ON IXED BOUNDARY VAIUE PROBLEMS

By Yiseku KOMATU and Imsik HONG

1, Introduction.

In & previous paperl) one of the present
authors has dealt with mixed boundary value
problems in potential theory in some details,
Let now the basic domain be, in particular,
the unit circle, laid on the z-plane, and its
circumference be divided into two sets of
ares juxtaposing elternately, The problem is
then to determine @ function hermonic and
bounded in the unit circle in such & manner
that the boundary values of the function it-
self and of its normel derivative coincide
with the preassigned fuictions along the
arcs of each set, respectively. Numely, the
problem may be formulated in the form :

Aw(z)=0 in 1zl< |
u(e”q)—(_‘/;(go) for a.<9<{
U (e?)

o I{(y) for <50<a.

Q. .4 being identical with &y +27 &nd
2/2V=2/3Vy denoting the differentiation
along the inward normel at <*®. Here, the
prescribed boundcry functions U(go) and

(¢) &are supposed, for instance. continuous
end bounded over their respective intervals
of defiunition,

The existence and the unigueness of the
solution can readily be established. lore-
over, an integral formula for the solution
of the problem hes been given concerning eany
simply-connected busic domuin bounded by a
smooth contour. In our case of the unit
circle, the result may be related as fol-
lows. Introduce the function H(¢, z2)
mapping 131< 1 onto the exterior of the
unit eircle cut along radial slits starting
orthogonally &t points on the unit circum-
ference in such & manner that the images of
the ares &;<argd< &, 1Sl=1 (=4, -, m)
lie on the unit circumference, filling it
altogether, and further those of the arcs

<arg 3 <y, l8l=t (j=1,-;,m) tre redial
slits, &nd finally the function is nor-
malized st & =% such as (§-2)P(3,z2)>1
for §-»%. The mepping function may also
be characterized as the one which maps the
m-ply connected domein obtained by cutting
the whole plane along m circular slits

<arg §<a..h 181=1 (j=1,---,m) outo the whole
p{lane cut along m. radicel slits centred at

the origin in such u manner thet the point
{=2Z &nd its inverse point Z=1/%
correspond to the pcint ¢t infinity end the
origin, respectively, and further the nor-
malization at the assigned point I =2
&s steted above is satisfied, The function
thus defined satisfies evidently the funce
tional equetions

&(1/%. 2) =1/dtsm) end  P(1/3, 1/Z)=-2"8(5, %),
The mixed boundery velue protlem is then, es
previously shown, solved by the integrel
formule

u(z)=— f U@)—Lgfé(w 2)|dg

j V(so)Igléf ?,2)|d¢

In the simplest cese, where there ere
merely two arcs complementary each other om
the circumference zlong which the vilues of
the function itself and of its norme¢l deri-
vative are prescribed, the mapping function
and hence &lso the kernels contained in the
integral represensation can be expressed
concretely by meuns of elementery functions.
Neanely, the solution of the probleun

Awu(z)=0 in izl<y;
11;(«3,"’9)=U(9) for a<g<$,

2 u.(e;'?)

55— =V @ for f<p<aran

is given by the formule
9
u(z)..—fU( LoV Lozl g
’CosK [ P A y
atLre

V(?)lg (Yeas¥+1 +/cos}3{[’— k)’ 49,

where cos[{ end cos¥ sre defined by

K__ik-ap (1-zemX1-Ze*)
l@""—- Ll lG"" ZI

€

L?=_ ~C‘9-¢L—-‘)ﬁ— (1- Zc"’) (1- ze"“‘)(j. Ze"‘)'

e
le9—n [* leiee 2| |e+6 -2 |
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In the present Note we.shall again
deal with the mixed boundery value problem
formulated sbove from another point of view.
We shall first rederive an integral formula
for the solution in the case of a single
pair of arcs and then show that it is indeed
equivalent to the one formerly obtained,
namely to the one mentioned above, We shall
further proceed to show that our present
method of attack can also be extended to
general case of several pairs of boundary
trcs, In fact, a concrete illustration will
really be given in case of two pairs of arecs
by deriving en explicit formule for the so-
lution by means of elliptic functions, Fi-
nally the extension to general case of se-
veral arcs will also be discussed.

Rederivation of the formula in the sim~
plest case.

2.

The solution w(z) of the simplest problem
may be regarded as the superposition of two
function u®z) and wu@(z), i.e. w@)=u e,
which are harmonic in the unit cirele [z|<{
and satisfy the boundary conditions

u“e*)=U(g) end u“)(e;'?)- for a<g<4,
)

= ("‘~9)=V'(?) for §<g<atix,

and

The problem of determining «“%) or«¥x)is the
special cuse of the original problem for u(%),
where the boundary function V(g) or U(y) »
respectively, venishes out identically.

