FURTHER SUPPLEMENT TO “ ON TRANSFERENCE
OF BOUNDARY VALUE PROBLEMS”

By Yusaku KomMATU

In a previous paper [1] it has been shown that for some simple domains
two main kinds of boundary value problems in potential theory are trans-
ferable each other by means of elementary operations. And then in
another paper [2] it has been supplemented that the relations for trans-
ference can be readily verified also by deriving separately the explicit
formulas for both problems.

However, in these papers explicit use has been made of well-known
but special formulas for solving two kinds of boundary value problems
with respect to a circle. In the present Note, considering the same topics
once again, we shall derive the results without any reference to these
special formulas. The present method may probably suggest a way to
obtain analogous results for more general types of basic domains.

1. Rectilinear slit domain.

THEOREM A. Let D be a basic domain laid on the z = x + iy—plane whose
boundary C is a segment defined by

C: x =0, —l=y=+1.

Let u(z)= Rf(2) and v(z) = Ry (2), f(2) and g(z) being analytic, be the solutions
of Dirichlet and Neumann problems, respectively, with related boundary con-
ditions

= =+ V=(y), aa: = V*(y) for z==+0+4+1y (—l<y<+1),

o/0v denoting the differentiation along inward novmal; the condition for
solvability of the latter problem, i.e.

1

[ m+7-0)ay =,

is, of course, supposed to be valid. Then there holds a connecting relation

f@)=g'@+ip+ LD

or
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9(2)= g(o)+ j:(fm —ip— %)dé’.

Here ¥1+ 2° denotes such a branch that &1+ 2* ~z as z— o, and p, o, T
are veal constants given by

P = Jf(c0) (arbitrary),

o= Rf(@) = 4 (VTF 29/ @1~ — WIF 79D,

T = —i[2(f(2)— f(o0))]F== = % ([NTF 2g'(2)1°=* + [V1+ 229/ (2) =)

or alternatively, in terms of boundary functions, also by

_ip U T
7= | VO = V-0 @
m = o L) = V) d.

Proof. Consider an analytic function defined by

F(2) = N1+ 2(9'(2) — f(2) + iJf(e0)) + 2Rf(c0).

Since g(z) remains regular at z = co and hence g'(z) vanishes there (at
least in second order), it is evident that F(z) remains regular also through-
out D. Based on the assigned boundary conditions, there holds

RE (0 + iy) = ::«/1‘?;@(1 -g-’%— u)=0 along C.

Hence, by reflection principle, F(z) can be prolonged analytically across
C into another sheet of Riemann surface associated to &1+ 2%, in view
of the equation F(— z) = — F(z). Thus, F(z2) becomes a function regular
and single-valued throughout the closed two-sheeted Riemann surface
and hence it must reduce to a purely imaginary constant. The last-
mentioned fact is also an immediate consequence of the boundedness of
F(z) in D. Consequently, we may put

9'@) = f(2) —ip — f/%-%

or
9(2) = g (o) +§1(f<c>— ip — f/—i%—’;—z—)dg.
where T is a real constant and

p = Jf(e), o = Rf ().

Since g'(z) = O(|z[™2) as z— o, we have
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7= —ilim WT+22(f(2) — ip) — o2)
— zl;_)lg 2(f(g) — o —ip) = —i[2(f(2) —f(0))]*==.

The expressions for ¢ and 7 in terms of g(z) are readily derived by
means of the connecting equation established. Namely, we have
W1+ 22g'(2) =+ = — (F do + iT) =F io — iT.

