ON THE ESTIMATION OF THE COEFFICIENT OF VARIATION by the raito of tro quantitles in large samples

By Suniyasu YAMAMOTO

1. INTRODUCTION. It is well known that the coelificient of variation or a distribution, delined as its standard deviation a divided by the mean m, is one oi the most usorul statistical moasure --- especially in situation where the distribution is normul. When the population distribution is such that the variable
x takes only positive values and has at least the fourth moment, we can show that the sample coetificiont of variation, derined usually as sample standurd deviation s divided by the sanple mean \bar{x}, is a consistent estimate of the population coefilicient of variation ∇, and its mean and variance are respectively as t'ollows (1):
(1)

$$
\begin{align*}
& E\left(\frac{s}{\bar{x}}\right)=\frac{a}{m}+O\left(\frac{1}{n}\right) \\
& D^{2}\left(\frac{3}{x}\right)=\frac{m^{2}\left(\mu_{1}-\mu_{2}^{2}\right)-4 a \mu_{1} \mu_{3}+4 \mu^{3}}{4 m^{4} \mu_{2} n}+O\left(\frac{1}{n^{2} x^{2}}\right) \tag{1}
\end{align*}
$$

where μ_{i} denotes the $i^{-t h}$ central moment of the distribution and n denotes the sample size. A normal distribution does not satisi'y the condition that the variable takes only positive values, therelore we cannot adrait these argumentis in this case. But, practically, we may consider a normal distribution with positive mean truncated at $x=0$ and when $\sigma(=\sigma / m)$ is rairiy small, the central moments of such a distribution will be approximately equal to the corresponding moments of a complote normal distribution. In this case the approxinate expressions lor the mean and the variance of the sample coefiliciont oi variation $5 / \bar{x}$ are respectively as follows:
(2) $E\left(\frac{s}{x}\right)=V$

$$
D^{2}(s / \bar{x})=\nabla^{2}\left(1+2 \pi^{2}\right) / 2 n
$$

In this paper we shail propose another new method of estimating the coelilicient ol variation ol a normal distribution in iarge samples which is constructed by the ratio oi two appropriately chosen quantiles und set up the coniliance interval corresponding to a given conildence coelficiont. Optimum spacing oi the quantiles ancl its efficiency are also discussed.

Although it is not eiricient, this method promises to rumish a simple and el'tective method lor estimating the coefricient of variation of a normal distribution --- especially In situation where large samples ure easily available.
2. JOINT DISTRIBUTION OF TWU QUANTILES. Consider a random sample ot size n from a one-dinensional distribution ol the continuous type, with the distribution function $F(x)$ and the probability density function
$f(x)=F^{\prime}(x)$ Let 3_{1} and 3_{2} are the quantiles of order P_{1} and
P_{2} of the distribution respectively (we assume as $0<p_{1}<p_{2}<1$), i.e. the roots (assumed to be unique respectively) of the equations:
(3) $F\left(3_{i}\right)=p_{i},(i=1,2)$

We shall suppose that $f\left(\zeta_{i}\right) \neq 0 \quad(i=1,2)$ and that in the neighbourhood of $x=3 i,(i=1,2), f(x)$ is continuous and has a continuous derivative
$f^{\prime}(x)$. We dencte by $z_{i},(i=1,2)$ the corresponding quantiles ol the sample, that is, if we arrange the sample values in ascending order of magnitude:
(4) $x(1)<x(2)<\cdots<x(n)$
(we have assumed no ties, which is a consequence, with probability one, of the continuous distribution of x), we deline

$$
\text { (5) } \quad z_{1} \equiv x\left(\left[n p_{1}\right]+1\right), z_{2}=x\left(\left[n p_{2}\right]+1\right)
$$

whero [np] denotes the greatest integer not exceeding $n p$. Now we quote the following theorern ${ }^{(2)}$.

