ECKMANN-FROLICHER CONNEXIONS ON ALMOST
ANALYTIC SUBMANIFOLDS

By KENTARO YANO

1. Almost analytic submanifolds.

We consider a 2m-dimensional differentiable manifold M, of class C~ and
with an almost complex structure F',*:

1.1) FiFM=—A"
where A’ denotes a unit tensor and the indices 4, 7, j, --- run over the range
1,2, -+, 2m. We call such a manifold an almost complex space.

It is well known that the condition for an almost complex structure to be
induced from a complex structure is the vanishing of the Nijenhuis tensor [4]:
1.2 N;*=F}9,F—F',F"— 0;F}—0,F)F/",

where 8, denotes the partial differentiation with respect to the coordinates &'
We call a complex space an almost complex space with vanishing Nijenhuis
tensor.

We now consider a 2n-dimensional submanifold M, (2m > 2n):

(1.3) & =&
of class C> where the indices a, b, ¢, --- run over the range 1,2, ---,2n. If
the transform by F.* of any vector tangent to M,, is still tangent to M., we

call M;, an almost analytic submanifold. A necessary and sufficient condition
for M, to be almost analytic is

(1.4) F"By ="F,*B,",
where 'F,* is a certain tensor of M,, and
B,*=0.8"  0.=0/07"
From (1.1) and (1.4), we find
(1.5) 'F Yy = — A¢.
Thus, we have [3]

THEOREM 1.1. An almost analytic submanifold im an almost complex
space ts an almost complex space.

On the other hand, by a straightforward computation, we have
(1.6) Bchbilvjih ='Na*B,",
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where
(1.7) INcba —_ Ichaleoa — IdeadIFca — (601de — 6bchd)lea

is the Nijenhuis tensor of the almost analytic submanifold M,.
From (1.6) we have [3]

THEOREM 1.2. Am almost analytic submanifold in a complex space is a
complex space.

We now choose, at each point of the almost analytic submanifold A4, a
vector Cqt.; which is not tangent to M,, and put

CZrnL+2 = thCZ;'wl-

It is clear that C.,. is linearly independent of C,:,; and is not tangent to
M,,. We next choose a third vector C::,; which is linearly independent of
C:.; and Ct,, and is not tangent to M, and put

C2’7Lz+4 = F;h021;,+3.

It is clear that C.t,, is linearly independent of C,%.;, Csl.2, Ceris and is not
tangent to Mo,

Continuing in this way we can choose 2m —2n vectors C,* which are
linearly independent of each other and are not tangent to M, where x, y, 2
=2n+1,2n+2, ---, 2m.

We choose these vectors C." as ‘‘affine normals” to the almost analytic
submanifold M,,. The affine normals satisfy

(1.8) FC;="F,*C/,
from which
1.9) "FY'F =—§%.

Thus, we have

THEOREM 1.3. The affine normal space of an almost analytic submani-
fold admits an almost complex structure.

The vectors B," and C,” being linearly independent of each other, we can
form a matrix (B%, C%,) inverse to (B.", C,").

If we have a vector v" at a point of the almost analytic submanifold A,
we can project v* on the submanifold and get

(1.10) "p* =B,"B*v*
or

(1.11) "y =By v,
where

(1.12) 'p* =B%v".

Now we assume that there is given an affine connexion I} in the almost
complex space M, and denote by /7, the covariant differentiation with respect
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to the connexion I'%; for example
(1.13) Vj’l)h = 6,-1)” +F§Lﬂ)"

for a contravariant vector v".
Take a vector field v* of M, which is tangent to M,,:

o =By
and consider its covariant differential

0v" = d(B,*'v*) + "}, B dy B,*'v°
along M,. The covariant differential 6v" is not necessarily tangent to M,, and

so we consider the projection B,"B*;6v* =B,"8'v* of dv"* on the tangent plane
to M,,, then we have

(L.14) 3'v® =BHovt = d"v® + T dy ",
where
(1.15) 'I'%,= (B/ By I + 8.B,") B

The ‘I'% define an affine connexion on the almost analytic submanifold M3,
which we call an induced affine connexion on M,,.