On the other hand, the alternative expressions for ¢ and 7 in terms
of the boundary functions are obtained as follows. By integrating both
sides of the equation

9@ _ fRe—ip  oz+ir
N1+ 2 N1+ 22 1+ 22

along both banks of the boundary slit, we get

.t . 1 (! . 1
il gro4in- L _a (=0 + iy)—— d
Ly(+ +ly).\/1_y2 y+zj1y( +zy)__~/1_y2 'y
. +0+(1—8)s ~0-0=8)i) ¢ f(2) — ip gz + it
= lim — dz,
841 {j+o—(1—5)¢ * S—0+(1——8)i} 1+ 22 1422 )

the right-hand member representing the sum of principal values of the
improper integrals and nof a contour integral. Here it is further to be
noted that &1 + 22 denotes the branch which is equal to + /1 —3%at
z==20+2y(—1<y<1). Since two integrals of the single—valued (rational)
function (cz 3 i7)/(1 + 2%) cancel out, this leads to

s . 4 h 1(__ , ___]'—
lj_l(y(+0+zy)+g( 0+ i) Vi ay
_ 4042 —0—i :@ _— ip
B {jm«t + §—o+c} N1+ 2 dz
=§  TEIE amicre) —ip),

|zl=R>1 N1+ 22

the contour integration being to be taken along any circle with center at
0 and radius greater than unity in the positive sense with respect to the
origin. But, since, by definition, there holds

Ry (£0 + i) = £ oo Ry (0 + iy) = =V()

for —1 <y <1, we finally have

1

7= f (o) = 5 [ (Vr0) = V=0 s d.

-1

Next, we get in a similar manner a relation
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~ Lot g0t

= lim Jg*"*““”‘ + S“"“‘"‘”‘l 2(f(2) —ip)  z(oz+ir)

85+1 ) 40—i—s)¢ —o+a-8>¢ N1tz 1422
N z2(f(z) —ip)
= Bait S . d
?]z|=R>1 A1+ 22 g

:# (%f(oo)-l—i—T—l---')(1‘"%“1"”)‘12:_27”’
[2[=R>1 z 22"

whence readily follows

T G | = Vo)t a.

2. Circular slit domain.

THEOREM B. Let D be the whole z = re*®—plane cut along a circular slit
defined by

C: r =1, aZ0<27r —« < a<r).

Let u(z) = Rf(2) and v(z) = Rg(2), f(z) and g(z) being analytic, be the solu-
tions of Dirichlet and Neumann problems, respectively, with related boundary

conditions
L]

w =+ VEQ), %=V‘—'(0) for z=(1%+0e" (a<0<2r—a),

o/ov denoting the diffeventiation along inward novmal;, the condition for
solvability of the latter problem, i. e.

[ @ + vy a6 =,

is, of course, suptosed to be valid. Then there holds a connecting relation

oz + T
— eaa) (Z . g-—;a>

f(2) = 29'(2) +ip + 4

or

2 . 4T ) dt
2) = g(oo) + &) —ip — i et
g() g( ) Sw<f( ) p /\/(éa_ew,)(:____e.—-za> g
Here & (z — %) (z — %) denotes such a branch that ¥ (z — ) (z — e**) ~ z
as z— oo, p is an unessential rveal constant defending on the arbitrariness of
adding any ftuvely imaginary quantity to f(z), and o and T ave constants
given by
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o = f(0) —ip = eV (z—e*) (2 — e g’ @1 S

2sina
T=f) tip = — 5 WE— e G e g @17, -
or alternatively, in terms of boundary functions, also by
=T = _i* SZn—-a (V+(0) ~|V~(0)) ) etol2 7 dG
Az Ja ’/sin 6% sin 0—""21 .

Proof. Without loss of generality, it may be supposed that p = 0, since
otherwise it is only necessary to replace f(z) by f(2) —ip. Consider an
analytic function defined by

F(2) = (z — &) (z — e7) (29'(2) — f(2)).

For z=(1=%0)e¢** with a < g < 27 — a, there holds

= 2i859’2‘/sin 0—a sin +a

F z=e
B = w 2 T g@ -1
2 2?2 sin -
2
. —a . f+a
sin Sin
-+ 1/ 2 2 (v—wu)=0.

sin -
2

Thus F(z)/(z — 1), and hence F'(z) itself also, is analytically prolonge-
able across C into another sheet of Riemann surface associated to

N {(z — e (z — e, in view of the equation

FQ/z _ _ FE or gF(_;_)=m.

