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1. Introduction.

The theory of rings of operators of von Neumann has been developed by
many authors, especially since it has been regarded as a non-commutative
extension of the integration over a measure space by Dixmier [3],D Dye [4]
and Segal [10], some fundamental theorems on measure theory have been
extended. In the papers [3], [8] and [14], the authors have introduced the
concept of the conditional expectation into some ring of operators of von
Neumann (=von Neumann algebra in the sense of Dixmier [2] and we shall
use this terminology below) which can be also regarded as a non-commutative
extension of conditional expectation in the probability theory. The extension
has also been made of the C. Moy characterization theorem (cf. [8] and [14])
and the martingale convergence theorem (cf. [15]). In the present note, as a
part of a non-commutative extension of measure theoretic probability theory
we shall prove for a von Neumann algebra of finite class a Halmos-Savage
theorem (cf. [5]) with respect to sufficient statistics in probability theory
which was reformulated under the terminology of Borel subfield by Bahadur [1].

For our purpose we shall depend upon as a basic theorem the Radon-
Nikodym theorem due to Dye [4], in a von Neumann algebra. Firstly we
shall introduce a space of some restricted normal states relative to a von Neu-
mann subalgebra which will be called tracelet space (cf. Definition 1) and give
an example of such space by the direct product of finite factors in the sense
of Nakamura [7], and further we shall extend the existence theorem of the
conditional expectation in a von Neumann algebra for normal states in the
tracelet space (cf. Theorem 1). Under Theorem 1, we shall introduce a
concept of sufficiency of von Neumann subalgebra for some restricted set of
normal states and prove a Halmos-Savage characterizations of sufficient sub-
algebra (cf. Theorems 5 and 6). These have applications to find a charac-
teristic property of subalgebra having unique expectation onto it (cf. Theorem
7), and to prove a von Neumann proposition (cf. Theorem 2 of [9]) for a von
Neumann's operations which are stated in the final section.

2. Preliminary.

Let A be a countably decomposable (=<τ-finite) von Neumann algebra of
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finite class acting on a Hubert space H, and B, C and M von Neumann sub-
algebras of A, and Be = B'/~^A where B' is the commutant of B. Denote
the identity operator by 1 and a complex number by λ.

Let μ be arbitray but fixed faithful normal trace of A. Then for a sub-
algebra B, there exists a linear mapping e (a-+ae) from A onto B such that
for any α e i and for any

(1) μ{ab)

(2) ae = 0 (α ̂  0) implies a = 0,

(3) α e ^ 0 (α^O), α*e = αe* and (ab)e = aeb,

(4) a« e ta e <f a«ta.

(cf. [3], [8] and [14]). Such a linear mapping e is uniquely determined
within the condition (1), that is, uniquely determined by μ and B, and it was
called conditional expectation relative to B (cf. [14]) or expectation conditioned
by B (cf. [8]). (Recently, Tomiyama [13] has proved that every linear idem-
potent mapping from A onto B with norm one has always the property (3)).
Here we shall call a linear idempotent normal (=condition (4)) mapping from
A onto B by B-expectation.

For the normal trace μ, denote L\A, μ) (=Lμ

1 say) and L2(A, μ) (=Lμ

2

say) the L1 and L2 spaces with the norms || ||i and || ||2 respectively,
and similarily denote for the subalgebra B L\B, μ) and L\B, μ) which
are considered as closed subspaces of Lμ1 and Lμ

2 respectively. Then the
conditional expectation e relative to B is uniquely extended to a positive
linear idempotent mapping from Lμ1 onto L\B, μ) satisfying ||a;e||i<^||ίc||i for
every x^Lμ1, and furthermore e extended to a projection operator from Lμ

2

onto L\B, μ). We denote also the extended mappings of e to Lμ1 and Lμ

2

respectively by same e.
If a measurable operator x (in the sense of Segal [10]) satisfies xηB (i.e.

ux = xu for every unitary u in Br) then x is called B-measurable.

For a normal state <τ, a positive measurable operator x is called o-integr-

able if for the spectral resolution x = \λ dEi the numerical integration λ da(Ex)

is finite, and we denote it by σ(x). A measurable operator x is σ-integrable
if the absolute value \x\ of x is <r-integrable. For any pair of measurable
operators x and y, if \x — y\ is <τ-integrable and σ{\ x — y\) = 0, then we call
" x = y o-n.e.". Denote L2(A, σ) the space of all measurable operators x such
that σ(x*x) is finite (i.e. x*x is tf-integrable). For x and y e L2(A, σ), y*x is
<τ-integrable, and the space L2(A, σ) is a Hubert space under the inner pro-
duct (x, y)a = σ(y*x) for x, y e L2(A, a) where the origin 0 in L\Ay σ) being
σ-n.e. zero operator.