In order now to obtain an expression for
uWz), we uwap the unit circle IZIKL onto the
-upper semicircle |wi<!{ Jw >0 1in such a
menner that the points ‘2= e and z=e®
correspond to w=-+1 and w=-1 respectively.
Such a mapping function is given by

w+ 1 =—e‘i("“)/4' :[z—e,‘f N
w—1 Z— efh

ithe square roots a/z e” and Yz—-et 2
denoting the brunch which atteins the values
et and ie’ s Tespectively, &t z=0 ;
in particular, the points z= ei@*#7% aua
z=— @2 then correspond to wee o &G
w=0 , respectively, but this fact is here

not so essential,

Denoting by w=e¥ (0<¥<mw) the imkge
of the point z= g, cg<f)s e get, from the
defining equation

et e fI R
. - —
V-1 Jeiv_ i
the relations of boundary correspondence
. =9 W2
SN —5—
cot i= —*
2 2
sin _9’7—1_4;

4 $-a
i z cos T2
- 1/2
(sm t—a' sin {_;_91) Cos 3'9;4_“"—4

By this mapping 2=2%%w), the function
w(x) 1is transformed into & function
U )= V%) bermonic in the upper semi~
circle |wl<i, Jw>0 &nd satisfying the
boundary conditions

eN=Uw) fr O0<vy<m,
¥
li__(_“ll = () JW:O, Iwl<1.

bR

Hence, in view of the inversion principle,
the function «™®¥(w) is prolongadble
harmonically beyond the diameter into the
lower semicircle by meens of the defining
equation

o
(

wW* () = u“’*(rr))

W denoting, as usuel, the point conjupate
tow. Applying the Poisson integral formulsa
to the function u™*w) thus prolonged, we

get
u(!)*(w)

= (R’ *_f (1)*( ‘.\r) )d'v

To obtain the formulc for W it remains
only to transform the verieble point w &nd
the integration varieble ¥ into the orig-

€+W

L_
_.,,.* w

(1) ),

inal ones, Z and « Since the kernel
contained in the above integrend becomes
etew vy
et-w c""" w
—_ _%'3_1_ i) /(w+1 Pt
eiv_y
_ e+iw+i i)/ w+1 e+i
e w—1 ¢w 1
_2en(4-~)/4- Z—eo* (_‘_(‘ Q/}. e:.q A
31—- ‘.7 eir 1)
_— ( ‘-? el."_. z eb‘
eA.O. zZ - 'e""

-4
_.Zel-(ly-a—&)ﬂ w'fﬁg‘_— 1/Z—e“"“¢1——e‘-
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f—a L9
Cos4_ Z—e

we obtain the desired expression

0’( 1) (z )
=R 7= f Uty Z:: f;e 4.
(sin%5%sin —ﬁ) €

In order next to obtain a formula
expressing u®(z) , we mep the unit circle
|2|< 1 onto the lower semicircle |wi<1i ,
Jw < 0 in such & wsnner that the points

~(29—a,—€)/4




Ze=e®  and Zme'*(=ei**¥™) correspond to
w=-{ and w=+1 , respectively. Such &
mepping function is given by

o ,e_;(ﬁ—a)/zt Vz—ei¥ i

= 4

w—1 VYz—e™
the square roots {zZ—e+* and vz 1

designating again the same branch as ubOVe.
nomely the one which attains the values Lt
and [ei?% at = 0  in particular,
while not so esaential, the points Z=—-i+H/2
and g— o L&#/L noyw correspond to wa= —,

and w= 0) respectively.

Denoting by w=-<e¥ (m<y<2m) the

image of the point Z=e'? (2<gcarem), ve get,
from the defining equation,

ey R R A
'ei*"" i 1/ e Y e.',;.

the relations of boundary correspondence

ati—-_. sm%— *

< sm.?;z...

of which the latter relation between the
differenticls is, however, really explicitly
unnecessary in the following lines.

By ihis mapping Z=7zw), the function

u®(z) 1s transformed into a function «w)=uGPw)

harmonic in the lower semicircle Iwl<i, er<o
und satisfying the boundary conditions

uP* (w) =10 for  Jw= 0, Iwl<t,

z”‘(e )"’f'
‘V(fy)ti‘f for TLY<am,

Hence, the function u$™(w) is prolongable
harrpnicelly beyond the diameter into the
upper semicircle by means of the defining
equation

W ) = —u P ).

ioplying the integral formula on Neumann
protlein concerning the unit circle to the
function thus prolonged, ve get, in view of
u™(0)=0, 0,

u(l)*(w_)
1[21 et (x):r( wl
=R = Cow (et
R Ig e oy

i e"‘*’w" 2u” [e3) »-’W)
R,'m g eV w (e y,

Returning to the original variables, the
kernel conte,ined in the integrand becomes