The joint distribution of two quantiles z_{1} and z_{z} is asymptolically normal. The means of the limiting distribution are the corresponding quantiles 3, and 3. of the population, while the asymptotic oxpressions of the second order moments
$\mu_{20}, \mu_{11}, \mu_{02}$ are respectively
(6)

$$
\frac{p_{1} q_{1}}{n f^{2}\left(3_{1}\right)}, \frac{p_{1} q_{n}}{n f\left(\xi_{1} \lambda f\left(3_{2}\right)\right.}, \frac{p_{2} q_{2}}{n f^{2}\left(\xi_{2}\right)}
$$

where $\quad q_{i}=1-p_{i} \quad(i=1,2)$
We orait the proof here.
For the case of a normal popuiaLion, with mean m ana standard deviation σ, ii we denote
(7) $s_{i}=m+\sigma n_{i}, \quad(i=1,2)$ and
(8) $g_{i} \equiv \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u_{i}} \quad(i=1 . x)$
we have
(9)

$$
\begin{aligned}
& p_{i}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{u_{i}} e^{-\frac{t^{2}}{2}} d t \\
& f\left(s_{i}\right)=\frac{1}{\sigma} g_{i},(i=1,2)
\end{aligned}
$$

Hence the joint distribution of two sample quantiles Z_{1} and z_{2} is asymptotically norms and its probebilly density function is
(10)

$$
\begin{aligned}
& \frac{1}{2 \pi r_{1} \sigma_{2} \sqrt{1-p^{2}}} \exp \left[-\frac{1}{2\left(1-p^{2}\right)}\left\{\left(\frac{z_{1}-\xi_{1}}{\sigma_{1}}\right)^{2}\right.\right. \\
& \left.\left.-2 p\left(\frac{z_{1}-z_{1}}{\sigma_{1}}\right)\left(\frac{z_{2}-z_{2}}{\sigma_{2}}\right)+\left(\frac{z_{2}-3_{2}}{\sigma_{2}}\right)^{2}\right\}\right]
\end{aligned}
$$

where
(11)

$$
\begin{gathered}
\sigma_{1}^{2}=\frac{p_{1} b_{1}}{x g_{1}^{2}} \sigma^{2}, \quad \rho \sigma_{1} \sigma_{2}=\frac{n_{2} q_{2}}{\lambda g_{1} g_{2}} \sigma^{2}, \\
\sigma_{2}^{2}=\frac{p_{2} q_{2}}{x g_{4} \sigma^{2}} \sigma^{2}
\end{gathered}
$$

3. DISTKJEUTION OF THE RATIO AND IIS APPHOXIMATION. When the joint probability density function of variablos z_{1} and z_{2} is (10), the distribution oi the ratio OL^{\prime} two joint normally distributed varaabies 2 , and z, namely

$$
\text { (ix) } \quad \xi=22 / 2 \text {, }
$$

is well known as the distribution or the "Index", to which several contributtons have been made (s). The author also obtained a new formula of its distribution function as a mixture of distribution ${ }^{(a)}$ and made some contributions concerning it (s). We shall quote then here brielily and details will be omitted.

The distribution function of the variable 3 is in the form of mixtore of distribution:
(13) $F(\xi)=\sum_{v=0}^{\infty} e^{-\frac{h^{2}}{2} \frac{\left(\frac{l^{2}}{2}\right)^{v}}{v 1} F_{v}(\xi), ~(\xi)}$
where

$$
h^{2}=\frac{1}{r-p}\left\{\left(\frac{3_{1}}{\sigma_{1}}\right)^{2}-=p \frac{3_{1} 3_{2}}{\sigma_{1} r_{2}}+\left(\frac{3_{2}}{\sigma_{2}}\right)^{2}\right\}
$$

and $\bar{F}_{v}(\xi)$ is also a distribution function of the form:

$$
F_{v}(z)=\frac{1}{B\left(\frac{1}{2}, v+\frac{1}{2}\right)} \int_{-\pi / 2}^{\infty} \sin ^{2 v}(\theta+\alpha) d \theta
$$

and

$$
\begin{aligned}
& \theta=\tan ^{-1} \frac{\sigma_{i} \xi-\rho \sigma_{2}}{\sigma \sqrt{1-\rho^{2}}}, \operatorname{an} \alpha=\frac{31}{h \sigma_{1}} \\
& \cos \alpha=\frac{1}{h \sqrt{1-\rho^{2}}}\left(\frac{32}{\sigma_{2}}-\rho \frac{3_{1}}{\sigma_{1}}\right)
\end{aligned}
$$

