By Takayuki TAMURA and Naoki KIMURA

If there exists a homomorphism of a semigroup S onto a semigroup S* having special type, all elements of S are decomposed into the class sum of mutually disjoint subsets. Then we say that the decomposition of S to S* is obtained. In particular the decomposition to a semilattice is of importance, i.e., $S = \bigcup_{a \in P} S_a$ where $S_a \cap S_{\beta} = \phi(a + \beta)$, every S_a is a restrictive subsemigroup, and for any α , β , there is a unique **r** such that $S_{\alpha} S_{\beta} \subset S_{\delta}$ as well as $S_{\beta} S_{\alpha} \subset S_{\delta}$. In §1 we argue that there is greatest decomposition of a semigroup to a semilattice; particularly in §2 we show a decomposition of a commutative semigroup by method different from Mr. Numakura's, and in §3 our decomposition is proved to be greatest.

31 Greatest decomposition

In this paragraph S is assumed to be a general semigroup. A decomposition of S to an idempotent semigroup gives an equivalence relation; and an equivalence relation \sim in S raises a decomposition of S to an idempotent semigroup if and only if

(1) $a \sim b$, $c \sim d$ imply $ac \sim bd$, (2) if $a \sim b$ then $a \sim ab$.

Lemma 1. (1) and (2) are equivalent to (1') and (2'), (1') a~& implies ac~& c and ca~c& for every c, (2') a~a² for every a.

Proof. $(1') \rightarrow (1)$: For, from $a \sim b$, follows $ac \sim 4c$; and from $c \sim d$, $bc \sim bd$. By transitivity, $ac \sim bd \cdot (1) \rightarrow (1')$: evident. (1')& $(2') \rightarrow (2)$: from $a \sim b$, it follows that $a \sim a^2 \sim ab \cdot (2) \rightarrow (2')$: evident.

We denote by \mathfrak{O} the set of all decompositions φ of S to a semilattice, and by \mathfrak{L} the congruence relation which gives φ . The relation \mathfrak{L} and \mathfrak{L} are equal if they give the same decomposition. Obviously \mathfrak{Q} is not empty, because it includes at least a trivial decomposition, a partition of all elements of S into one class.

Now we introduce the ordering into \mathfrak{O} : i.e. $\mathfrak{P} \geq \psi$ means that $\mathfrak{I} \mathfrak{I} \mathfrak{I}$ if $\mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I}$. The ordering is clearly a partial ordering. Then we have the below lammas.

Lemma 2. & forms a complete semilattice.

Proof. Since \mathfrak{G} is a partly ordered set, we show that any subset \mathfrak{G}_i of \mathfrak{G} has a least upper bound. We define a relation \mathfrak{G}_i as follows. $x \perp y$ means that $x \prec y$ for every $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$. It is not hard to verify that \mathfrak{G}_i is an equivalence relation and satisfies the condition (1') and (2') (in Lemma 1). Clearly $\mathfrak{g} \geqq \mathfrak{g}$ for all $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$. Take up any $\mathfrak{g}_i \geqq \mathfrak{g}$ for all $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$, then from $\mathfrak{g}_i \nvDash \mathfrak{g}_i$ for all $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$, then from $\mathfrak{g}_i \nvDash \mathfrak{g}_i$ hence $\mathfrak{g}_i \geqq \mathfrak{g}_i$, and so \mathfrak{g}_i is the least upper bound of \mathfrak{G}_i . Consequently

Theorem 1. There is a greatest element of \mathcal{D} . In other words, there exists the greatest decomposition of a semigroup to a semilattice.

In another article we shall relate what is an equivalence relation giving the greatest decomposition of a general semigroup.

§ 2 A decomposition of a commutative semigroup

Let S be a commutative semigroup. We define an ordering $a \ge 4$ between elements a and b of S to mean that a certain element $x \in S$ and a positive integer m are found such that

 $a^m = bx$

The definition is obviously equivalent to the following:

 $a^m = b^n y$ for some positive integers m, n, and an element $y \in S$.

Lemma 3. This ordering is a quasi-ordering.