18 w s
’*lg((;"fi‘ L) /(- t)
- ]g{( av-u-m@a-wx (sin 5 45—
Ll u)/x( ne=e )1/1 [———,))
+|sin -‘E;T“. (et z))},

and consequently we obtain the desired
exprassion

Q(—-—fa;/'(?)l ,.(t—a)/ﬁ( X Z:_é)l/:;/_;_—;‘-~

4+ _L(t~~)/x (1 ?—a,) /;:7)‘
+(smbzs (-] ap

Thus, we finally reach the integral
formula for the folution of the original
mixed boundary nroblem. stating

%(Z) = u‘”(z)+ u®

- ..(zq—o.— /4 ﬁ;ﬁ@z
(K, Pz U(?) v Py <P
stn sm_“_?;

&+ 2T

= | Vel (st e
gt )/s(sm_?__) ["Z)L

= (sinb5% - (2= &) oLSO].

It would here aguin be emphasized thet the
square roots fz— e and,/z_eiz contained
in the lust formula designate the branch
attaining the values ie'* and (et
respectively, &t the origin.

8. Identification with the formula pre-
viously obtained,

It will now be confirmed that the for=~
mula derived just above is, as a matter of
course, guite equivalent to the one obtained
in the previous paper,,pamely to the one res-
tated at the beginning part of the present
Note. For that purpose, we shall here show
that the previous formula can indeed be
brought to the present one by actual calcula-
tion,

Let a<y<f . We then get

»\/1—.-.—595—— (1 K ;.‘\E)‘/l—
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1

= i
lez|leib o |2 [git_y v/

s (iz)|e g

(12| e zlle*e 2|

e Oz &4i-ei

J euy-».)(e % Z) (2~ e“‘)[z— e“()

. 6. WAV :

-2 smfzf‘sin %—4) (-zP)R (Ao Yz-eit )}

(sm%—‘lz— <+ sind X (7 o i8|

+R (e -8z, o g F-zéox1-z 4N
_R (er@9-a~8)4 (7 _ €9 ) Z—e >z~ o*F)

’ew_z“ei,&_ z(l/l Ie;_e._ 2' 1/2.

el ({OS‘F = (Re‘E-Re )

[e*-z| lefez[[eit 52 (R ¢ 'ebzzﬁ“(‘”ﬂ(t- 2 )(1-2e )

sin 4;3}* les®_z|

SN A\ -
safn S ) R A )
1

¥ e_L(xq»—a-&)/i

N S IRV
- ,/}_"(smiz—"“ smﬁ_z_‘ﬂ) * (1- 2

letmm | |e® o 2| 2| git_ 2| V%

whence follows

1—003? 1-— 'le.
VeosK— cos ¥ et z|*

L(2¢-a-
_ Qz?a‘)/¢mﬁ—_gn

. o S 1/: R
(sin L5 sim £52 )2, 39)

Let {-<9< a+2m , Ve then get

VeosTr L
- VT J (A=~ 8)h(o-iq_ 5 WE—eTE fzeie)

lei—z||gia 2|Vt il g |2

YeosTU— s K
= VT (sin 85 sin%f')w(i—lzt‘)
le¥- z||eio_ i letb_z |t ’

Vi+ sk
— iz ](e-u{—a.)a mm)

le = 2|42 [o0d_y |2 ’

.

the square roots yZ—e<2 und fe—z in the

last expression designating the branches

which reluce to -ie-<%/2 und -—e+¥2 |

respectively, for 2 ==(0 , whence follows
Voos¥+1 +4ees¥- e K
i+ esK
= {J(eilra-0rt (g rom o
+ (un 558 sin 952 4 _iern))
I M e 1)
= 2R (- WayFTm TR )
X[t 0 (o in gy g )
+ (Sm?i&sm i’f—z‘i)m(i— tzl‘))
- { \'](e-i(('w-)/z. (E—e_'“‘)(z- e"‘)) le“‘(f— z!}
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(1- ze~ )1~ Ee.“")(l—ie_‘&)))vz

. e
- le‘,(#-o.)/x (smL;_é) V'z—_—e-;-;

sbst ot 4
2

: . /4
e G =)

By substituting those expressions now cale
culated into the previous formula we reach
rexdily our present formula at the end of
the lest section,

We are now in position to state an
important remark, In the previous paper,
we have derived the formules somewhat heu-
ristically in the first place, by supposing
a suitable continuity property of the bound-
ary functions, It hes therefore been nec~
essary to assure the range of vslidity of
the formule, i, e., to discuss the precise
boundary behaviors of the function w(z)
defined by the formula, when conversely the
boundary functions have been preassigned.

Our present method of deriving the
foruula save us, on the contrary, this
rather troublesome stage, In fact, as
readily observed, both integrals contained
in our fiual formula have been obtained
merely by transferring those for the ordi-
nary Dirichlet and Neumeun problems con=-
cerning the unit circle by means of the
reaspective elementary transformastions, and
the boundary behaviors of these solutions
are really classical and established, as
well-known, satisfactorily.

