to two lower indices.

On the other hand, from (1.8) we have, by covariant differentiation along M_{2n} ,

from which

(2.12) $K_{c}^{b}{}_{y}'F_{b}{}^{a} = K_{c}^{a}{}_{z}''F_{y}{}^{z}$

and

(2.13)
$$L_{cy}{}^{z}{}^{\prime\prime}F_{z}{}^{x} = {}^{\prime}\nabla_{c}{}^{\prime\prime}F_{y}{}^{x} + L_{cz}{}^{x}{}^{\prime\prime}F_{y}{}^{z}.$$

When a Hermitian metric g_{ji} is given in the almost complex space M_{2m} , we have

$$F_{j}^{m}F_{i}^{l}g_{ml}=g_{ji}$$

and consequently the induced Riemannian metric

 $'g_{cb} = B_c{}^j B_b{}^i g_{ji}$

satisfies

 ${}^{\prime}F_{c}{}^{e}{}^{\prime}F_{b}{}^{d}{}^{\prime}g_{ed} = {}^{\prime}g_{cb},$

that is, g_{cb} is also Hermitian. Thus from Theorem 2.3, we have

 $(2.14) 'g^{cb}H_{cb}{}^{x}=0.$

Thus

THEOREM 2.4. For an almost analytic submanifold in an almost complex space with a Hermitian metric and an Eckmann-Frölicher connexion, the second fundamental form $H_{cb}{}^{x}$ with respect to affine normals satisfies (2.14).

BIBLIOGRAPHY

- ECKMANN, B., Structures complexes et transformations infinitésimales. Convegno di Geom. Diff. (1954), 1-9.
- [2] FRÖLICHER, A., Zur Differentialgeometrie der komplexen Strukturen. Math. Ann. 129 (1955), 50-95.
- [3] SCHOUTEN J. A., AND K. YANO, On invariant subspaces in the almost complex X_{2n} . Indag. Math. 17 (1955), 261-269.
- [4] YANO, K., The theory of Lie derivatives and its applications. Amsterdam (1957).

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

58