The probability density inunction or ξ is obtained by dillerentialion, namely,
(14)

$$
\begin{aligned}
& \frac{1}{\pi} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left\{\left(\frac{3_{1}}{\sigma_{1}}\right)^{2}-2 \rho \frac{3_{1} 3_{2}}{\sigma_{1} \sigma_{2}}+\left(\frac{3_{2}}{\sigma_{2}}\right)^{2}\right\}\right] \cdot \\
& \frac{\sigma_{1} \sigma_{2} \sqrt{1-p^{2}}}{\sigma_{1}^{2} \xi^{2}-2 \rho \sigma_{1} \sigma_{2} \xi+\sigma_{2}^{2}} \\
& \sum_{v=0}^{\infty} \frac{2^{v} \cdot v!}{(2 v)!}\left\{\frac{\sigma_{1}\left(3_{2} \sigma_{1}-3_{1} p \sigma_{2}\right) \xi+\sigma_{2}\left(3_{1} \sigma_{2}-3_{2} p \sigma_{1}\right)}{\sigma_{1} \sigma_{2} \sqrt{1-p^{2}} \sqrt{\sigma_{1}^{2} \xi^{2}-2 \rho \sigma_{1} \sigma_{2} \xi+\sigma_{2}^{2}}}\right\}^{2 v}
\end{aligned}
$$

or in the form due to Fiedler
(15) $\frac{1}{\pi} \frac{\sigma_{1} \sigma_{2} \sqrt{1-p^{2}}}{\sigma_{1}^{2} \xi^{2}-2 p \sigma_{2} r_{2}+\sigma_{2}^{2}} \exp \left[-\frac{1}{2\left(1-p^{2}\right)}\left\{\left(\frac{\xi_{1}}{r_{1}}\right)^{2}\right.\right.$

The exact distribution of the ratio
F cited above is very complicated and momentless, so we cannot treat it well. But when h^{2} is large, the distribution of the variable
(16) $\quad \eta=\frac{3, \xi-3_{2}}{\sqrt{\sigma_{1}^{2} \xi^{2}-2 \rho \sigma_{1} \sigma_{2} \xi+\sigma_{2}^{2}}}$
is approximately normal with zero mean and unit variance. This will be shown as follows. Le l
(17)
then

$$
\eta^{2}=k^{2}-k^{2}
$$

and
(19) $\frac{d \eta}{d \xi}=\frac{\sigma_{1}\left(3_{2} \sigma_{1}-3_{1} \rho \sigma_{2}\right) \xi+\sigma_{2}\left(3_{1} \sigma_{2}-\zeta_{2} \rho \sigma_{1}\right)}{\sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}} \sqrt{\sigma_{1}^{2} \xi^{2}-2 \rho \sigma_{1} \sigma_{2} \xi+\sigma_{2}^{2}}}$
so we can reduce the probability density function of ξ in the form
(20) $\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \eta^{2}}\left|\frac{d x}{d \xi}\right| \cdot \sqrt{\frac{2}{\pi}}\left(\frac{1}{k} e^{-\frac{1}{2} k^{2}}+\int_{0}^{k} e^{-\frac{i^{2}}{2}} d t\right)$

For any 1 li zed $\eta, k \rightarrow \infty$ as $h^{2} \rightarrow \infty$, therefore
(21) $\frac{1}{k} e^{-\frac{1}{2} k^{2}} \rightarrow 0, \int_{0}^{k} e^{-\frac{t^{2}}{2}} d t \rightarrow \sqrt{\frac{\pi}{2}}$

Hence we have the approximate formula for the probability density function of ξ,
(22)

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \eta^{2}}\left|\frac{d \eta}{d \xi}\right|
$$

4. ESTIMAMIION OF THE COEMYICIENT OF VARIATICN. In 2 we have seen that, when the population distribution is normal with mean m and standard deviation σ, and 11 we denote two sample quartiles of orders P_{1} and P_{z} of ordered sample (4) by (5) and the corresponding population quant.les by (7), the asymptotic expression of' the probability density function OI the joint distribution of variables
Z_{1} and z_{z} is normal (10).
As liar as the cooliticiont on variaaction $V(=\pi / m)$ is concerned, it frequently occurs that the mean M is positive and the coositicient of variation V is at most about 30%, so we can suppose $3_{1}>0$ and therefore $S_{2}>0$ - While σ_{1}^{2} and σ_{2}^{2} are O order x^{-1} and is positive and less than ono. Hence h^{2} tends to inilinity as n tends to ini'inity and wo can use the approximation for the distribution of $\xi\left(=z_{2} / z_{1}\right)$ - the criterion shown in § 3 -in large samples. Under these circumstances

