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INDEPENDENT RANDOM VARIABLES

BY TATSUO KAWATA

1. Let the distribution function of a random variable X be F(x) and

(1.1) Φ(K) - J^^ΓAΓ dF(x), h>0

which we shall call the typical function of X and is defined by K. Kunisawa
[1]. It is evident that

Φ(h}^Q (A>0), 0(+0) = 0, 0(+oo) = l.

The function plays certain important roles in the theory of sums of in-
dependent random variables.

We consider a sequence of independent random variables

(1.2) X19 X2, ..-

and let Fn(x) be the distribution function of Xn. We form the typical

function ΦFl*> *Fn(ϊι) of

i.e.,

(1.3) ^1*..-wn(A) - Γ -^-πr
J -oo x~ + h~

This is not necessarily non-decreasing with increasing n, but converges
to 0 as n -> co for every h > 0.

The aim of the present paper is to discuss the behavior of](1.3) for
large n. We assume throughout that

(1.4) ^Γt^O, i = 1, 2, ....

Let

(1.5) Λ (s) - (V^ΛFU*), / - 1, 2,
o

be the Laplace transform of Ft (x) and set

(1.6) ^»(s) = Π/ t(s).
1 = 1
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I have shown the following fact in proving a renewal theorem [2]
which is stated as

LEMMA 1. Let {X*} be a sequence of non-negative independent random
variables, and suppose that

(1.7} 0 < m t = E(X,)< oo, / = !, 2, ••-,

1 n

(1.8) lim-^—Σmi = m,
n-*oo n ι=\

and

(1.9) Γιm(°°xdFn(x) -0
.4-*oo J A

holds uniformly with respect to n. Then we have

(1.10)

This lemma is an essential part in proving the renewal theorem I have
got and we shall consider the consequence of it concerning the typical
function (1.3), and discuss about the behavior of (1.3) with h = h(n) (h(n)
— > oo ) as n-* oo.

2. It seems convenient to state certain facts of elementary nature
as lemmas.

LEMMA 2. Besides the hypotheses of Lemma 1, we further suppose that

(2.1) Fi(x)-Ft(Q)^Ax*, for 0 < x < δ,

where δ, A are constants independent of 1 ±g / < oo and p > 1. Then there
exist SQ and B independent of i such that

(2.2) f*(s)^Bs-q, for 0 <s0 < s,

q being any positive number less than p.

Proof. Put a = q/p. Without loss of generality we can suppose q > 1.
Then a < 1, ap >1. We have

+ r
J S~a

(2.3) ^('""rfί iGO+β-'1—(" dFt(x).
Jo J «~α
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Thus by (2.1) there exists an s0' > 0 such that the last expression does
not exceed

Since e~~sl~a = 0(sβ), β being any positive number, there exist s0 and B
independently of / such that

/t (s) ̂  Bsr*.

LEMMA 3. Under the conditions and notations of Lemma 2

(i) there exist sϋ and A such that

(2.4) ^\Ψn(s)^As-\ (s>s0),
n = l

q being any positive number less than p,

(ii) we have, for every s > 0,

(2.5) -iW(s)<oo.
TO-l

Proof, (i) By Lemma 2, there exists an s0' (> 0) such that

<Pn(s)^BnS-n\

Therefore we have

oo oo Re" β

»(s) ̂  Σ 5"s-rea - Ί

 JS

B^ < ̂ s-a, s > so,
—

for some positive constants A and s0.

(ii) We have

(2.6) 0 ̂  - /,'(s) = ΓjP^"rfF, (*) ̂  -
Jo

and

Λ ω - Γ + Γ ̂  ̂  (8) - F> (o) + ^-β ,Jo J δ

which does not exceed, by (2.1),

(2.7) ,4δ" + e~*s,

where δ is the one in (2.1). If we take Si = δι(s) such that Apδ?~l

then (2.7) has a minimum value at δ = δi and ASζ + ^~διs = β < 1,
Thus we have
(2.8) Λ(s)<0.
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Hence by (2.6) and (2.8) we finally have

which proves (2.5).

