TYPICAL FUNCTIONS OF SUMS OF NON-NEGATIVE INDEPENDENT RANDOM VARIABLES

By Tatsuo Kawata

1. Let the distribution function of a random variable X be $F(x)$ and

$$
\begin{equation*}
\Phi(h)=\int_{-\infty}^{\infty} \frac{h^{2}}{x^{2}+h^{2}} d F(x), \quad h>0 \tag{1.1}
\end{equation*}
$$

which we shall call the typical function of X and is defined by K. Kunisawa [1]. It is evident that

$$
\mathscr{D}(h) \geqq 0 \quad(h>0), \quad \mathscr{D}(+0)=0, \quad \mathscr{D}(+\infty)=1 .
$$

The function plays certain important roles in the theory of sums of independent random variables.

We consider a sequence of independent random variables

$$
\begin{equation*}
X_{1}, X_{2}, \cdots \tag{1.2}
\end{equation*}
$$

and let $F_{n}(x)$ be the distribution function of X_{n}. We form the typical function $\Phi_{F_{1} * \cdots * F_{n}}(h)$ of

$$
S_{n}=\sum_{k=1}^{n} X_{k},
$$

i. e.,

$$
\begin{equation*}
\Phi_{F_{1} * \cdots * F_{n}}(h)=\int_{-\infty}^{\infty} \frac{h^{2}}{x^{2}+h^{2}} d\left(F_{1} * \cdots * F_{n}(x)\right) . \tag{1.3}
\end{equation*}
$$

This is not necessarily non-decreasing with increasing n, but converges to 0 as $n \rightarrow \infty$ for every $h>0$.

The aim of the present paper is to discuss the behavior of ${ }_{\mathbf{s}}^{(1.3)}$ for large n. We assume throughout that

$$
\begin{equation*}
X_{\imath} \geqq 0, \quad i=1,2, \cdots \tag{1.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{i}(s)=\int_{0}^{\infty} e^{-s x} d F_{i}(x), \quad i=1,2, \cdots \tag{1.5}
\end{equation*}
$$

be the Laplace transform of $F_{0}(x)$ and set

$$
\begin{equation*}
\varphi_{n}(s)=\prod_{i=1}^{n} f_{\imath}(s) \tag{1.6}
\end{equation*}
$$

Received February 29, 1956.

I have shown the following fact in proving a renewal theorem [2] which is stated as

Lemma 1. Let $\left\{X_{i}\right\}$ be a sequence of non-negative independent random variables, and suppose that

$$
\begin{align*}
0<m_{\imath}= & E\left(X_{\imath}\right)<\infty, \quad i=1,2, \cdots, \tag{1.7}\\
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} m_{i}=m \tag{1.8}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{A \rightarrow \infty} \int_{A}^{\infty} x d F_{n}(x)=0 \tag{1.9}
\end{equation*}
$$

holds uniformly with respect to n. Then we have

$$
\begin{equation*}
\lim _{s \rightarrow+0} s \sum_{n=1}^{\infty} \varphi_{n}(s)=\frac{1}{m} \tag{1.10}
\end{equation*}
$$

This lemma is an essential part in proving the renewal theorem I have got and we shall consider the consequence of it concerning the typical function (1.3), and discuss about the behavior of (1.3) with $h=h(n)(h(n)$ $\rightarrow \infty)$ as $n \rightarrow \infty$.
2. It seems convenient to state certain facts of elementary nature as lemmas.

