
ECKMANN-FROLICHER CONNEXIONS ON ALMOST

ANALYTIC SUBMANIFOLDS

BY KENTARO YANO

1. Almost analytic submanifolds.

We consider a 2m-dimensional differentiate manifold M2m of class C°° and
with an almost complex structure Fjh:

(1.1) F3

1F^ = -A^

where A] denotes a unit tensor and the indices h, i, j, run over the range
1, 2, , 2m. We call such a manifold an almost complex space.

It is well known that the condition for an almost complex structure to be
induced from a complex structure is the vanishing of the Nijenhuis tensor [4]:

(1.2) Njf =ίySιJF\Λ -

where dι denotes the partial differentiation with respect to the coordinates £z.
We call a complex space an almost complex space with vanishing Nijenhuis
tensor.

We now consider a 2^-dimensional submanifold M2n (2m > 2ri):

(i.3) €*=ev)
of class C°° where the indices α, 6, c, ••• run over the range 1, 2, •••, 2n. If
the transform by Fl

h of any vector tangent to M2n is still tangent to M2n9 we
call M2n an almost analytic submanifold. A necessary and sufficient condition
for M2n to be almost analytic is

(1.4) FιhBS = 'Fb

aBa

h,

where 'Fb

a is a certain tensor of M2n and

From (1.1) and (1.4), we find

(1.5) 'Fe*'Ff=:-A;.

Thus, we have [3]

THEOREM 1.1. An almost analytic submanifold in an almost complex
space is an almost complex space.

On the other hand, by a straightforward computation, we have

(1.6) BJBJNJ = 'N* B*9
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where

(1.7) 'Ncb

a = 'Fddd'Fb

a - 'Fb

ddd

fFc

a - (d/Fb

d - db'Fc

d)fFd

a

is the Nijenhuis tensor of the almost analytic submanifold M2n.
From (1.6) we have [3]

THEOREM 1.2. An almost analytic submanifold in a complex space is a
complex space.

We now choose, at each point of the almost analytic submanifold M2n, a
vector Czn+i which is not tangent to M2n and put

C h _ Ί7i hΓ< i
2π+2 — J? i * >2π+l

It is clear that C2£+2 is linearly independent of C2%+ι and is not tangent to
M2n. We next choose a third vector C2n+3 which is linearly independent of
C2n+ι and C2n+2 and is not tangent to M2n and put

It is clear that C2£+4 is linearly independent of C2ίtn, C2n+2, C2£+3 and is not
tangent to M2n.

Continuing in this way we can choose 2m — 2n vectors C/ which are
linearly independent of each other and are not tangent to M2n, where x, y, z
= 2n + l,2n + 2, •-, 2m.

We choose these vectors Cx

h as "affine normals" to the almost analytic
submanifold M2n. The affine normals satisfy

(1.8) Fτ

hCx

l = "Fx

yCy

h,

from which

(1.9) "F?"Fy

x = - dx

z.

Thus, we have

THEOREM 1.3. The affine normal space of an almost analytic submani-
fold admits an almost complex structure.

The vectors Bb

h and Cy

h being linearly independent of each other, we can
form a matrix (Ba

l, Cxi) inverse to (Bb\ Cy

h).
If we have a vector vh at a point of the almost analytic submanifold M2n,

we can project vh on the submanifold and get

(1.10) V =Ba

hBa^

or

(1.11) 'vh=Ba

h'va,

where

(1.12) 'va=BaiV\

Now we assume that there is given an affine connexion Γ% in the almost
complex space M2m and denote by P3 the covariant differentiation with respect
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to the connexion Γfc for example

(1.13) ί7jVh = djVh+Γ^

for a contravariant vector vh.
Take a vector field vh of M2m which is tangent to M2n:

and consider its covariant differential

dvh = d(Ba

h'va) +r^cfyc£&* V

along MZn. The covariant differential δvh is not necessarily tangent to M2n and
so we consider the projection Ba

hBaiδvl =Ba

hd'va of dvh on the tangent plane
to Mznt then we have

(1. 14) dfva = Ba

hdvh = d'va + Ta

cb άrf V,

where

(1.15) T?δ = (Bc'Wn + QcBb

h)B\.

The Tib define an aίfine connexion on the almost analytic submanifold M2n

which we call an induced affine connexion on M2n.
The covariant derivatives of Bb

h and Cx

h along the almost analytic sub-
manifold M2n are respectively given by

>rcBb

h = dcB
(1.16)

;reCy

fc = 8 e C + e .