3. We shall now prove the following

THEOREM 1. Lei Φσn (h) be the typical function of σn(x) = Fι*F2* - *Fn(x),
F. (x) being a distribution function. If conditions in Lemma 2 are satisfied,
then we have

(3.1)
7ι->oo ί^=l ( / /

Proof. Since

jjsin hyer*»dy - ̂ ^y, s > 0,

we have

Φσn(h) - h SJ(JV"* sin

ί
co poo

sin /zs Js 1 e~~xsdσn (x)
o Jo

(3.2) = A ("sin hsφn(s)ds.
Jo

and hence we have

-Ϊ-Σ 0σn(A) = Σ Γsin hsφn(s)ds
n w=ι Λ n-i Jo

(3.3)

The interchange of \ and 5j is legitimate here, because for small s, by

Lemma 1,

is bounded and ̂ w(s) ̂ 0, and for large s, by Lemma 3, Σ^nfc) is integra-
ble, taking /> > q > 1. We divide the right hand side integral into two
parts
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say, δ being some positive constant. Then since Σ^M(s) is integrable
over (δ, oo), Riemann-Lebesgue lemma shows

(3.4)

Since

we get

lim 72 = 0.

.. fδ sin hs , 7thm\ ds =
2

sr
as

Now if we put

then it holds by Lemma 1 that

(3.6)

And sX(s) is a function of bounded variation, and the total variation over
(0, it) is

(3.7)

+

S£ - - j φn(s) , , ^
ds -i ---- .

m

The differentiability of Σ^n(s) is easily verified, for the series (2.5) of
Lemma 3 (ii) is uniformly convergent in every finite interval not contain-
ing the origin.

The series s^]φn(s) is bounded for small 5, and it follows, putting
sY^M for small 5, that (3.7) does not exceed

2Mu + f V
Jo

- ^ »
uS n = L

ds u
m

= 2M. - 2 JV Σ ̂ m

< 2Mu + 2M Γds + -^~
~~
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Hence we get

(3.8)

(3.8) with (3.6) is nothing but the Young's condition for the convergence
of Fourier series. Thus we have shown that

ι r &lim /! = 75 — ,
ft^oo 2m '

which is, with (3.4), the required conclusion.

4. In this section we shall prove the theorem.

THEOREM 2. Let N(h) be any integral valued function such that

(4.1) W^L.+ oo (A -+00).

Then under the conditions of Theorem 1, we have

1 N(h^ 7f(4.2) Km i s0 ( A ) = * .
h-*oo rl w = l £"*

For the proof, we show some lemmas.

LEMMA 4. Under the conditions of Theorem 1, there exists a θ = 0(8, A)
less than 1, such that

(4.3) l φ, (s) ̂  Cθn, for S^s^A,
t = n + l

where δ, A are any positive constants and C is a constant independent of n.

By (2.8), there exists a θι = 0ι(s) such that /, (s) < 0X. 0ι(s) is a con-
tinuous function of s and 0ι(s) < 1 for B^s^A. Let maxs<ss^i 0ι(s)
- (9(δ, A) - 0. Then 0(8, A) < 1. Hence

ΣS ?>ι (s) ̂  Σ 0$ = -r̂ V = c^w

LEMMA 5. Assume the conditions of Lemma 1 <z^<f /#£ θ be an arbitrary
positive number. Then there exist S = δ(£) <2^<i n0 = Wo(θ) such that

(4.4) 9>n(s) = e-sn<m+8n+ηn\ fθY S < 8, W > ΛQ,

where ^n = Vn(s), δn fs independent of s and | 8» < θ, ^w [ < θ.

This was proved in my former paper [2].