Lemma 2. Besides the hypotheses of Lemma 1, we further suppose that

$$
\begin{equation*}
F_{i}(x)-F_{i}(0) \leqq A x^{3}, \quad \text { for } \quad 0<x<\delta \tag{2.1}
\end{equation*}
$$

where δ, A are constants independent of $1 \leqq i<\infty$ and $p>1$. Then there exist s_{0} and B independent of i such that

$$
\begin{equation*}
f_{\imath}(s) \leqq B s^{-q}, \quad \text { for } \quad 0<s_{0}<s \tag{2.2}
\end{equation*}
$$

q being any positive number less than p.
Proof. Put $\alpha=q / p$. Without loss of generality we can suppose $q>1$. Then $\alpha<1, \alpha p>1$. We have

$$
\begin{align*}
f_{i}(s) & =\int_{0}^{\infty} e^{-s x} d F_{i}(x) \\
& =\int_{0}^{s-a}+\int_{s^{-a}}^{\infty} \\
& \leqq \int_{0}^{s-a} d F_{i}(x)+e^{-s^{1-\alpha}} \int_{s^{-\alpha}}^{\infty} d F_{i}(x) \tag{2.3}
\end{align*}
$$

Thus by (2.1) there exists an $s_{0}{ }^{\prime}>0$ such that the last expression does not exceed

$$
\begin{aligned}
& A s^{-\alpha,}+e^{-s 1-\alpha} \\
= & A s^{-q}+e^{-s 1-\alpha} .
\end{aligned}
$$

Since $e^{-s^{1-\alpha}}=o\left(s^{\beta}\right), \beta$ being any positive number, there exist s_{0} and B independently of i such that

$$
f_{v}(s) \leqq B s^{-q}
$$

Lemma 3. Under the conditions and notations of Lemma 2
(i) there exist s_{0} and A such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}(s) \leqq A s^{-q}, \quad\left(s>s_{0}\right) \tag{2.4}
\end{equation*}
$$

q being any positive number less than p,
(ii) we have, for every $s>0$,

$$
\begin{equation*}
-\sum_{n=1}^{\infty} \varphi_{n^{\prime}}(s)<\infty . \tag{2.5}
\end{equation*}
$$

Proof. (i) By Lemma 2, there exists an $s_{0}{ }^{\prime}(>0)$ such that

$$
\varphi_{n}(s) \leqq B^{n} s^{-n q}
$$

Therefore we have

$$
\sum_{n=1}^{\infty} \varphi_{n}(s) \leqq \sum_{n=1}^{\infty} B^{n} s^{-n q}=\frac{B s^{-q}}{1-B s^{-q}} \leqq A s^{-q}, \quad s>s_{0}
$$

for some positive constants A and s_{0}.
(ii) We have

$$
\begin{equation*}
0 \leqq-f_{i}^{\prime}(s)=\int_{0}^{\infty} x e^{-s x} d F_{i}(x) \leqq \frac{1}{s} \int_{0}^{\infty} d F_{i}(x)=\frac{1}{s}, \tag{2.6}
\end{equation*}
$$

and

$$
f_{\imath}(s)=\int_{0}^{\delta}+\int_{\delta}^{\infty} \leqq F_{i}(\delta)-F_{i}(0)+e^{-\delta s},
$$

which does not exceed, by (2.1),

$$
\begin{equation*}
A \delta^{p}+e^{-\delta s} \tag{2.7}
\end{equation*}
$$

where δ is the one in (2.1). If we take $\delta_{1}=\delta_{1}(s)$ such that $A p \delta_{1}^{p-1}=s e^{-\delta_{1} s}$, then (2.7) has a minimum value at $\delta=\delta_{1}$ and $A \delta_{1}^{p}+e^{-\delta_{1} s}=\theta<1, \theta=\theta(s)$. Thus we have

$$
\begin{equation*}
f_{v}(s)<\theta . \tag{2.8}
\end{equation*}
$$

Hence by (2.6) and (2.8) we finally have

$$
\begin{aligned}
-\varphi_{n^{\prime}}(s) & =-\sum_{i=1}^{n} f_{1}(s) \cdots f_{\imath-1}(s) f_{v}^{\prime}(s) f_{\imath+1}(s) \cdots f_{n n}(s) \\
& \leqq \frac{1}{s} n \theta^{n-1}
\end{aligned}
$$

which proves (2.5).
3. We shall now prove the following

Theorem 1. Let $\Phi_{\sigma_{n}}(h)$ be the typical function of $\sigma_{n}(x)=F_{1} * F_{2} * \ldots * F_{n}(x)$, $F_{:}(x)$ being a distribution function. If conditions in Lemma 2 are satisfied, then we have