Equation (1.15) and the first of (1.16) show that TeBb

h are, as vectors of
M2m, normal to M2n and consequently we can put

(1.17) Ί7cBb

h=Hcb*Cx

h,

where Hcb

x are so-called second fundamental tensors of M2n with respect to
affine normals Cx

h and (1.17) is the equation of Gauss.
On the other hand, the equation of Weingarten takes the form

2. Eckmann-Frδlicher connexion.

If we can introduce an affine connexion Γ% in M2m such that

(2.1) PJFl

h = Q

and

(2.2) Syift = y(n-Γί,) = 0,

then we have

(2.3) Njih = Q,

because Nji1 can be written as
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(2.4) Njth =

with respect to a symmetric affine connexion.
Conversely if the Nijenhuis tensor vanishes, we can introduce an affine

connexion Γ# which satisfies (2.1) and (2.2). Indeed, we first introduce a Rie-
mannian metric in M2m and denote by F, the covariant differentiation with
respect to this Riemannian metric. If we put

n = n - -J
(2.5) *

where f% are Christoffel symbols, then we have

and

(2.6) SjS = ~

which show that if the Nijenhuis tensor vanishes, then the Γh

n defined by (2.5)
satisfies (2.1) and (2.2).

We call such an affine connexion Eckmann-Frolicher connexion [1], [2].
Now suppose that there is given an Eckmann-Frolicher connexion Γ& in

M2m and define the induced affine connexion T^ on M2n by (1.15). Then from
(1.4) we find, by covariant differentiation along M2n,

JF hTT χ/~ι i _ ///7 / jo a\J> h \tΊ? dΈT x/~ι h
Γ l Xlcb ^x —\yc fb ) t>a ~T -F b -tied ^x ,

from which

(2.7) 'Fc'j?V*=θ

and

(2.8) Hcb

y"Fy*=Hcd*'Fbd

by virtue of (1.8).
On the other hand, we have from (1.15)

/Cf a _ (fΓ'a _fΓ'a\
&cb — ~^~\ J cb — i be)

(2.9) =JWWW

= -BSBJB^Njf
O

= — 'N
8 c

Thus we have

THEOREM 2.1. Affine connexion induced on an almost analytic submani-
fold from an Eckmann-Frolicher connexion with respect to affine normals is
also an Eckmann-Frolicher connexion.
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From the equation of Gauss

IΓ7 "D ft -- Λ Z? ft I Ό i Z? i 7"*Λ / T^α 1? ft - TT x /~ι ft
Yc&b —O c-Db -Tl5c

J£>bL ji— 1 cb&a —Ή cb \Jχ 9

we find

τ> ί τ> % Cf ft __^ / O <x Z? ft — / TT ^ TT x\(^ ft

or
/o -IAN V x TT x
\Δ.L\J) Jtlcb —-Γlδc

by virtue of

S^ = 1̂ Λ >S,f = ±'N.f

and

Thus we have

THEOREM 2.2. ΓΛe second fundamental form of an almost analytic sub-
manifold in an almost complex space with Eckmann-Fr'όlicher connexion
with respect to affine normals is symmetric

Now from (2.8) and (2.10), we find
TT xfjTί d ΓT x/jrt d f\
Ήcd "b — H bd •& c —v

or

(2.11) Hcb

x + 'Fc

e 'Fb

dHed

x = 0,

from which

THEOREM 2.3. For an almost analytic submanifold in an almost com-
plex space with an Eckmann-Fr'όlicher connexion, the second fundamental
tensor with respect to affine normals is pure with respect to two lower
indices.

On the other hand, from (1.8) we have, by covariant differentiation along

M2n,

from which

(2.12) Kc

b

y'Fb"=Kc

a

z"Fy

z

and

(2.13) LcJ"F? = '7c"Fv* +Lcz*"Fy

z.

When a Hermitian metric g^ is given in the almost complex space M2m,
we have

F,nFSgni = gji

and consequently the induced Riemannian metric
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'gc^BJBSgji
satisfies

fΉ t ffΓ d f rt in
f c -f b 9ed — ffcb,

that is, 'gcb is also Hermitian. Thus from Theorem 2.3, we have

(2.14) 'gcbHcb* = Q.

Thus

THEOREM 2.4. For an almost analytic submanifold in an almost com-
plex space with a Hermitian metric and an Eckmann-Frόlicher connexion,
the second fundamental form Hcb

x with respect to affine normals satisfies
(2.14).
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