LEMMA 6. Under the conditions of Lemma 1, there exist positive constants
mi and D such that for s < 1,

(4.5) f j φ< (s) ̂  Zte-^έr * nmι, w > w0.
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This is immediate from Lemma 5, because, for n > nQ

2. . 2. . "~nml. ^D
ι=n+i ι=n+i

where we have put m — 2£ = m\.
Now we shall prove Theorem 2. Put

= \
JO

<Pι(s)ds

ί
δ p^i poo

+ +
0 Jδ J A

= /i + /a + /s,

where 6 is any positive number and 8, A are those of Lemma 5. We
take B such that (2.2) holds, q being a positive number less than p, and
A such that A^ > B. Further we take nQ such that

(1 - BA-'Ϊ-' B" <Anq~l < £, n> no.

Then since <pi(s)^ίB
isr9i by (2.2) we have

ί
co <*> poo Γ>M+lς-<KW

Σ ^ (s)rfs ̂  I i-V-A'i = n+l JA -L ^5o

that is, it holds that for n > nQ, uniformly with respect to h

(4.6) i/8|<θ.

For this £, we take nίf such that C(A — δ)0 w < θ, where β and θ are
those in Lemma 4. Lemma 4 shows

(4.7) ! / 2 i f

Finally by making use of Lemma 6

|/ι!^ \ sin hs Σl Φι(s)ds
Jo ι=n+l

^h

In (4.8), we put n — N(h). Since h/N(h) ^Q, we can take h such that
Dh/(nmι) < 6 and we let JV(A) > max (»0, Wi) . Then we get, by (4.6), (4.7)
and (4.8),

(4.9)

Theorem 1 and (4.9) with
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SCO °°

smhs 1] φn(s)ds
0 w-tf(ft)+l

= -J-n_Σ ) t iΦσ r eW,

show the validity of Theorem 2.

5. If n(h) is an integral valued function such that n(h)/h-^Q, (n(h)
-> oo), then it is evident that

since Φσn(h)^l. Hence by Theorem 2, we have

I JVW) ft

lim -7— Y\ <ZL (h) = o—,

N(h) is the one in Theorem 2. This suggests the existence of lim Φσn(nh),
h being a constant. Indeed we have

lim 0- (nh) -
- n J ΓTs-mz 4- ^2

This is an immediate consequence of the law of large numbers, under
certain conditions, for

ί
oo ffi

-.^ + y rf<Γ"^)»
and <rn(nx) converges to θw(Λr) (law of large numbers), where

_ JO, Λ: < m,"

We shall, here, prove this under the conditions of Theorem 1.

THEOREM 3. Under the conditions of Theorem 1, we have, for any positive h

ln™ φ**(nK) = Ίf+~h^'

Proof. We take as a δ the same one as in Lemma 5. Let

nh\siτί nhsφn(s)ds
J δ

^ being a fixed positive number. Making use of Lemma 4 in the first
integral and Lemma 2 in the second integral, the above does not exceed
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nCθn + nBn(~srnQds
JA

nβn

21

Let Aq > 5. Then this tends to zero as n-+co. Hence

(5.1) lim nh\sm nhsφn(s)ds = 0.
W-»oo J δ

Now we have obviously

(5.2) lim wλf~sin nhse~nmsds = 0,
7^00 J δ

from which it results

in nhse~nmsds = w A s i n nhse~nmsds
o Jo

(53) =

We consider

(φn(s) - ^-ws

k being any positive number. Then

K

Γ. fl
nhse-nms(e~nεnS — 1) ds

where we have put φn(s) — e~-n°n+*n*>s, ^^->0, by Lemma 5. Putting

Hence

(5.4)

Next we have

lim Li = 0.
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\L2 nhse~nms(l - e-"*»°

se~nmsds

p-nm

nm

1 f δ

nm

f δ 1
e~nmsds\

j j ^ }

m + n2mz h*.

Thus we have

(5.5) limsup
Wl

Using (5.1), (5.2) and (5.3), we have

in nhsφn(s)ds -

= nh\ sin nhsφn(s)ds + wAl°°sin nhsφn(s)ds— nh\ sin nhse~nmsds
JO J δ JO

s n ernmg)ds + o(

(5.4) and (5.5) show

Hm sup 2kh*er*

since /? is arbitrary, we must have

"which proves our theorem.
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