12 —1 Z—1

The function F(z) thus prolonged becomes single-valued on the closed two-
sheeted Riemann surface and is regular throughout except for the point
at infinity lying on the original sheet, around which it behaves in such

a manner that
Fo (1= %+ o( 2~ 5 +o( 1)
x (-~ f(“)‘*+0(fz|2>)

= — f(c0)z + (f(®)cosa —A) + O (T;L,),

where A is a constant; though explicitly unnecessary, its value is really
given by
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A= 1::5 z2(f(2) —f(0) 4+ g(2) —g ()).
Accordingly, the function defined by
F(2) + f()z=4(z — &) (z — ) (29’ — f(2)) + f()z

is regular throughout the closed Riemann surface and hence it reduces
to a constant. Consequently, we obtain an identity

vV (z — e%) (z — e7%) (29" (2) — f(2)) + f(0)z = — £(0),

which represents the connecting relation stated in the theorem, the values
of the constants involved being

(p=0), o=f(o), 7=f0).

Now, since, as shown above, R(F(2)/(z—1)) =0 for z= (1 =x0)e*® with
a<f<2r—a, we get, for such z, an equation

0=R((e* —1)F((A=x0)e?))
= R((e™ — 1) (— f(eo)e' — £(0)))
= (cos § — D)R(f(e0) — £(0)) —sin g J(f (=) + £(0)),

which implies

R(f(2) — £(0)) = I(f(2) + (0)) =0,

T = f(0) = f(0).
The expressions for o and 7 in terms of g(z) can be readily derived by
means of the connecting equation established. In fact, we have only to
notice the relations

+ia

oot +r=—[2v/ (2 — ) (z — e*) g'(R) ]
- e [V E @ e g ()]

On the other hand, the alternative expressions for o and 7 in terms of
the boundary functions can be obtained as follows. By integrating both
sides of the equation

(z—1)9'(2) = (z—1)f(z) — (=1 (f(«)z + f())

i/ (z —e'*) (z — e—t) - ZZ,\/ (z — ) (z — %) iz

along both banks of the boundary slit and remembering that the last
term is a single-valued (rational) function, we get

9

pr Sin —2—
j et (g"((1 + 0)e*) + g'((1 — 0)e'®)) ]/ 6
o — 3/ sin

0—a_. 0+«
5 Sin 9
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= lim {s(l——D)ei(‘)ﬁt—a) + S(l—ﬂ)gia } (z _ l)f(z) ﬁ_

5->+0 L J a0 et Geoyeir—a) | A (2 — &) (z — e™**) iz
_ q} . (—Dfe)  dz
3 (z1=m>1 Nz —e" (z— e iz
- owi o Ge=Dfx 1
2m 13305 V(z— e (z — e iz]

=27 f(o0) + 27 £(0) =‘47z%f(oo).

since, as shown above, f(0) = f(); here Re§ [ ] designates the residue

of the function involved within the brackets at z=0. It is further to be
noted that &/ (z — e¢**) (z — e**) denotes the branch which is equal to + 1

at z=0 and to 12ie“”2y/sin 0,;,2 s.inﬁL_!z;q"j at z = (1=x0)e? (a<4g

< 27 — ). But, since, by definition, there holds
Rleg (L 0)e) = = -2 Rg (1 = 0)et?) = = VE(6)

for a < § < 27 — a, the above relation finally implies

Cain O
wpe) = [ ) - v . a9
A Ja }/ sin Q»;—a sin 9_+20i

Quite similarly, if we replace in the above argument the factor z —1 by
z 1+ 1, there results a relation

2m—a cos g
[T+ 0en + g1 -0en) — 2 —ag
¢ — z‘/sin sin - —
2 2
= 2w f(o0) — 27 f(0) = 4 wi Jf(0),
whence readily follows
1 (oo cos g
O e A RO 9.
4 Je ‘/sin‘—g TAginfta
2 2
Consequently, there holds an equation
; 2T —a etolz
F(o0) = J—j a0,
47 )a . 0—a . 0+ a
‘/sxn TyosinT

which establishes the desired result.
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3. Radial slit domain.

By the same reason as stated at the end of the previous paper [2],
the case of radial slit domain which is a sort of rectilinear slit domain

may be omitted.
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