For any pair of normal states σu <τ2, we call <τi being absolutely conti-
nuous with respect to a2 (denote σι -< σ2), if σ2(ά) = 0 (α ̂  0) implies always
σλ(a) = 0. Further for any pair of sets of normal states Si and S2, if
ύ2{a) = 0 (α ̂  0) for every a2 e S2 implies σ^a) = 0 for every <ri e Si, we denote
' Sί~<S2', and if Si~<S2 and S2<Sl9 denote iS1^S2

f. If p-<σ, by Radon-
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Nikodym theorem due to Dye [4] there exists uniquely an operator d e L2(A, σ)
within p-n.e. such that p{a) = σ(d*ad) for every a^A, and we denote
D{p/σ) = d and call the Radon-Nikodym derivative in the sense of Dye (of p
with respect to σ).

If S is a set of measurable operators, then denote the set of all positive
operators in S by S+.

Denote " s σ " the supporting projection of a normal state σ, and for a
von Neumann subalgebra B "bσ" the supporting projection in B of the σ.
For any von Neumann algebra M, denote the Banach space of all <τ-weakly
continuous linear functionals of M by M* in the notation of [3].

3. Tracelet space and correspondence between normal states and ex-
pectations.

In the present section, firstly we shall introduce a some restricted set of
normal states of A which will be referred throughout of this paper.

DEFINITION 1. For a von Neumann subalgebra B, let "SB" be the set
of all normal states σ of A satisfying

(5) σ(ab) = σ(ba) for every a^A and for every
and we call SB the B-tracelet space.

The 2?-tracelet space contains obviously the space of all normal traces,
and is weakly closed, convex set in A*. The following lemma follows imme-
diately from the definition of 5-tracelet space and the Radon-Nikodym theo-
rem due to Dye:

LEMMA 1. For any σ^SB, there exists da^L\Be, μ)+ such that
σ(a)= μ(dσa) for every a^A. Further the derivative D(σ/μ) is self-adjoint,
positive and dσ = D(σ/μ)2. Conversely for any t^L\Bc, μ)+ with ||£||i = l
<j(a) (=μ(ta)) belongs to SB.

We shall now give an example of ^-tracelet space:

EXAMPLE 1.2) If A is a Πi-factor and B, C are subfactors of A such that
A = B(^)C in the sense of Nakamura [7], where B and C are identifying
with B®{λl} and {λl}®C respectively. Then obviously BC = C and B = CC.
Let μB and μc be the normal traces of B and C respectively, and S(B) and
S(C) the sets of all normal states of B and C respectively. Then μ = μB x μc

2) This example is suggested by Prof. M. Nakamura. Takesaki [12] has extended
the theorem of Nakamura [7] to the direct product of factors without the assumption of
finiteness. If we introduce formally the tracelet space into a von Neumann algebra,
without assuming the finiteness, in the same way of Definition 1, then, when B is Hr
factor, C is a factor and A = B®C in the sense of [12], the 5-tracelet space SB is
given by (6), where μB is the trace of B, and where B and B ® {λ 1} are identifying as
in this Example.
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by [7], and

(6) SB = {βB x pel pc e S(C)}

(60 Sc = {^x/^; ^ e S ( 5 ) }

where μB X pc is defined as a state of A by

(MB X jOcXΣ δί ® ct) = Σ μBΦύpdd)

for any finite δ* e 2?, c* e C (i = 1, 2, , n), that is, 5- or C-tracelet spaces
are represented by (6) or (6') respectively. We shall prove (6): the state
MB X Pc obviously satisfies (5) and belongs to SB Conversely, let σ^SB and
let σc be the state of C of the contraction of a onto C. By Lemma 1 there
is dσ e L\Cf μ)+ such that <yc{c) = μddoc) for every c e C. Let {cn} be a
sequence of operators in C satisfying || c?σ — cΛ || i —> 0. Then

σ(b ®c) = limμ((l (x) cn)(b (x) c)) = limyw(6 (x) cwc)
w->oo w->oo

= μB(f>) lim μc(cnc) = μB(b)μc(doC) = μB(b)σc(c),
71->CO

and we get (6).

In the following, for any fixed von Neumann subalgebra B of A we shall
give a correspondence between normal states in SB and ^-expectations which
is a generalization of the existence theorem of conditional expectation in A
(cf. Theorem 1 of [14]).