Proof. (1) $a \ge a$ for all a, because $a^m = a a^{m-1}$ for m > 1.(2) $a \ge 4$ and $4 \ge c$ imply $a \ge c$. For, from $a^m = 4x$ and $4^m = cy$, we get $a^{m-1} = cz$ where $3^m = yx^n$.

Lemma 4. $a \ge 1$ implies $a c \ge 1$ for every $c \in S$.

Proof. By the assumption $a^m = \ell x$ for some m and x. Multiply c^m by both sides of the equality, we get $(ac)^m = (\ell c)(c^{m-1}x)$ where m may be supposed to be greater than 1. This shows $ac \ge 4c$.

Now, if we define a relation as $a \ge 4$ and $4 \ge a$, the relation is an equivalence relation.

Lemma 5. $a \sim b$ implies that $a c \sim b c$.

Proof. Use Lemma 4.

Lemma 6. $a \sim a^2$ for every $a \in S$.

Proof. Obvious by the definition.

From Lemma 1, 5, and 6, we have

Theorem 2. We have a decomposition of a commutative semigroup S by introducing the equivalence relation $a \sim 4$, or $a \ge 4$ and $4 \ge a$, into S.

Next, we investigate the property of the subsemigroup S_{α} whose class sum is § .

Lemma 7. Let e be an idempotent element of S. If $e \ge a$, there exists x of S such that $e \ge x \ge a$ and $a_X = e$.

Proof. By the definition of the ordering, $e = a^n y$ for some $y \in S$ where we may assume n > 1. Set $x = a^{n-1} y$ then e = ax and $e \ge x \ge a$.

Lemma 8. If $a \sim e$ where e is an idempotent, there is \propto such that $a_{x=e}$ and $e \sim x$.

Proof. Since $e \ge a$ by Lemma 7, there is ∞ such that ax = e and $e \ge x \ge a$. On the other hand $a \ge e$; hence $e \sim x$.

Now, let D be the set of all idempotents of a commutative semigroup S .

Lemma 9. D is not only a subsemigroup of S but a semilattice.

The partial ordering \succ is introduced into D in usual way:

 $e \succ f$ if e = fe

Lemma 10. As far as elements of D are concerned, it holds that $e \succ f$ if and only if $e \ge f$.

Proof. Suppose $e \ge f$ i.e. e = fxfor some $x \in S$. Then $fe = f^2x = fx = e$. Hence $e \succ f$. The converse is trivial.

Lemma 11. Let $e, f \in D$. $e \sim f$ implies e = f.

Proof. From $e \sim f$, we have $e \succ f$ and $f \succ e$ by Lemma 10. Since \succ is a partial ordering, e = f is concluded.

From Lemma 11 we have the interesting theorem.

Theorem 3. In the decomposition of a commutative semigroup as Theorem 2, S_{α} is a subsemigroup having at most one idempotent.

Furthermore, if S_{α} contains an idempotent, S_{α} is a unipotent inversible semigroup [1]. Then $S_{\alpha}e$, in which e is an idempotent of S_{α} , is the greatest group of S_{α} and S_{α} has the property that

For $x \in S_{\alpha}$ there is a positive integer n such that $x^n \in S_{\alpha}e$.

The structure of a commutative nonpotent semigroups such as S_{\star} will be argued precisely in another paper.

3 Two decompositions

Mr. K. Numakura obtained a decomposition of a commutative semigroup S by the following equivalence relation \approx [2] as follows.

$$a \approx b$$
 if and only if $\bigcap_{n < 1}^{\infty} (Spa^n) = \bigcap_{n < 1}^{\infty} (Spb^n)$
for all $p \in S_{0}$

The decomposition due to \sim (§2) and \approx are denoted by φ_1 and φ_2 respectively. We shall abscuss the relations between φ_1 and φ_2 .

Theorem 4. $\varphi_i \geq \varphi_2$, in other words, if $a \sim i$ then $a \approx i$.