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{h} \sum_{n=1}^{\infty} \mathscr{\sigma}_{\sigma_{n}}(h)=\frac{\pi}{2 m} . \tag{3.1}
\end{equation*}
$$

Proof. Since

$$
\int_{0}^{\infty} \sin h y e^{-s y} d y=\frac{h^{7} \cdots}{s^{2}+h^{2}}, \quad s>0,
$$

we have

$$
\begin{align*}
\Phi_{\sigma_{n}}(h) & =h \int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-x s} \sin h s d s\right) d \sigma_{n}(x) \\
& =h \int_{0}^{\infty} \sin h s d s \int_{0}^{\infty} e^{-x s} d \sigma_{n}(x) \\
& =h \int_{0}^{\infty} \sin h s \varphi_{n}(s) d s \tag{3.2}
\end{align*}
$$

and hence we have

$$
\begin{align*}
\frac{1}{h} \sum_{n=1}^{\infty} \mathscr{D}_{\sigma_{n}}(h) & =\sum_{n=1}^{\infty} \int_{0}^{\infty} \sin h s \varphi_{n}(s) d s \\
& =\int_{0}^{\infty} \sin h s \sum_{n=1}^{\infty} \varphi_{n}(s) d s . \tag{3.3}
\end{align*}
$$

The interchange of \int and Σ is legitimate here, because for small s, by Lemma 1,

$$
s \sum_{n=1}^{\infty} \varphi_{n}(s)
$$

is bounded and $\varphi_{n}(s) \geqq 0$, and for large s, by Lemma 3, $\Sigma \varphi_{n}(s)$ is integrable, taking $p>q>1$. We divide the right hand side integral into two parts

$$
\left(\int_{0}^{\delta}+\int_{\delta}^{\infty}\right) \sin h s \sum_{n=1}^{\infty} \varphi_{n b}(s) d s=I_{1}+I_{2}
$$

say, δ being some positive constant. Then since $\Sigma \varphi_{n}(s)$ is integrable over (δ, ∞), Riemann-Lebesgue lemma shows

$$
\begin{equation*}
\lim _{h \rightarrow \infty} I_{2}=0 \tag{3.4}
\end{equation*}
$$

Since

$$
\lim _{h \rightarrow \infty} \int_{0}^{\delta} \frac{\sin h s}{s} d s=\frac{\pi}{2}
$$

we get

$$
\begin{equation*}
I_{1}-\frac{\pi}{2 m}=\int_{0}^{\delta} \frac{\sin h s}{s}\left(s \sum_{n=1}^{\infty} \varphi_{n}(s)-\frac{1}{m}\right) d s+o(1) \tag{3.5}
\end{equation*}
$$

as $h \rightarrow \infty$.
Now if we put

$$
\chi(s)=s \sum_{n=1}^{\infty} \varphi_{n}(s)-\frac{1}{m}
$$

then it holds by Lemma 1 that

$$
\begin{equation*}
\lim _{s \rightarrow+0} \chi(s)=0 . \tag{3.6}
\end{equation*}
$$

And $s \chi(s)$ is a function of bounded variation, and the total variation over ($0, u$) is

$$
\begin{align*}
& \int_{0}^{u} d(s \chi(s)) \leqq \int_{0}^{u}\left|d\left(s^{2} \sum_{n=1}^{\infty} \varphi_{n}(s)\right)\right|+\frac{u}{m} \\
& \quad=\int_{0}^{u}\left|2 s \sum_{n=1}^{\infty} \varphi_{n}(s)+s^{2} \frac{d}{d s} \sum_{n=1}^{\infty} \varphi_{n}(s)\right| d s+\frac{u}{m} . \tag{3.7}
\end{align*}
$$