THEOREM 1. For any <y e SB, there corresponds a B-expectation eσ

such that

(7) σ(a) = cr(αεσ) for every a^A,

and So is uniquely determined by σ within the equation (7) and σ-n.e. Con-
versely any B-expectation ε is corresponding to certain σ e SBf that is, ε = εσ

z\

Proof. Putting fjjti) = σ(ab) for any fixed c ε i and for any 6 ε 5 , fa is
a weakly* (=<τ-weakly) continuous linear functional of B. For each b^B,
let u being the partially isometric operator in B such that b = u\b\,

\fa(b) I = I σ(άb) I = \σ(au \b\)\ = \ σ(aubA) I (6i = I b | 1 / 2 )

^ f t A ) ^ || α ||oo^ (| 61).4 )

Hence there exists uniquely a'^B such that fa(b) = ^(α'δ) and bσa' = af where
6σ is the supporting projection in B of a which belongs to the center of B.
This implies σ{ab) = σ(a'b) for every α e i and every b^B. The mapping
α-*α r obtained above maps linearly A into B and satisfies (3) and (4). Indeed,
for any α, aίf a2^A and for any

3) In general, for the .^-expectation, there corresponds a number of states in the
J5-tracelet space SB. Concerning this fact we shall discuss the sufficiency of subalgebra
for a set of normal states in SB.

4) ||α||oo is the operator bound of a.
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σ{{ax + a2yb) = <τ((αi + α2)δ) = σ{ajή -f σ{a2b)

= σ(a'b) + σ(a'b) = σ((af

Since α/, α2' and (a1 + a2y belong to boB, (αi + a2)
f = α/ + α2'. Similarity

(λaY = λaf and the condition (3) is obviously satisfied. The condition of nor-
mality (4) for the mapping a-*ar follows from that: If aa t & for self-ad joint
α«, a^Aj then for b^B+

σ(a<xfb) = σ(dab) t <τ(αδ) = σ(afb)

and α«' ̂  α' imply aa

f t &o for some self-adjoint b0 e δσi?. Hence tf(δo&) = σ(arb)
for all 6 G 5 and α' = &o Now we put

aε° = a' + ae(l — bo) for every c ε i ,

where αe is the conditional expactaion of a relative to B, then for every b^B

6% = b' + be(l - bo) = &δσ + 6(1 - 6σ) = ft

and Aεo=B. Therefore εσ is obviously a ^-expectation and satisfies (7). The
uniquess of εo: Taking a ^-expectation e satisfying <τ(α) = σ(a£) for all α ε i ,

(8) <j{a*b) = ̂ r((α6)ε) = <τ(αδ) - σ((αδ)sσ) = σ(a

s°b)

for every 6 G B . (8) and sσ ^ δ σ imply that bσa
εσ = δσα

ε and sσα
ε = sσ6σαε = sσbaa

εσ
= sσα

£σ, and we obtain aε = aεσ σ-n.e.
Conversely, let ε be arbitary ^-expectation. Putting σ(ά) = μ(aε), σ(aε)

=μ(aε°) = μ(aε) = σ(a) and

<τ(ab) = μ((ab)ε) = μ(aεb) = μ(baε) = μ((ba)ε) = σ(ba).

These imply that σ^SB and aε — aε° σ-n.e..

REMARK 1. The ^-expectation εσ corresponding to <rESB is uniquely
determined by <r within (7) and without the terminology σ-n.e. if and only if
σ is faithful on B, because the both parts of "if" and "only if" follow
from that the support bσ in B of σ is identity operator 1. In Theorem 1,
even if the assumption on A—the countable decomposability and the finiteness
—does not put, and if the set of states SB defined by (5) is not empty, then
for any <r6& there corresponds uniquely a linear idempotent mapping from
A onto bσB satisfying (3) and (4). This fact will be obtained by the same
way as in the proof of Theorem 1.

REMARK 2. As Example 1, let A, B and C be Πi-factors such that
A~B(g)C, and let μ, μB and μc be the normal traces of A, B and C respec-
tively. Then by Example 1 any σ e SB is expressed by σ = μB X σc where σG

is the contraction of σ onto C (i.e. σc(c) = σ(l®c)). This implies that for any
finite bi^B and cz e C

( 9) ( Σ h (x) Ci)«> = S δi <g) σc(Ci)l.

Indeed, for any
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<x((Σ h <g> σc(cx)l)Q> ® 1)) = σ(Σ btb (g) ̂ (c t )l)

= Σ (μBibJήσcid)) = σ(fΣ bib <g> ct)) = <r((Σ »i ® *)(& (g) 1))

and hence (9) holds.

In the following we prove that any J3-expectation is representable by the
conditional ^-expectation e as (10) below.

THEOREM 2. For any B-expectation ε, there exists uniquely tε ^L\BC, μY
such that
(10) aε = (tεa)e for every α ε i .

Conversely, for any t^L1^, μ)+ with te = l, putting aε = (ta)e, then ε is a
B-expectation. The correspondence ε-*tε is one-to-one between the set of all
B-expectations and { ί e L 1 ^ , μ)+; te — 1}.