It remains, therefore, only to in-
vestigste the boundary distortion of the
elementary transformations, For a<¢<4 »
the correspondence between 2z = ¢*¢ and
w=-eY¥ yields the relation

% cos 5%
dy= & - Ty,
(sin S‘—;"‘ sim {"9) S ek ::.

In order now to be able to consider
the Foisson integral posessing the boundary
function U(y)=U(y) of the trensformed
Dirichlet problem, it must be supposed that
U*(y) 1is intugretle with respect to YV
over its rauge of definition 0<¥ < 7T .
Hence, the origincl boundsry function U(y)
must then be subject to the condition that



U(y) also is integratle with respect to V¥
over <y < T . In view of the above re-
letion for d¥/dg , the last condition is
equivalent to the integrebility of
U(q»)/|/(9.¢_)(4_9) with respect %o ¢ over
o<¢y< 4§, the condition which has been ex-
plicitly stated also in the previous paper.
That the condition is also sufficient to
discuss the problem in question is a matter
of course,

On the other hand, the boundary function
V*(¥) of the transformed Neumann problem
satigfies the relation

Venray = Vegrdg.

Consequently, it must only be supposed thet
V (g) 1is integrezble with respect to ¢
over 4<9<a.+2—n:.

4. Preliminaries in case of two pairs of
arcs.

We now proceed to consider the next step,
i. e.y to deal with the mixed boundary value
problem in case where there are two pairs of
the ares, filling up the whole circumference
of the unit circle, along which the values of
a function itself and of its normal derive-
tive are alternately prescribed.

Let a given mixed bouudary value problem
be formulated in the form

AUWU(z)=0 - in Izl< 4

u(e@): (]1((?) 'FW A].<?<€l.,

V(@) for m<g<t,,

'du(e“f)___ V1 @) for 4<¢ <oy,
»”

Vo(g) for A<g<ajtem,

2/  denoting here sgain the differ-
entiation along the inward normal at e*7 .

In general, if the unit circle 1zl< ]
is transformed by a schlicht conformal
mapping z=z(Z) onto & smoothly bounded
domein D , then the solution w(z)of the
problem just formuleted is trznsformed into

a function A(Z) = w(z(Z
harmonic in [  and satisfying the boundary
conditions

A

w =

for a<q<b and a,<q<d,

A
| x
3 l4xl =2 1ax|

]Lov <9<, and £<7<ai+zqc’

3/2Y denoting the differentistion slong
the inweard normsl =zt a boundery point z,
=%(x) of D . Yoreover, the boundery
curve of D may, for instance, eventually
possess the znguler points et the images of
ek‘-L e* ‘, _e—‘.l." and e"‘"
Aq read 1y seen from the remerk steted

&t the end of the preceeding section the
boundery functions [ and U, are to be
upposed that the products U l4Z|/4d¢g

and U, |d%1/4¢  are integrsble with
respect to ¢ over &;<P< ¥, anda<¢p<b,,
repectively, in order that the integral
formula concerning the domein D is aveilable,
while 1| and J; are merely to be surposed
s integreble with respect to ¢ over
4 <9< e, endf<¢<a,t2w, respectively.
Under these conditious the transformed func=-
tion«(Z) is regarded &s the solution of
the mixed boundery value problem with the
correspouding boundery conditions, provided,
for instance, the boundedness of the solution
is &assured,

Based on the reason mentioned just above,
we may teke, for convenience seke, any suite
able busic Aomain insteed of the unit circle,
Now, the unit circle can be mapped onto &
rectangle in such a menner that any four
assigned points on the circumference corre-
spond to the vertices of the rectangle, The
ratio of the length of two ad jacent sades of
the image-rectangle is then uniguely deter-
mined, nemely it is a conformel iavarient
called the modulus of the rectangle.

A function mapping the unit circle 1zI<{
onto & rectangle in a stated wanner is, as
well-known, explicitly expressible in terms
of elliptic functions. Por instance, let
¢, e, ¢end e, with ¢ >e, >e, be
any triple of real numbers setisfying the
conditions

e +e, +e, =0,

(oo La 4 ia, :

100 €4, 8, e )=, e*PL oY% o%)
L]

of which the last equation on anharmonic
ratios is expressible also in the form

AR ( 4 —a
e-e VM sm e ‘) (sm

sm & 41)

It is noticed that there remains one more
freedom of choice. The unit circle (z|<{
is mapped by the linear function A = X ()
defined by the equation

(%, 2,8 e)=(z, e“‘, et et

- 569 -



ounto the lower helf of the X -plane in
such a menner thet the points ei%, efL oi%
ama ot on (z/=1 correspond to
00, €4, €, and <¢; on IJX =0
respectively. We put, &s usuel,

o (— 2t = a—%

2
e —e,

i
K- La K= j &
- t9(1- 429 M-tX1-%)
wtvel-ea =K} w3 erea =A,K/

/
The quantities £°, &% K, K, Wy end —Liw, ere
then all real and positive., Now, the lower
half-plene JX< 0 4is mapped by

\ .f" X ’

E=h ] Ta-e)(Ae XA-es)
i. e, by

A= peif) (= peit))

onto the rectangle

iwy < Re<0, 0<JZ<w,

the primitive periods of Weierstrassiean
-function being, of course, teken as 24,
and 2wy .