The covariant derivatives of B,” and C," along the almost analytic sub-
manifold M., are respectively given by

'V.By" =0.By" + B/By' [y, — ' B,",
'v,Clt =0.C, +BSCy T
Equation (1.15) and the first of (1.16) show that '~.B," are, as vectors of
M;,,, normal to M;, and consequently we can put
1.17) "V.By" = Hsp"Cy",

where H.” are so-called second fundamental tensors of M., with respect to
affine normals C," and (1.17) is the equation of Gauss.
On the other hand, the equation of Weingarten takes the form

(1.18) '7C,t = — KBy + Le,*C..

(1.16)

2. Eckmann-Frolicher connexion.

If we can introduce an affine connexion I'% in M,, such that

@.1) 7F =0
and
1
(2.2) Sjih = ’2‘—( ;‘1, —-F{', = 0,

then we have
2.3 N;" =0,
because N;;" can be written as
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(2.4) Mih =FJZV[F1’L _FILVLF]’L - (Vszl - ViFJL)Flh

with respect t0 a symmetric affine connexion.

Conversely if the Nijenhuis tensor vanishes, we can introduce an affine
connexion I} which satisfies (2.1) and (2.2). Indeed, we first introduce a Rie-
mannian metric in M, and denote by l°7J the covariant differentiation with
respect to this Riemannian metric. If we put

=1 — 2 F Ry Fy
4
(2.5) 1
+ Z(l7°jF/‘ — P F"F,
where 092 are Christoffel symbols, then we have
V,F=0
and

1, 1
(2.6) 8jit = 5 (U —Ti) = g Ny

which show that if the Nijenhuis tensor vanishes, then the I'% defined by (2.5)
satisfies (2.1) and (2.2).
We call such an affine connexion Eckmann-Frolicher connexion [1], [2].
Now suppose that there is given an Eckmann-Frélicher connexion I'% in
M, and define the induced affine connexion 'I'% on M, by (1.15). Then from
(1.4) we find, by covariant differentiation along M,,,

thchxsz = (/Vc,Fba)Ba.h + ’deHcdxthy
from which

2.7 "W/Fy* =0
and
(2.8) H.Y ,/Fyz =H."'F®

by virtue of (1.8).
On the other hand, we have from (1.15)

1
! cba':‘é_(/ o — %)

=BcJBbiBan jih

(2.9) 1
= ’g‘BchbiBahlvjih
— 1 ’ a
- 'g‘ ch .

Thus we have

THEOREM 2.1. Affine connexion induced on an almost analytic submani-
fold from an Eckmann-Frolicher conmexion with respect to affine normals is
also an Eckmann-Frolicher connexion.
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From the equation of Gauss
’VcBbh = acBbh +Bchbi ;’Lz - /F‘cszah =chx0zh,

we find
BBYS 18 Byt = 5 (Hay® ~ Hur?)Co?
or
(2.10) H,* =H,*
by virtue of
Si=g Ny, 'Sur=-g'Nu®

and
Bchbileih — ,NcbaBa,h-
Thus we have

THEOREM 2.2. The second fundamental form of an almost analytic sub-
manifold in an almost complex space with Eckmann-Frolicher connexion
with respect to affine normals is symmetric

Now from (2.8) and (2.10), we find
H . *'Fy —Hy,,/*'Fl =0
or
(2.11) H,*+'F'Fy"H," =0,
from which

THEOREM 2.3. For an almost analytic submanifold in an almost com-
plex space with an Eckmann-Frolicher conmexion, the second fundamental
tensor with respect to affine normals is pure with respect to two lower
wndices.

On the other hand, from (1.8) we have, by covariant differentiation along
MZm
th (—KcayBaz +ch/zCzl) = (/70”F1/x)cxh + ”Fyz("'KcazBah +chxth);

from which

2.12) K/ F*=K*"F/
and
(2'13) Lcyz " sz — IVc” Fy:c + chx " Fyz-

When a Hermitian metric g;; is given in the almost complex space Msn,
we have

FJszLgml =g

and consequently the induced Riemannian metric
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satisfies

that is,
(2.14)

Thus

KENTARO YANO

"Ges =Bchbzgji

’ d
Fce /Fb /ged = /gcby

'ge is also Hermitian. Thus from Theorem 2.3, we have

Igchcbz — 0‘

THEOREM 2.4. For an almost analytic submanifold in an almost com-
plex space with a Hermitian metric and an Eckmann-Frolicher connexion,
the second fundamental form H," with respect to affine normals satisfies

(2.14).
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