Proof. Putting σ(a) = μ(aε), by the proof of Theorem 1 σ^SB> Then by
Lemma 1 there exists uniquely dσ^L^B0, μ)+ such that σ(a) = μ(dcd) for
for all αeA. Therefore for every

μ(aεb) = μ{{ab)ε) = σ{ab) = μ(dσab) = μ{{dai)eb)

and aε — (dσa)e. The operator dσ is the required one, i.e. te — da. The uni-
queness will be followed from the final part in this proof.

Converse case: For any ti^Lμ2, tz<^L2(Bc, μ) and

and (t1t2)
e = (t2t1)

e. Let teiL\Bc, μ)+ be te = l and put aε = (ία)e. Then
δε = (ί6)« = teb = b for any & e 5 and (ία)e = (ί1/2αί1/2)e ^ 0 for any a G i + . Hence
for a^A+ 0^α £ = (ία)e^(ί||α||ool)e = ||α||ool, and aε(ΞB+. By the linearity
of ε, a$^B for all α £ i . Since the normality of ε is obvious, ε is a B-
expectation.

The final part follows immediately from the above parts and the follow-
ing: If ίi, ί 2 e L ' satisfy (t1a)e = (t2a)e for every α ε i , then μit^a) = μ((tia)e)
= μ((t2a)e) = μ(t2a) and ίi = ί2.

4. Sufficiency of subalgebra.

In this section, we shall introduce the concept of sufficient statistics of
probability into the von Neumann algebra A.

DEFINITION 2. Let B be a von Neumann subalgebra and So be a set of
normal states of A. Then we call that B is sufficient for So, if the 5-tracelet
space contains So (i.e. Soc SB) and for each α ε i there exists af^B such that
aεc = a' a-n.e. for every σ e £ 0.

5) For any measurable operators ί and t\ W is the closure of the product operator,
i.e., tt' — t t' in the notation of [10].



CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA 57

This definition is slightly non-commutative extension of the case of suffi-
cient statistics in probability theory (cf. [1] and [5]), which may be described
as the following:

Let (Ω, Έ) be a measurable space in the terminology of measure theory,
and A the multiplication algebra of all bounded, measurable and complex
valued functions defined on Ω. Let 53 be an arbitary Borel subfield of % and
B the subalgebra of A consisting of all 53-measurable functions. Then A is
(in general homomorphically) represented by a commutative von Neumann
algebra A acting on a Hubert space Hω and B is similarity represented by a
von Neumann subalgebra B of A, The space of all probability measures of
(Ω, 21) can be identified with the space of all normal states of A by the
natural way, which coincides with the i?-tracelet space (likewise defined by
(5) in Definition 1), because A is commutative. We denote the element in A
and its corresponding operator in A by the same symbol a, etc.. Then for
each probability measure σ, there corresponds a conditional expectation
ϋ7σ(§|33) (§e5ί) relative to 53 which is determined in σ-n.e. in the usual sense.
In our notation, it is expressed by Eo{a\53) = aεo for α e A (cf. Theorem 1
and Remark 1). For a set So of probability measures, the sufficiency of a
Borel subfield 53 is defined by such a way: for any subset § e % there is a
function a'^B such that

(11) £Ό(§ 153) = α' σ-n.e. for every a e So.

For these cases the countable decomposability is not assumed, but since
the equation (11) is defined within the "σ-n.e" part, these cases are covered
by our case.

For σ<ΞSB if we put " aδ° = boa
εe" where. δσ is the supporting projection

in B of <r, then aδ° = aε° σ-n.e. and σ(a) = σ{aδ°) for all α ε i . The mapping
dσ is a linear, idempotent from A onto bσB satisfying (3) and (4). That is,
linear mapping εσ and do can be considered as' same one within σ-n.e.. By
Theorem 2, taking

(12) to = botea,

it is obvious that

(13) aδo — (tQa)e for every α e i and σe SB-

Under this notation, we have the following for any pair (B, So) of a von

6) Let P be the set of all probability measures of (Ω, SI). For each σ ε P A is
homomorphically represented by a von Neumann algebra Aσ acting on the Hubert space
Lσ

2(Ω, %)(=Ho say). The algebra Aσ is isomorphic to the quotient algebra A/Nσ, where
jV, = ίfeA; \\f\dσ = θ\. The Hubert space H is defined by the direct sum Σ3{&*; σ<=P}
in the similar method of Takeda [11], and the von Neumann algebra A is defined by
the discrete direct sum Έ{Aff; σ(=P} ( = {(Σ/* I <?<ΞP); /<ΞA}) where the Operation, the
addition and the multiplication are introduced into A by coordinatewise ones of {Aσ;
σeP}, that is, (ΣΛ k e P ) * = ( Σ Λ * l*e=P), ( Σ Λ I * e P ) + (Σflr.|*eP) = (Σ(/+Λ. |
(76?) etc.



