In the present note, first we shall supply the proof of the last part of the previous note [4] (the proof of Theorem 2 and its Corollary resp.), here we shall describe more general form than Theorem 2 of [4], and next we shall prove some relations between semi-traces and traces in D^*-algebra. The definitions and the notations in the note [4] will be used in this note.

1. Let \mathfrak{A} be a D^*-algebra and τ be a finite semi-trace of \mathfrak{A}. And let $\{x^\tau, x^\tau_j, j\}$ be the representation of \mathfrak{A} generated by τ and let \mathfrak{R}^τ be C^*-algebra generated by $\{x^\tau, x^\tau_j, j\}$. All other algebras L^τ, L^{τ_j}, R^{τ_j}, and W^τ are defined by the same way in §1 of [4]. Then Ω be the character space of \mathfrak{R}^τ and $N = \{\omega \in \Omega : \omega(x^\tau) = 0\}$ for all $x \in \mathfrak{A}$ then $\Omega_\omega = (\Omega - N)$ can be embeded into the trace space of \mathfrak{R}^τ with weak* topology on \mathfrak{R}^τ by the canonical mapping $\mathfrak{R}^{\tau_j} \rightarrow \omega(A)$ for all $A \in \mathfrak{R}^\tau$. Putting $\Omega' = \Omega$ weak closure of $\omega(\Omega)$, Ω' is locally compact with respect to the weak* topology on \mathfrak{R}^τ. If K^τ is a compact set in Ω', then it is covered by finite number of nbds (with compact closures in Ω') $U((\omega_1, A_1), \epsilon \in \Omega; (\omega(A_1) - \omega(A_2)) \leq \epsilon \leq x \in \Omega$).

We have called that \mathfrak{A} in \mathfrak{R}^τ is bounded if and only if $\forall x \in \mathfrak{A}$ and a const. $M > 0$ (cf. §1 or [4]) in which x^τ must be replaced by x^τ at P.125, right side, lines 24 and 28). Now we describe supplementary remarks with respect to the bounded elements in \mathfrak{R}^τ.

2. Let \mathfrak{A} be a D^*-algebra with the approximate identity $\{e_x\}$, let τ be a semi-trace of \mathfrak{A} and let $\{x^\tau, x^\tau_j, j\}$ be the corresponding representation of \mathfrak{A}. Moreover let
\(\mathcal{A} \) and \(\mathcal{W} \) be uniform and weak closure of \(\mathcal{L}(\mathcal{A}) \) respectively.

PROPOSITION 1. The following conditions are equivalent each other:

1. \(\mathcal{A} \) is trace.
2. There exists a constant \(M > 0 \) such that \(\|e \| \leq M \).
3. \(\mathcal{L}(\mathcal{A}) \) is dense in \(\mathcal{W} \).

Proof. (1\(\Rightarrow \)) is clear. First we prove (2\(\Rightarrow \)) (3\(\Rightarrow \)). Since

\[
\lim_{n \to \infty} \|e_n\| = 0,
\]

and hence \(\epsilon_n \to 0 \) (strongly). Hence \(\epsilon_n \to 0 \) (weakly). For all \(\eta \), there exists a directed set \(\mathcal{D} \) such that \(\epsilon_n \to \eta \) (strongly). Hence \(\epsilon_n \to \eta \) (weakly). For all \(\eta \), there exists a directed set \(\mathcal{D} \) such that \(\epsilon_n \to \eta \) (strongly). Hence \(\epsilon_n \to \eta \) (weakly).

Moreover, \(\mathcal{L}(\mathcal{A}) \) is dense in \(\mathcal{W} \). Therefore \(\mathcal{L}(\mathcal{A}) \) is dense in \(\mathcal{W} \). By Lemma 1 and the proof of Prop. 1 of [3], we can find a vector \(\eta \neq 0 \) in \(\mathcal{W} \) such that \(\epsilon_n \to \eta \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly). For all \(\xi \), there exists a vector \(\xi_0 \) such that \(\epsilon_n \to \xi_0 \) (weakly). For all \(\eta \), there exists a vector \(\eta_0 \) such that \(\epsilon_n \to \eta_0 \) (weakly).
and the right side $= \left(z^\tau, \tau(z) I \right)$. Since the both sides are equal for all x, ξ and $\gamma \in \mathcal{O}$, $\eta^\tau = \tau(\xi) I$.

Let P be projection onto the central manifold \mathcal{O}. For any $\xi \in \mathcal{O}$, there exist $x, \xi \in \mathcal{O}$ such that $\left(x^\tau - \eta \right) I$. Hence $Px^\tau \rightarrow P\eta = \eta$. Since for all $x \in \mathcal{O}$, η^τ and $\left(Px^\tau \right)^\tau = x^\tau$, cf. the proof of Prop. 1 of [3], $(Px^\tau)^\tau = \tau(x) I$, $Px^\tau = \tau(x) I$ and the center of \mathcal{O} is scalar, i.e., $\{ x I \}$. Thus the center of $\mathcal{O}^\tau = \mathcal{W}^\tau \mathcal{W}^*(= \mathcal{W}^\tau)$ is $\{ x I \}$, and τ is pure. The proposition obtained in this remark contains the first part of Prop. 2 of [4] as a special case.

FOOTNOTES

(1) In a separable D^τ-algebra, the decomposition of arbitrary semi-trace into a system of pure semi-traces in the form of direct integral over the real line has been shown in the previous note [5] using the reduction theory of von Neumann. Recently I.E. Segal has been published his decomposition theory "Decomposition of Operator Algebras. I and II, Mem. Amer. Math. Soc., 1951". If we apply his theory, Th. 1 of [4] may be shown in a most general form (in separable case). The precise discussion may be stated in the following in which we may prove that, in Th.1 of [4] all $\omega \in \mathcal{O}$ are characters of A which is not always separable.

(2) For any $A \in \mathcal{L}^\tau$, let the corresponding bounded element $\tilde{A} \in B$ denote A.

(3) It is known that for semi-trace or trace of a D^τ-algebra being pure, it is NASC that the corresponding two-sided representation is irreducible respectively (cf. [3]).

REFERENCES

(*) Received May 7, 1953.