The differentiability of $\Sigma \varphi_{n}(s)$ is easily verified, for the series (2.5) of Lemma 3 (ii) is uniformly convergent in every finite interval not containing the origin.
The series $s \sum \varphi_{n}(s)$ is bounded for small s, and it follows, putting $s \Sigma \varphi_{n}(s) \leqq M$ for small s, that (3.7) does not exceed

$$
\begin{aligned}
& 2 M u+\int_{0}^{u} s^{2}\left|\frac{d}{d s} \sum_{n=1}^{\infty} \varphi_{n}(s)\right| d s+\frac{u}{m} \\
& \quad=2 M u-\int_{0}^{u} s^{2} \frac{d}{d s} \sum_{n=1}^{\infty} \varphi_{n}(s) d s+\frac{u}{m} \\
& \quad=2 M u-\left[s^{2} \sum_{n=1}^{\infty} \varphi_{n}(s)\right]_{0}^{u}+2 \int_{0}^{u} s^{2} \sum_{n=1}^{\infty} \varphi_{n}(s) d s+\frac{u}{m} \\
& \quad \leqq 2 M u+2 M \int_{0}^{u} d s+\frac{u}{m} \\
& \quad \leqq\left(4 M+\frac{1}{m}\right) u
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
\int_{0}^{u}|d(s \chi(s))|=O(u) \quad(u \rightarrow 0) . \tag{3.8}
\end{equation*}
$$

(3.8) with (3.6) is nothing but the Young's condition for the convergence of Fourier series. Thus we have shown that

$$
\lim _{h \rightarrow \infty} I_{1}=\frac{\pi}{2 m}
$$

which is, with (3.4), the required conclusion.
4. In this section we shall prove the theorem.

Theorem 2. Let $N(h)$ be any integral valued function such that

$$
\begin{equation*}
\frac{N(h)}{h} \rightarrow \infty \quad(h \rightarrow \infty) \tag{4.1}
\end{equation*}
$$

Then under the conditions of Theorem 1, we have

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{h} \sum_{n=1}^{N(h)} \Phi_{\sigma_{n}}(h)=\frac{\pi}{2 m} . \tag{4.2}
\end{equation*}
$$

For the proof, we show some lemmas.
Lemma 4. Under the conditions of Theorem 1, there exists a $\theta=\theta(\delta, A)$ less than 1, such that

$$
\begin{equation*}
\sum_{i=n+1}^{\infty} \varphi_{i}(s) \leqq C \theta^{n}, \quad \text { for } \quad \delta \leqq s \leqq, \tag{4.3}
\end{equation*}
$$

where δ, A are any positive constants and C is a constant independent of n.
By (2.8), there exists a $\theta_{1}=\theta_{1}(s)$ such that $f_{2}(s)<\theta_{1} . \quad \theta_{1}(s)$ is a continuous function of s and $\theta_{1}(s)<1$ for $\delta \leqq s \leqq A$. Let $\max \delta \delta s \leq A \theta_{1}(s)$ $=\theta(\delta, A)=\theta$. Then $\theta(\delta, A)<1$. Hence

$$
\sum_{i=n+1}^{\infty} \phi_{i}(s) \leqq \sum_{i=n+1}^{\infty} \theta^{i}=\frac{\theta^{n}}{1-\theta}=C \theta^{n} .
$$

Lemma 5. Assume the conditions of Lemma 1 and let ε be an arbitrary positive number. Then there exist $\delta=\delta(\varepsilon)$ and $n_{0}=n_{0}(\varepsilon)$ such that

$$
\begin{equation*}
\varphi_{n}(s)=e^{-s n\left(m+\delta_{n}+\eta_{n}\right)}, \quad \text { for } \quad s<\delta, \quad n>n_{0}, \tag{4.4}
\end{equation*}
$$

where $\eta_{n}=\eta_{n}(s), \delta_{n}$ is independent of s and $\left|\delta_{n}\right|<\varepsilon,\left|\eta_{n}\right|<\varepsilon$.
This was proved in my former paper [2].
Lemma 6. Under the conditions of Lemma 1, there exist positive constants m_{1} and D such that for $s<1$,

$$
\begin{equation*}
\sum_{i=n+1}^{\infty} \varphi_{i}(s) \leqq D s^{-1} e^{-s n m_{1}}, \quad n>n_{0} \tag{4.5}
\end{equation*}
$$