58 HISAHARU UMEGAKI

Neumann subalgebra B and a set of normal states SQ satisfying SQCZSB'-

THEOREM 3. B is sufficient for So if and only if bPa
δ° = bσa

δ? for every
a^A and for every pair σ, peS0.

Ό

THEOREM 4. B is sufficient for So if and only if B is sufficient for the
closed convex hull K of So with respect to the weak topology of A*.

Proof of Theorem 3. The "only if" part is obvious, we prove the "if"
part. By the condition, for any

Therefore for each fixed α e A + , there exists α/ei?+ such that α'=sup{αδσ;

0} where " s u p " being taken under the ordering of operators. Hence

bσa'= sup {bσa
δp; p e So} = sup {bPbσaδp; p e So}

= sup {bPa
δ°; p<=S0} = α δ σ

and aδa = a' σ-n.e. for each <xe£0 and α e A + . Since any α e i is a finite
linear combination of operators in A+ and da is linear, we get aδ° = a' a-n.e.
for every α e i and for some corresponding af<^B.

Proof of Theorem 4. The "if" part is obvious, we prove the "only if"
part. Put Ko the convex hull of So and K the weak closure of Ko in A*.
Any a ^Ko is expressed by σ — Σ ? - i ^ * for σt e ίSo and scalars λ ^ 0 ( Σ ? a i ^ = l).
If E is sufficient for £>0, then for each α e i there exists α'G.B such that
that aδp = bPa' for every p e <S0. Hence σ(a') = Σ ? - I ^ ( Λ O = Σ ^ ( α ) = ^ ( α ) and
δσα' = αδσ. By a well-known theorem of Mazur, K coincides with the closure
of Ko in the strong topology in A*, and for any σ^K there exists {σn}czKo
such that σn{a)-^σ(a) for all α e l Therefore <r(α) = lim<rw(α) = lim<rTO(α0
=σ(af) and aδ° = af σ-n.e.

As Lemma 1, denote dσ=D(σ/μ)2 for σ^SB which belongs to Lι(Be, μ),
then

LEMMA 2. For αwt/ <τ^SB, dσ = tσdσe = dσetσ, where U is defined by (12).

Proof. Since α5σ = (£σα)e for any

(14) μ(dσα) = tf(α ) = ^(α5σ)

Taking δw' e (5C)+ which are commuting each other, satisfying 6 / ^ &„+/ (n = 1,
2, •••) and converging to £ff in the L^^mean, then bn

fe\tσe — bσ and

μ(dσebn

f) = μ(dobn'
e) t M ^ M = <*Q>°) = 1-

Since 0^dσebn

f ^daebn+if (n = l, 2, •)» it converges in the L^^mean to some

7) This theorem is related with the concept of the pairwise sufficiency (cf. [5]) and
i t will be applied to the proof of Theorem 6.

8) If dot to belong to Lμ\ then (15) (below) is clear from (14) (cf. §2).
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operator in L\A, μ) and μ(dσebn

f) ^ 1, and since dσe, bn

r and tσ commute each
other, by Lebesgue convergence theorem, dσetσ^Lμ

ι, 0 ^ μ(dσetσ) ̂  1 and for
every a^A

(15) μ{dσ(tσa)e) = lim μ(dσ(bn'a)e) = lim μ(dσebn'a) = μ(dσetσά).

Combining (14) and (15), μ(dσa) = μ(dσetσά) and we get dσ = dσetσ = tσdσe.

LEMMA 3. The B-expectation εσ is uniquely extensible to a projection
operator pσ from L2(A, σ) onto L2(B, σ) and satisfies (aε°bu b2)σ = (abu b2}σ
for 6i, b2 ^L2{B> σ), where L2(B, σ) is a linear subspace of L2(A, σ) consisting
of all B-measurable operators which is obviously closed.

Proof. Since a*ε°aε°^(α*α)ε° for all α ε i (cf. [13]), for any a, ax and

<αi ε σ, a2)σ = σ(a2*a1

ε°) = <r(α2

ε<y*ciieσ) = <x(α2

e<ί*αi) = (au a2

εσ)σ

and

<α ε σ, aεσ)σ = σ(aε°*aε<ή S σ((a*a) = σ(a*a) = <α, a}σ.

Therefore eσ is uniquely extended to the projection pσ from L\A, σ) onto
L2(B, σ) because the restrictions of A and B onto the supporting domain of
σ are dense in L\A, σ) and L2(B, a) respectively. The second part follows
from that, aε°b = pσ(ab) for any α £ i and 6 G B implies that

(aεobu b2}σ = (pσ(abi), b2}σ = (abu P^b2)σ = (abu b2)σ.