We may further avail a multiplicative
freedom on the triple (¢, e,, 2, ) .
If eech is multiplied by & common positive
number suitably chosen, then the primitive
periods of the elliptic function can be
mormalized such a8

(01=7L and wae-—i.lg%‘

The number § with 0<g<i representing a
class acoording to conformal invarience is
determined by the equation
/
K

1 = TC ,"..«_)-’— - —~ TC
g1="T 5 x>
which is equivalent to

=& shﬁ: ( 1L+— z::‘-: )s.

It will p\e readily shown that tie mapp-
ing function Z=2(z) here established
possesses a branchepoint of the first order
at every point on (x|={ which corresponds

to e vertex of the image-rectangle. Hence,

-70 -

the distortion factor |d%/dz| , teken along

the circumference [z|=] , becomes infinite,
as Z approaches any one of these branch-
points, with the order equal to the recip-
rocal of the square root of the distance
between Z and the respective branch-point.
Accordingly, the integrability with respect

to ¢ of UGWra) e eas well as of Ui alicp)
over &) <9< 4, and a, <9< 4, together with
that of V[(¢) and of Vi(p) overd<pca,
and 4, <g<a+2w must be supposed, in order

that the transformed problem can be solved

by meeéns of en integral formula, This
supposition is equivalent to the fact that
boundary funetions of the transformed problem
are all integreble with respect to the new
arcelength parsmeter over their respective
ranges of definition, nemely, over respective
sides of the rectangle,

5. Formula for the solution in case of
rectangle.

According to the preliminary remarks
stated precisely in the preceeding section,
we will choose, for the sake of convenience,
a rectangle as a basic domain., let it be
laid on the 2 -plane for brevity
aake. we again wright merely Z instead of
z .

Let the besic rectangle be defined by

181,< Rz< 0, o< Je< .

Our main task to be now performed is then
formulated as follows:

To determine an explicit formula expressing
the solution of the mixed boundary value
problem

AD)=0 in Lq<Rz<o, 0<lecr,
wét)= M(t) and u.(lgt+it)=N(t)
for I<t<m,

qUls) P
5y =P6) and ")—“(—;-*v—ﬂ— Qs

‘!,'o'v 1g1‘< $<0,
2/?v denoting agein the differentistion eloig
the inward normel. The boundery functiouns M(t)
N(t), Pes) and Qes) are all supposed to be
integrable over their respective intervals,

Quite as im the simplest case, the
solution of the present problem is obtainable
by superposing two functions u¥(2)
and u*) which solve respectively the reduced
problems with boundary conditions

wOet)=Me), w”(xgz+ ) =Nt
w®it)= 0, um(lgt* P)=0 }



for 0<t<ex
[} 2 2(01= 2T, Lw3= —ZL].% 7/'

’ML{”(S) ) .
5y = 0, W Csrim) _ 0, Returning to the original variable, we
e m” obtain the desired expression
o .
_ﬁi) = Py, 7&__;5?&"9 = Q&) u®(z)
- L z (™
for 1f_£<s< 0. —R{%_L(Z%I j(M(t)—N(t))dt
I(g order now to obtain an expression T 87’ [}
for W (z) , we consider the function mapp- J‘ . . t
ing the basic rectangle onto the upper semi- * oM(t)({(LZ+t)+§(L'Z 2%
annulus {<w{<i, Yw>0 in such a manner LS
that the vertices z=0, i +Ti and ._f 2+ t)t 3 "Z—t))dt)},
correspond to w = 1,,-—1,’ Iqt and {{Z A N(t)“’(d* ) 3(L
respectively. It is given by In order next to obtain an expression
w= e for w®(x) , we map the ?@:10 rectangle
onto the lower semiannulus € Lwl<i
Denoting by we=e 'Y and wm= zei"P(o(v(.,c) Jw < 0  1in such a menner that the vertices
g+Tiand lgq correspond to

the images of the points z=it and z=lp+it (p<t<m) 2=0, ’M;‘z
respectively, we get, for either corresbon- > w1, e™ , —&741 ana ~{ , respectively,
dence, the seme relation The mapping function is given by