This is immediate from Lemma 5, because, for $n>n_{0}$

$$
\sum_{i=n+1}^{\infty} \phi_{i}(s) \leqq \sum_{i=n+1}^{\infty} e^{-s n(m-2 \varepsilon)}=\frac{e^{-n m_{1}}}{1-e^{-s m_{1}}} \leqq D \frac{e^{-s n m_{1}}}{s}
$$

where we have put $m-2 \varepsilon=m_{1}$.
Now we shall prove Theorem 2. Put

$$
\begin{aligned}
J_{n}(h) & =\int_{0}^{\infty} \sin s h \sum_{\imath=n+1}^{\infty} \varphi_{i}(s) d s \\
& =\int_{0}^{\delta}+\int_{\delta}^{A}+\int_{A}^{\infty} \\
& =I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where ε is any positive number and δ, A are those of Lemma 5 . We take B such that (2.2) holds, q being a positive number less than p, and A such that $A^{q}>B$. Further we take n_{0} such that

$$
\left(1-B A^{-q}\right)^{-1} B^{n}<A^{n q-1}<\varepsilon, \quad n>n_{0} .
$$

Then since $\varphi_{i}(s) \leqq B^{i} s^{-q i}$ by (2.2) we have

$$
\begin{aligned}
\left|I_{3}\right| & \leqq \int_{A \imath=n+1}^{\infty} \sum_{i}^{\infty} \phi_{i}(s) d s \leqq \int_{A}^{\infty} \frac{B^{n+1} s^{-q(n+1)}}{1-B s^{-q}} d s \\
& \leqq \frac{1}{1-B A^{-q}} \cdot \frac{B^{n+1}}{A^{q(n+1)-1}}<\varepsilon,
\end{aligned}
$$

that is, it holds that for $n>n_{0}$, uniformly with respect to h

$$
\begin{equation*}
\left|I_{3}\right|<\varepsilon . \tag{4.6}
\end{equation*}
$$

For this ε, we take n_{1}, such that $C(A-\delta) \theta^{n}<\varepsilon$, where θ and ε are those in Lemma 4. Lemma 4 shows

$$
\begin{equation*}
\left|I_{2}\right| \leqq \int_{\delta}^{A} \sum_{i=n+1}^{\infty} \varphi_{i}(s) d s \leqq(A-\delta) C \theta^{n}<\varepsilon . \tag{4.7}
\end{equation*}
$$

Finally by making use of Lemma 6

$$
\begin{align*}
\mid I_{1} & \leqq\left|\int_{0}^{\delta} \sin h s \sum_{i=n+1}^{\infty} \varphi_{i}(s) d s\right| \\
& \leqq h \int_{0}^{\delta} s \cdot D \cdot s^{-1} e^{-s n m_{1}} d s \\
& \leqq D \cdot h \cdot \frac{1}{n m_{1}} \tag{4.8}
\end{align*}
$$

In (4.8), we put $n=N(h)$. Since $h / N(h) \rightarrow 0$, we can take h such that $D h /\left(n m_{1}\right)<\varepsilon$ and we let $N(h)>\max \left(n_{0}, n_{1}\right)$. Then we get, by (4.6), (4.7) and (4.8),

$$
\begin{equation*}
\left|J_{N(h)+1}(h)\right|<3 \varepsilon . \tag{4.9}
\end{equation*}
$$