Hereafter, as in Theorems 3 and 4 let (B, So) be a pair of a von Neumann
subalgebra B and a set of normal states satisfying So c SB. In the follow-
ing, we prove Halmos-Savage theorem for our non-commutative case.

THEOREM 5. It is a necessary and sufficient condition for B to be suffi-
cient for So that there exists a state π e SB such that (i) So ~ π, (ii) π(asa)
= π(sσa) for each σ^So and for every a^A and (iii) D{σ/π) coincides with
a B-measurable operator σ-n.e. for every σ^S.

Proof. Necessity. By the assumption, for each α G i there corresponds
ar ε 5 such that aδ° = bσa

f, and by Theorem 2 there exists U^L\BC, μ) such
that aδσ = (tσθ)e for all α e A and tae — ba, where the notations tσ and dσ refer
to the equations (12) and (13). Whence for each pair σ, p^S0

μ(bptσa) = μ(bP(tσa)e) = μ(bPa
δo) = μ(bPbσaf)

= μ(bσbPa
f) = μ(bσa

δP) = μ(bσ(tpa)e) = μ(bσtPa)

and bptσ = batP. Since bσtσ = tσ and bPtP = tP,

tσθ
P
 —

=
 OσtσU

P
t

P

 = z
 0

P
tσ0σt

P

 = =
 tptσ.

While for any &', δ " e £ c and 6eJ5, μ(bfeb"eb) = μ(b'b"eb) = μ(b"eb'eb) and b'eb"e

= bf/ebfe. Since dσ, dP^L1(Bc, μ), dσ and dP are approximated by sequences
in Bc respectively, and we have dσedP

e = dP

edσe. Since by Lemma 2 dσ = tσdσe
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and dp = tpdpe

f

(16) dσdp = tσdσetpdpβ = tσtpdσedpβ = tptσdpedσβ = tpdpHσdσ* = dpdp.

Let da = I λdEχ(σ) be the spectral resolution of dσ(σ e So) and C the von Neu-
mann subalgebra generated by {Eχ(σ); λ ^ 0, σ e So}, then C is commutative
and da (σ e So) are C-measurable, moreover there exists a projection po^C
such that p o = sup{sσ; <rGiSo}. Let i*7 be a family of all projections p^C
such that p e F if and only if p^Sσ for some σ^S0. By the countable de-
composability of C and by Zorn lemma there exist a countable {<rw}cSo and
fe}cF such that p»^β* n and supSLipn = Po Putting 7r = ΣS>-i^n/2n, π
belongs to the closed convex hull of So (which is contained in SB) and p0 = sπ,
and hence π ~ So. Consequently by Theorem 4 aδ™ = δ^α' (αr is the operator in
B, cf. Def. 2) and by 6* ^ δ* we get δσίτr = tσ and9)

and dσdπ'1 = dσedπe~1 σ-n.e.. Since dσ commutes with cL and cί^(= 1), D{σ/π) > 0
and dσdπ"1 = D(σ/πf. Therefore D(σ/π) coincides with the Immeasurable
operator (dσedπe~1)1/2 σ-n.e.. The condition (ii) is obvious from (16) and the
construction of π.

Sufficiency: For any fixed σe So, put Aσ = {sσasσ; α £ i } and Bσ = {sσbsσ;
b^B}. Then Aσ and ^ are von Neumann algebras (acting on SσH) with the
parallel properties (in §2) of A and B respectively. Since for any α e A ,
b<=B and ρ<=SB

p(SσbSσdSσ) = pQ)Sσ(lSσ) = p(SσCLSσb) = p(SσCLSσbSσ),

putting 7rr(α) = 7r(α)/7r(sσ) and cr/(α) = <r(α) for a(=Aσ, πr and ίτr belong to S ΰ σ

as states of Aσ. By the assumptions (ii) and (iii), D(σ'/πf) belongs to
L2(Bσ, π'), and by Lemma 3 (for Aσ, Bσ and πr) we get immediately

/π)f D(σ/π)}π

= (sσasσbD(<τ/π), D(σ/π)}π= σ(sσabsσ) = σ(ab) = σ(aeσb)

and bσ(sσasσ)επ = bσ(jfo — dδ° for every α E i . While the condition (ii) implies
that π(sσdb) = π(absσ) = π(asσb) for every 6 G 5 and (sod)8™ = (αs^)^ for every
α G i Therefore again by (ii), for a<=A+, b^B+ and δx = b1/2

π{sσθb) = π(sσbidbι) = π(sσbιdbιSσ) ^ πφidbi) = π(db)

and

cr σ = 6ira£o = bσ(sadSa)ειπ ^ δ^(s<7αs<τ)επ = (sσαsσ)5π = (sσd)δπ ^ αδπ

P u t /(α) = σ(aδπ) — <5 (α δ σ ). Then / is a positive linear functional of A and

/ ( l ) = t f ( l ^ ) - <r(l^) = <r(6ff) - *(&*) = <r(l) - <r(l) = 0.