=t. ,
"y W= &— L’TCZ/ls't
By this mapping z=z%%w), the function
u®(z) 4s trensformed into & function
4= w2 %) hermonic in the upper semi-
annulus ¢<iwi<!, Jis>0 end satisfying the
boundary conditions

2, .
Denoting by w=-<e-? and w=e"/l“"¢(-‘t<‘#<o)
the images of the points =z =s and =z
= 5+4i7 (Jyg<s<0)y Tespectively, we get, for
either correspondence, the same relation

“(D‘(ﬁi*)=M(’Y) aad u(U*aeiﬂlf):N(,‘,)

YV =mws/ lg 9,
for 0<y<T,

w*
AU (w)
—_—=0 Jw=0, 9<mw|<t, By this mapping z=z%w), the function

v e » 1 4®(z) ig transformed iato a function w(¥*(w)

su";(z’bw)) hermonic in the lower semiannulus
Hence, in view of the inversion primciple, &"A Brawi i, Jv< 0 end satisfying the

the functionuw) is prolongable harmo- boundery conditions

nically beyond the boundery segments lying

ou the real axis into the lower semiannulus @% y
by means of the defining equation w5 w) =0 -ﬁﬂ ]’W=°, e 1ﬂ<{wl<1,
ua)#(w) - ,u(u* W), w(m(ezw)
‘ 9 oy Ay = Pesyds and
Applying the Villat integral formula to 1[
the funotion w™*(w) thus prolouged, au(z)*(e'vc"/lsﬁw) ,‘;/1“ 0 <Y <0,
we got sy — ¢ d,'4/=a(s)a(s
«-('D*(W')
{ 1 n Hence, the funotion «™¥w) is prolongable
—_ L (e g¥ harmonically beyond the boundary segments
K{'lci. (7' ) \J‘(MW’)‘N(V»"W’ lying on the reel axis into the upper
x (4 semiannulus by means of the defining
+| M) (g (ilgars ) +3 Glgw—y 0y sanation

0
U ) = — @ (i),

- JKNW)(;J(-LI,{WWH §Glyw-y)a )

o An integral formula"’for solving the
the notations from the Weierstrassian theory Neuzenn problem concerning the basic anuulus
of elliptic functions referring to those e“‘/ ¢ wl <1 applied to the function w®w)
with primitive periods thus prolonged, then implies
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u(l)* ¢ W)

3(vlgw+\lf)‘ au‘”*(e”)

=w ([

3‘(£lgur ¥)

+,[ 8 Glgw+¥) Humr (g 8y

- © & (dgw ¥) 3%
@*x, iV
- _"]_ lgw J ,4,(30. (e*Y)

gt 20 ‘/‘m“*)) )}

the notations from the Welerstrassian theory
» DOW
referring to those with primitive periods

of elliptic functions, marked by A

A
20 = 27, 20,= _1;,‘*/1“'1.
an additive constant contained in the

general integral representation vanishes
here in view of the antisymmetry character
of the boundary functions. Returning to
the originel varieble, we obtain the desired

express ion
(I-) %)

The sigma-functions depending on the

primitive periods 24, end 2

further be replaced by those depending on
2w = 27 and 2W,=-~ z..ls In fact, in

view of the identities

S = o(ki7)
—_-_:.& (.:lu.z),

(0= lﬂqlun
- Ut ( ‘lZ)

lgt
A 1
f=Akn, 9= -E

the above expression becomes

WP z)

{ (””z fo s(P()+ Qls))ds
lgg

T(iZ—4L8)
jlg P(S)l 0'(‘.2+ts) ds

6, (iz—1is)
kLT es)
+ J (YS! o;(.z.«ns)d“s)}

Thus, we finally reach the integrel
formula for the solution of the original
nixed boundary value problem, stating

w(z) = u.“’(z)+ u®z)

= {% (57 j(M(t) Nyt
+ f Mt (5 Gt D+ (- tN e

- j N (g, Gz+t)+ §3(£z—t))dt)

-ﬂ’—lgs(l’(sho,(s))ots
J otz-i9 , [ (
Pes)ly SGE-E J GGxis) }
ey Sotaiis) *5t Igfm d'l(~z+¢) s
1

{ ?];'; Rz ( j TM(t)-N(t»at
0

0
+ f s(P(s)+ Q(s))d.S)

T

+fM(tm(§(;z+t)+ g(iz—t)dt
0

- f NORG, G+t 5,Gz-t)dt
0

0
+ f ol ds +J ac >lg|;((‘: ‘3 ds}
g gy

A remark would be stated now again on
the converse problem concerning the boundery
behaviors of a function defined by the inte-
gral representation,

0(i2~is) is)
a(Lzti 5)

Based on the same reason as stated
beforehand concerning the simplest casa, it
is insured that the formula solves really
the proposed mixed boundary value problem.
More precisely steted, given any four func-
tions M(t), N(t), P(s)ana Q(s) integrable
over respective intervals as boundary func-
tions, then the function w(z) defined
by the last integral representation is hare
monic throughout the basic rectangle lyq<Rz
<0, 0<Jz<m end satisfies the boundary
conditions in consideration slmost everywhere.
Mreover, the boundary condition is surely
satisfied at every continuity point of the
respective boundary function.