Theorem 1 and (4.9) with

$$
\begin{aligned}
J_{N(h)+1} & =\int_{0}^{\infty} \sin h s \sum_{n=N(h)+1}^{\infty} \varphi_{n}(s) d s \\
& =\frac{1}{h} \sum_{n=N(h)+1}^{\infty} \Phi_{\sigma_{n}}(h)
\end{aligned}
$$

show the validity of Theorem 2.
5. If $n(h)$ is an integral valued function such that $n(h) / h \rightarrow 0,(n(h)$ $\rightarrow \infty$), then it is evident that

$$
\frac{1}{h} \sum_{n=1}^{n(h)} \Phi_{\sigma_{n 2}}(h) \rightarrow 0, \quad h \rightarrow \infty
$$

since $\Phi_{\sigma_{n}}(h) \leqq 1$. Hence by Theorem 2, we have

$$
\lim _{h \rightarrow \infty} \frac{1}{h} \sum_{n=n(h)+1}^{N(h)} \Phi_{\sigma_{n}}(h)=\frac{\pi}{2 m}
$$

$N(h)$ is the one in Theorem 2. This suggests the existence of $\lim \Phi_{\sigma_{n}}(n h)$, h being a constant. Indeed we have

$$
\lim _{n \rightarrow \infty} \Phi_{\sigma_{n}}(n h)=\frac{h^{2}}{m^{2}+h^{2}}
$$

This is an immediate consequence of the law of large numbers, under certain conditions, for

$$
\begin{aligned}
\Phi_{\sigma_{n}}(n h) & =\int_{-\infty}^{\infty} \frac{n^{2} h^{2}}{x^{2}+n^{2} h^{2}} d \sigma_{n}(x) \\
& =\int_{-\infty}^{\infty} \frac{h^{2}}{x^{2}+h^{2}} d \sigma_{n}(n x)
\end{aligned}
$$

and $\sigma_{n}(n x)$ converges to $\varepsilon_{m}(x)$ (law of large numbers), where

$$
\varepsilon_{m}(x)= \begin{cases}0, & x<m \\ 1 . & x>m\end{cases}
$$

We shall, here, prove this under the conditions of Theorem 1.
Theorem 3. Under the conditions of Theorem 1, we have, for any fositive h

$$
\lim _{n \rightarrow \infty} \Phi_{\sigma_{n}}(n h)=\frac{h^{2}}{m^{2}+h^{2}}
$$

Proof. We take as a δ the same one as in Lemma 5. Let

$$
\begin{aligned}
& \left|n h \int_{\delta}^{\infty} \sin n h s \varphi_{n}(s) d s\right| \\
& \quad \leqq n h\left|\int_{\delta}^{A}\right|+n h\left|\int_{A}^{\infty}\right|,
\end{aligned}
$$

h being a fixed positive number. Making use of Lemma 4 in the first integral and Lemma 2 in the second integral, the above does not exceed

$$
\begin{gathered}
n C \theta^{n}+n B^{n} \int_{A}^{\infty} s^{-n q} d s \\
=n C \theta^{n}+\frac{n B^{n}}{(n q-1) A^{n q-1}}
\end{gathered}
$$

Let $A^{q}>B$. Then this tends to zero as $n \rightarrow \infty$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n h \int_{\delta}^{\infty} \sin n h s \varphi_{n}(s) d s=0 \tag{5.1}
\end{equation*}
$$

Now we have obviously

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n h \int_{\delta}^{\infty} \sin n h s e^{-n m s} d s=0 \tag{5.2}
\end{equation*}
$$

from which it results

$$
n h \int_{0}^{\delta} \sin n h s e^{-n m s} d s=n h \int_{0}^{\infty} \sin n h s e^{-n m s} d s+o(1)
$$

$$
\begin{equation*}
=\frac{h^{2}}{m^{2}+h^{2}}+o(1) \tag{53}
\end{equation*}
$$

We consider

$$
\begin{aligned}
H_{n} & =n h \int_{0}^{\delta} \sin n h s\left(\varphi_{n}(s)-e^{-n s m}\right) d s \\
& =n \int_{0}^{\frac{k}{n}}+n \int_{\frac{k}{n}}^{\delta} \equiv L_{1}+L_{2}
\end{aligned}
$$