Consequently / = 0 and σ{dε^) — σ(dδ^) = σ(dδa) = σ(dε°). Thus we obtain αε<? = α ε^

9) For any positive and measurable operator t, t~ι is defined such as the closure of
the inverse operator in its supporting manifold and zero in its orthocomplimented mani-
fold, which is also positive and measurable.
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σ-n.e. for every α e i Since σ is arbitary in So, B is sufficient for So.

REMARK 3. In the original case of Theorem 5 (cf. Theorem 1 of [5]), the
countable decomposability has not been assumed, but it has been discussed
for a set of probability measures dominated by a probability measure p,
which implies that the multiplication algebra of all bounded random variables
defined p-n.e. becomes a countably decomposable von Neumann algebra, and
it reduces to our case.

In the rest part of this section, we shall describe for our case a related
concept of a theorem of Halmos-Savage with respect to the pairwise suffi-
ciency in probability theory. The following will be obtained immediately
from Theorem 5:

COORLLARY 5.1. If the set So consists of the faithful normal states,
then it is a necessary and sufficient condition for B to be sufficient for So
that D(σ/p) is B-measurable for every pair of states σ, p e So.

DEFINITION 3. A closed linear subspace C of A* is called abelien sub-
space if C is generated by {lcτ; c e C} for a certain commutative, weakly
closed self-ad joint subalgebra C of A and for a certain normal trace r of i ,
where the operation lc is defined by (lcf)(a)=f(ca)

For example, the closed linear subspaces of A* generated by the set of
all normal traces of A is an abelian subspace. In general, the real part of
any abelian subspace C of A* is an abstract (L)-space in the sense of Kaku-
tani (cf. [6]) where the ordering in C is defined from the positive definite-
ness.10) By Radon-Nikodym theorem due to Dye, we can easily see that:

LEMMA 4. If a closed linear and self-adjoint subspace C of A* is an
abelian subspace, then C^A*+ generates C and da, dP commute each other
for any pair of normal states σ, p in C.

Denote for any pair of normal states σ, p D(σ, p) = D{σ/{σ + p)/2). Under
these terminologies we prove the following:

THEOREM 6. It is a necessary and sufficient condition for B to be
sufficient for So that (1°) So is contained in an abelian subspace of A*
and (2°) D{σ, p) coincides with a B-measurable operator σ-n.e, for every
pair <r, p^ So.

Proof. Necessity: We refer to the proof of Theorem 5. Let C be the
von Neumann subalgebra and π the normal state in SB which were defined in
the part of the necessity of that proof. Then C is commutative, dσ^L\Cf μ)
for every <r&S0 and further by the construction of π dπ^L\C, μ). Putting

10) We shall give a characterization of the abelian subspace under the terminology
of abstract (L)-space in another occasion.
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C={fx; xeL\C, μ)} (where fx(a) = μ(xa)), C is obviously an abelian subspace
of A* and contains So. Consequently the closed convex hull K of So is con-
tained in C and for any pair σ, p^K with a-<p D(σ/ρ) ̂ 0 , and by Theorem 4
and the proof of Theorem 5 dσdπ"1 =D(<τ/π)2 = SaVa for certain immeasurable
positive operator Vσ, which depends on <r, for each σ^K* Hence

dσdp~X = SσiVσdπXVpdπ)'1 = SσiVσVp'^Sπ = SσVσVp'1.

Since Vσ and vP can be taken to be positive and commuting each other, D(σ/ρ)
= (dσdp-1)1'2 = SσίvσVp-1)1'2 and (2°) follows immediately from this.

Sufficiency: By the condition (1°) and by Lemma 4, dσdP = dPdσ for each
pair <r, ρ^S0 and dadτ — dτda (where τ = (σ + p)/2), and further τ{asσ) = τ(sσa)
for every α e i . Therefore by the same manner of the proof of Theorem 5,
asa = a£i <r-n.e. and similarily aεp = aε^ p-n.e.. Consequently aδσ = bσaεo = 6σα

ε^,

a§p = bpaετ and

Thus by Theorem 3 we get the sufficiency of B for So.

5. Uniqueness of expectation.

In this final section, we shall give a simple application of the sufficiency
of a von Neumann subalgebra to the uniqueness of expectation on it. This
is essential for non-commutative case.

THEOREM 7. The following conditions are equivalent each other:
( i ) B is sufficient for SB,
(ii) BcczB, where BC=B'^A,
(iii) The B-expectation is uuique.