6. General case,

The method illustrated above by the
simpler cases, where only one or two pairs
of arcs bearing alternatively the values
of the function itself and of its normal
derivative are existent, can be readily
generalized to case where several pairs
of ercs exist’’ Namely, the mixed boun=-
dary value problem in general case concerning
the unit circle is reducible to the problem
of establishing conformel mapping of a
domain bounded by circuler slits lylng on
the unit circumference onto domeins of some
canonical types &nd to the Dirichlet and
Neumann problems concerning such canonical
domeins, However, the results will, of
course, not so concrete as in the simpler
cases discussed above in details, since
the mapping problem ceunnot be solved, in
geueral, within the elementary or elliptic
functions,

Let & given mixed boundery value problem
be formulated in the form:

Au(z)=o i?l IZI< 1:
w(e?)= Ui (o Aor aj<g<t,
U (e )
Y V@) for B) gj<?<ay+1

O..41 being supposed identical with @;+27 and
2/dV denoting the differentiation along inward
normal, According to a circumstence similar
to the one remarked at the end of §4, it is
supposed here also that the functions

U@ {(g-a)(4- ), Vi)

() = L} ] 'm')
are all integrable over their respective
intervals of definition.,

We first notice that the original problem
is decomposed into two special ones, namely,
those of determining the functions u®(z) amd
u®x) harmonic in Iz|<] and setisfying the
boundary counditiouns
u®(e?)=0

u.(t)(el?)-U}-(q) and for A is

W, i® @, i
du a(:, )y and auase )=I)[(9) for B

(G="1, = m),

The solution w(Z) of the origiunal problem
is, of course, given by the sum of the
solutssons of these problems, i. e., w(z)
= u®@) + u®(z).

We begin with the mapping problem.
The unit circle 1ZI< 1 can be mapped onto
a subdomain of the upper half of the unit
circle, laid on the W =-plene, which is
bounded by the upper half of the unit circum-
ference, m—1 mutually disjoint upper
semi-circumference centered at some points
on the real axis and m segements on the
real axis, in such a menner that m arcs
A. (J ={, -, m)on |Z|=1 correspond
to* the circular pert of the imege-toundary
and the other m-  arcs B G=1,- M)on
1ZI=1 to its rectilinear Dert.

In fact, it is well-known tuat the
m~-ply connected domain consisting of the
whole plane cut along the circuler slits
++, m) considered &s a point set,
oa‘: be mapped conformally eund schlicht onto
a domain bdunded by whole circumferences of
an disjoint circles, It maey further be
supposed that one among those circumferences,
e. ., the image of Ai say, coincides
with the unit circumference &nd the remaining
ones &are all lie in its interior.

Let & mepping function be w=w®(z) and
its inverse be Z=zx™(w) ., after fixing
a slit corresponding to lwl—l , nemely
A,, it conteins still three real
paremeters according to the arbitrariness in
8 linear traunsformation of the unit circle
onto itself, two emong which are to bve
determined by the conditions that the end
points ei*t and e* of the slit
in consideration correspond to w=+1 and
W ==—1, respectively, Then there remeins
only one real parameter A with ~i<a<{
according to & linear treusformation

w—A .
{-Aw

w

On the other heand, the function w®(1/z)
possesses the same mapping cheracter as
wz), and hence & functionel equation of the

'w“)(z) )

form
(1)(_1_)
w =
Z 1—Aaw®(z)
must hold identically. If Z lies on B

(j=1,-,m), then, in view of 1/Z=2,
the equation implies

A (1=lw®cz)|*) = wWz) - wP(x).
Therefore, we have WOy =wPz) . a

= 0. Further, the function w“)(z)
being analytic, the equation



W(D(__%_) — 'W“’(Z)

must remain vaelid throughout the domain of
definition, Thus, it is concluded, that

the image-domain is symmetric with respect
to the real axis and moreover that the

basic domain [%]< | is mapped by w=wx)
in the manner required.

By interchanging the roles of the sets
{A } ana {B;} the boundary corre-
spondence of the “napping is replaced in a
manner that m arcs B, (j=1, .--, m)
correspond to the circular purt of the image-
boundery while the other arcsA.(}'gi vy m)
%0 its rectilinear part, ¢ i
Let us denote such a mapping function by
w=w®(z) end {ts inverse by z=2%w),

The existence of the mapping function
having been thus established, the reduction
of the mixed boundary problem to Dirichlet
as well as Neumann ones is done merely by
transformations of the variable.