From $a \sim b$, i.e. $a^m = bx$, $b^n = ay$, for any $p \in S$,

$$\bigcap_{i=1}^{\infty} (Spa^{i}) = \bigcap_{k=1}^{\infty} (Spa^{km}) \subset \bigcap_{i=1}^{\infty} (Spa^{i}).$$

Similarly

$$\bigcap_{i=1}^{\infty} (S_{p}l^{i}) \subset \bigcap_{i=1}^{\infty} (S_{p}a^{i}).$$

Thus we have

$$\bigcap_{i=1}^{\infty} (Spa^{i}) = \bigcap_{i=1}^{\infty} (Spb^{i}), \text{ i.e., } a \approx b.$$

Let φ_{\circ} be the greatest decomposition of S to a semilattice (for the existence of φ_{\circ} is assured in § 1), and let \equiv be the equivalence relation determined by φ_{\circ} . Evidently $\varphi_{\circ} \in \varphi_{\circ} \in \varphi_{\circ}$.

Theorem 5. It holds that $\varphi_i = \varphi_o$, in other words, φ_i is the greatest decomposition of S to a semilattice.

Proof. It is sufficient to show that $a \sim 4$, (or $a^m = lx$ and $4^m - ay$) implies $a \equiv 4$. Since each class by φ , is a subsemigroup, it follows that $a = a^m$. Let \overline{a} be a class to which a belongs, and \overline{S} be the semilattice which is determined by φ . The multiplication in \overline{S} is denoted by \checkmark . From $a^m = lx$, we get $\overline{a} = \overline{l} \lor \overline{z}$, and consequently $\overline{a} \succ \overline{l}$ where \succ is a partial ordering in \overline{S} . Similarly, from $l^m = ay$, we have $\overline{a} \prec \overline{l}$. Thus it has proved that $a \sim l$ implies $\overline{a} = \overline{l} \quad O^T \quad a \equiv l$.

Now, if a semigroup S is decomposed to a semilattice composed of only one element, S is called an s-indecomposable semigroup. We have immediately from Theorem 5 the below theorem.

Theorem 6. A commutative semigroup

S is s-indecomposable, if and only if, for every pair a, 4 of elements of S, there exist a positive in integer mand an element $x \in S$ such that $a^m = 4x$.

Finally we show $\varphi_2 < \varphi_2$ by an example. Let S be the set of all pairs (i, j) of non-negative integers except one (o, o), and the multiplication is defined as

$$(i_1, j_1)$$
 $(i_2, j_2) = (i_1 + i_2, j_1 + j_2)$

where i_1+i_2 , j_1+j_2 are usual additions.

S is a commutative semigroup. Now let

},

$$A = \{(i, o); i \ge 1\},$$

$$B = \{(o, j); j \ge 1\},$$

$$C = \{(i, j); i \ge 1, j \ge 1\},$$

A, β and C are mutually disjoint subsemigroups and

 $S = A \cup B \cup C$

It is easily seen that this is a decomposition, written by φ' , of S to a semilattice. Of course $\varphi' \leq \varphi_{\circ}$. On the other hand, we consider the mapping f of S on the additive semigroup I of all natural numbers as follows.

$$(i,j) \xrightarrow{f} i+j$$

f is a homomorphism of S on I. Setting a = (i, j),

$$f(xpa^{n}) = f(x) + f(p) + n f(a)$$

$$\geq 1 + 1 + n (i + j)$$

$$> n$$

$$I_{n} = \{i, i > n\}, \text{ Then } f(Spa^{n}) \subset I_{n}$$

Let $I_n = \{i; i > n\}$. Then $f(Spa^n) \subset I_n$. Since $\bigcap_{n=1}^{\infty} I_n = \phi$, $\bigcap_{n=1}^{\infty} (Spa^n) = \phi$ for

every p, $a \in S$. It follows that φ_2 decomposes all elements of S into one class. Clearly $\varphi_1 < \varphi'$. At last we arrived at $\varphi_2 < \varphi_2$.

References

l T. Tamura, Note on unipotent inversible semigroups, Kodai Math. Sem. Rep., 1954, No. 3, pp. 93-95. 2 K. Numakura, A note on the structure of commutative semigroups, Proc. Japan Acad., Vol. 30, 1954, No. 4, pp. 262-265.

Gakugei Faculty, Tokushima University, and Tokyo Institute of Technology. *) Received October 15, 1954.