Proof. (i)-+ (ii): For V e (Bc)+, put b = (b' + l)/μφ' +1) and σ(a) = μφa)
(a^A). Then cr^SB and is faithful. Hence εσ = eμ(= e), and aδ° = baa^ = aεo
by bσ = l. By Theorem 2, taking tσ such as (12), then for all α ε i

μ(£σα) = μ({tσa)e) = μ(aε°) = μ(ae) = μ(a)

which implies tσ = 1. While b = dσ = tσdσe (by Lemma 2) = cLe and &G.B.
Therefore b'^B, and BccB, because each operator in Bc is expressed by
a finite linear combination of the operators in (Bc)+.

(ii)^(iii): Let ε be a J5-expectation. Putting σ(a) = μ(aε), then σ(= SB and
f<7 = β. Since aε = (tσa)e for tσ^Lι(Bc, μ) with ίσe = l and by (ii) ίσ belongs
to L\B, μ), we obtain tσ = l and αε = (tσa)e = αe.

(iii)->( i) follows immediately from Theorem 1.

COROLLARY 7.1. If B —Nc for certain commutative von Neumann sub-
algebra N, then the B-expectation is unique.

Proof. NczN' and Na A imply NaNc=B and Br c Nf. Hence Bc c N'^A
=NC=B and we get the proof by Theorem 7.
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From this corollary, Theorem 2 in [9] (which will be stated in Cor. 7.10
follows such as: For a projection p^A, denote Cp = {pY^A and alP = pap
+ (1 — p)a(l — p) for every a^A, \p being a notation of von Neumann
(e.g. see [9]). Then \p is obviously a C^-expectation and by Corollary 7.1
every Cp-expectation is unique and hence is represented by \p. Moreover let
{p, Q, ' •> r, " •} be a countable family of projections in A which are com-
muting each other, and put B = Cp^Cq^-". Then B = {p, q, -- }c, and the
^-expectation is unique. While for every α ε i a

]Plg]'"]r converges in the
strong operator topology to an operator b<=B (cf. [9], [14]) and denote
αipi*J" = δ. Then the mapping |JP|<7| is a J5-expectation, which has been
called the von Neumann's operation defined by the von Neumann sub-
algebra {p, q, • ••}" (cf. [9]). Consequently for the subalgebra B, every B-
expectation is represented by the von Neumann's operation \p\q\ — . Espe-
cially, if the Hubert space H, on which A acts, is separable, and if N is
commutative, then N is generated by a countable family of projections in it,
therefore we obtain

COROLLARY 7.1'. For the von Neumann subalgebra B(=NC), the B-expec-
tation coincides with the von Neumann's operation defined by N, that is,
for any countable family of projections p, q, which generates N, \p\q\- ••
defines the unique B-expectation and hence is determined only by N.

This corollary contains a von Neumann proposition, which has been
proved in [9], for our special von Neumann algebra A. Concerning the von
Neumann's operation, we shall give a further remark (cf. Cor. 7 17/). For any
von Neumann subalgebra M, Mc satisfies MC=MCCC(= ((Mc)c)c). Indeed, α £ l c

is equivalent to that aa' = a'a for all ar^Mcr —M^Ar which is also equi-
valent to a^(Mc^A/)^A(=Mccc), where M^Ar means the smallest von
Neumann subalgebra containing M and A'. Furthermere if M is commu-
tative, thenMc c is also commutative. This is clear by that Mcc = (Mf^ AY
s~sA = (M^A')r^A. We take N, and the Hubert space H as in the Cor. 7.1r,
then NCCC~NC =B, Ncc is commutative and is generated fty a countable family
of projections p, q, •••. Therefore the von Neumann's operation defined by
Ncc is also ^-expectation, that is, we obtain

COROLLARY 7.1". The von Newman's operations defined by N and Ncc

are identical.

As a special case of Cor. 7.1 and Cor. 7.1/, we have the following:

COROLLARY 7.2. // B is a maximally abelian subalgebra, then the B-
expectation is unique, and furthermore if the Hilbert space H is separable
then it is a von Neumann's operation defined by B.

If the converse of the last part of this corollary holds, then B is maxi-
mally abelian, that is, for commutative B, the equality "the B-expectation



64 HISAHARU UMEGAKI

= the von Neumann*'s operation defined by B" is a characteristic property
of the maximality of B (cf. Theorem 3 of [9]).

Let T be the set of all normal traces of A, then from the proof of
Theorem 7 we have:

COROLLARY 7.3. For a von Neumann subalgebra B, B is sufficient for
T if and only if A' /^AaB.

This contains a result of Dixmier (cf. Proposition 8 of [3]) for the present
restricted algebra A.
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