Let the ares A; (=1, -, m) lying
on 1Zl=1 correspond, by w=w(z),
to the semi-circumference defined by

(j=l’ v, ‘WL))

respectively. In order to determine the
solutton wuM(x) , it 1s only necessary
to solve the associated Dirichlet problem
for «'¥w)= u“ z“’(w)),considered as a function
harmonic in the duplicated mm-ply connected
domain after prolongation by means of the
def'ining equation wMH(w)== ¥ (47), the
boundary conditions being

‘IL(“*(W) — u_(i)*('ﬁ)= [5 (9)
for w=uwe*?) on Iur—-t’]_qj’ Jw>0

(J =1 -, m),

Let next the arcs B (§=4,-,m) lylng
on |Zl=1 correspond, by W =w*(z)
to the semi-circumference defined by

w=pyl=3, Jw>0
(; =4 ., m)

respectively. In order then to determine the
solution w® (%) , it is only necessary

to solve the associated Neumenn problem for u™®¥w)

=u®(«Pw))considered as a function harmonic
in the duplicated Mmeply connected domein
after prolongation by means of the defining
squation «y)=—y®w), the boundary con-
ditions being

(x @ 2)
AU (w) A w) Az ()
W T _‘g | 2w

I
for w=w"e") on IW—PJI=$}-,}“’>O
(5=1, e, m),

These Dirichlet as well ss Neumann
problems will be solved in explicit forms,
provided the Green function and the Neumann
function, GW, w) end N*(W, w) say, of the
respective domains are known explicitly.

In fact, us well known, the solutions are
then given by

w®* ) = 217: f u“X(w) 3%_*"_) sy,

: t [ 2u™* W) ar* *
u'“)*(W)=—l—‘TC -—3—‘,:’——N (VI'W)A-SW,

where 3/2),; denotes the. differentiation,along
the iuward normel at W, s, denotes the arc-
length parameter, and the integrals extend
over the whole boundaries of the respective
domains; an additive constant contained in
the general integral representation for e
folution of Neumenn problem must vanish here
in view of the antisymmetry character of the
boundary functions.

Returning to the original variable, the
functions

M(”(Z) = uﬂ)*(w(!)(z» and u,(z{’l)a u""r\"“*z )

solve the associated mixed boundary value
problems and hence the solution of the
original mixed boundary value problem is
finally given by

w(zy= uz)+u*z),

However, it would be noteworthy to
pay attention to the fact that both
functions u®(z) eand «u®(x) csn also be
characterized in another equivalent but
more direct menner, Ian fect, the former
function «¥(z) may be regerded as the
solution of the Dirichlet problem in the
whole Z-plane cut along (both banks of)
m oireular slits A}(j-a,---,u-)the boundary
conditions being

«Dr0)eN=U @) for o<g <4

(j =1, ey ‘M—),
while the latter function u™(x mey be
regarded as the solution of the Neumann
problem in the whole Z-plane cut aloug
(both banks of) m circuler slits B, (j=1,-,m)
the boundary conditions being ¢



W(UF0)e Y
~ —ﬂ;(so) for @j <g<ay
(J'——:i, ce,m),
where 9/3Y denotes the fuward morm:1 with

respect to the me-ply connected slit domain
in considerartion; an arbitrary additive
constant is determined by an imposed condition
that the solution «®(2) remaining constant
along the unit-circumference outside 8 (4=

s, m) must venish,

Thus, the solutions of the associated
problems will immediately be found, provided
the Green function and the Neumann function
of the respective circular slit domains are
knowh, Let them be &(Z,z) and N(Z, z) »
respectively., The solutions are then given
by

w®z)= ——fﬁ ()(36((1-0)e"z)
y!
.+

f "')*1.
V
65 pl

~ N ((1+0)e*? z) dg.

iy
a&((1+0)e z)) 49,

?

1
J"i

(L7 :
U2)=~3 @) (N((1-0)e% z)

1t is a matter of course that the solution
wezx) = uez)+u™z) thus established is
identical with the one obtained in the
previous paper which has been restated at
the introduction of the present papar.

In conclusion, a supplementary remark
sould be added. In fact, it may be noticed
that the problem can eventually be reduced
to & lower case if the boundary conditions
are of some particular type. Mor instance,
we cousider & problem with the R-ply symme-
tric boundary conditions

ule?)=

U fr -‘-5‘:“‘:“—'“+a}<q<i‘i‘im+{’.,

IU(e’?)
»

=% (9) for

2(k~1)T 2(k~1)1
+§. Pz,

=& +an/f

It will readily be shown that the solution
is given by

w(z) = u"'(z‘)}
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where wf(w) denotes the solution of the
problem with the boundery conditions

wWeN =U ) b ha, <¥ <kl

Y
REEDATE) b 1< <hayy
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