k being any positive number. Then

$$
L_{1} \leqq n h\left|\int_{0}^{\frac{k}{n}} n h s e^{-n m s}\left(e^{-n s n_{n} s}-1\right) d s\right|
$$

where we have put $\varphi_{n}(s)=e^{-n\left(n+\varepsilon_{n}\right) s}, \quad \varepsilon_{n} \rightarrow 0$, by Lemma 5. Putting $\max _{0<s \leq k / n} \varepsilon_{n}=\varepsilon_{n}^{\prime}$,

$$
\begin{aligned}
L_{1} \mid & \leqq n^{3} \varepsilon_{n}^{\prime} h^{2} \int_{0}^{\frac{k}{n}} s^{2} e^{-n m s} d s \\
& \leqq n h^{2} k^{2} \varepsilon_{n}^{\prime} \int_{0}^{\frac{k}{n}} e^{-n m s} d s \leqq k^{3} h^{2} \varepsilon_{n}^{\prime}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{1}=0 \tag{5.4}
\end{equation*}
$$

Next we have

$$
\begin{aligned}
\left|L_{2}\right| & \leqq n h \int_{\frac{k}{n}}^{\delta} n h s e^{-n m s}\left(1-e^{-n \varepsilon n^{s}}\right) d s \\
& \leqq 2 n^{2} h^{2} \int_{\frac{k}{n}}^{\delta} s e^{-n m s} d s \\
& =2 n^{2} h^{2}\left\{\left[s \frac{e^{-n m s}}{n m}\right]_{\delta}^{\frac{k}{n}}+\frac{1}{n m} \int_{\frac{k}{n}}^{\delta} e^{-n m s} d s\right\} \\
& \leqq 2 \frac{k h^{2} e^{-k m}}{m}+\frac{e^{-k m}-e^{-n m \delta}}{n^{2} m^{2}} h^{2}
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|L_{2}\right| \leqq \frac{2 k h^{2} e^{-k m}}{m} \tag{5.5}
\end{equation*}
$$

Using (5.1), (5.2) and (5.3), we have

$$
\begin{aligned}
& \mathscr{D}_{\sigma_{n}}(n h)-\frac{h^{2}}{m^{2}+h^{2}}=n h \int_{0}^{\infty} \sin n h s \varphi_{n}(s) d s-\frac{h^{2}}{m^{2}+h^{2}} \\
& \quad=n h \int_{0}^{\delta} \sin n h s \varphi_{n}(s) d s+n h \int_{\delta}^{\infty} \sin n h s \varphi_{n}(s) d s-n h \int_{0}^{\delta} \sin n h s e^{-n m s} d s+o(1) \\
& \quad=n h \int_{0}^{\delta} \sin n h s\left(\varphi_{n}(s)-e^{-n m s}\right) d s+o(1) \\
& \quad=H_{n}+o(1)
\end{aligned}
$$

(5.4) and (5.5) show

$$
\limsup _{n \rightarrow \infty}\left|\Phi_{\sigma_{n}}(n h)-\frac{h^{2}}{m^{2}+h^{2}}\right| \leqq \frac{2 k h^{2} e^{-k m}}{m}
$$

since k is arbitrary, we must have

$$
\lim _{n \rightarrow \infty} \Phi_{\sigma_{n}}(n h)=\frac{h^{2}}{m^{2}+h^{2}}
$$

which proves our theorem.

References

[1] K. Kunisawa, On an analytical method in the theory of independent random variables, Annals Institute of Stat. Math. 1 (1950), 1-77.
[2] T. Kawata, A renewal theorem, Journ. Math. Soc. Japan. (under the press)

Department of Mathematics,
 Tokyo Institute of Technology.