$$
\begin{equation*}
\eta=\frac{\sqrt{n}\left\{(\xi-1) / v_{1}-\left(u_{2}-u_{1} \xi\right)\right\}}{\sqrt{\frac{p_{1} \xi^{\prime} \xi^{2}}{g_{1}^{2}}-2 \frac{p_{1} q_{2}}{g_{1} g_{2}} \xi+\frac{p_{1} g_{2}}{g_{2}^{2}}}} \tag{23}
\end{equation*}
$$

is approximately normal with zero mean and unit variance. For given spacing -- spacing means the choice o_{i} the orders p_{1} and p_{z} oi t two quantiles --- g_{1}, g_{2}, u_{1} and
u_{2} are all known constants. Hence it is a remarkable fact that η invalves in its expression only one unknown parameter V. Accordingly we can test the statistical hypothesis or estimate σ by using η as follows.

As a point estimate of $\bar{\nabla}$ we may take

$$
\text { (24) } \hat{V}=\frac{\xi-1}{u_{2}-u_{1} \xi} \quad \text { or }=\frac{z_{2}-\cdots}{u_{2} z_{1}-u_{1} z_{2}}
$$

for which η vanishes. For testing statistical hypothesis $\sigma=\sigma_{0}$ we propose as the critical region of size α :

$$
(25) \quad|\eta| \geq t_{\alpha}
$$

where t_{α} is the $100 \alpha \%$ point of the standard normal distribution. For setting up the comidence interval for V, solving the inequality

$$
(26) \quad|\eta| \leq t_{\alpha}
$$

we get alter some vary calculations the required conilidence intervals with confidence coelilicient $1-\alpha$:
(al) $\quad \underset{V}{ } \leq T \leqslant \bar{T}$
where

$$
\text { (28) } V=\frac{3-1}{u_{2}-u_{1} \xi+\frac{K_{k}}{\sqrt{n}} \Delta}, \bar{V}=\frac{3-1}{u_{2}-u_{1} 3-\frac{1}{n} \Delta}
$$

and
(29) $\Delta=\sqrt{\frac{p_{1} y_{1}}{g_{1}{ }^{2}}{ }^{2}-2 \frac{p_{1} q_{2}}{g_{1} g_{2}}+\frac{p_{1} q_{2}}{g_{2}^{2}}}$
5. OPTIMUM SPACINS AND INS EFFICIENCY. NOw we proceed to determine the optimum spacing of the quantiles and evaluate its efficiency in a certain sense considered below. According to (28), as the length of random interval (27) is
(30) $\bar{V}-\underline{V}=\frac{2 \frac{t_{\alpha}}{\sqrt{n}} \frac{\Delta}{\xi-1}}{\left(\frac{u_{2}-u_{1} \xi}{3-1}\right)^{2}-\frac{t_{\alpha}^{2}}{x}\left(\frac{\Delta}{\xi-i}\right)^{2}}$
it is sufficient to determine the spacing oi two quantiles to mint.... the length of interval in the average under the following sense. That is, under the hypothesis $\nabla=\nabla$., when the variable ξ takes ils median ξ. , which render the value $q=0$, namely

$$
\begin{equation*}
\xi_{0}=\frac{1+u_{2} \bar{V}_{0}}{1+u_{1} \bar{V}_{0}} \text { or } V_{0}=\frac{\xi_{0}-1}{u_{2}-u_{1} \xi_{0}} \tag{31}
\end{equation*}
$$

It may be adequate to determine the orders P_{1} and P_{x} or quartiles to minimize the length of interval (30) as the optimum spacing. For this purpose it is sulificient to lind the values P_{1} and P_{2} which minimize the function:

$$
\begin{aligned}
& \text { (32) } \quad \Psi\left(p_{1}, p_{2}, \nabla_{0}\right)=\left(\frac{\Delta 0}{\xi_{0}-1}\right)^{2} \\
& =\frac{\frac{p_{1} b_{1}}{g_{1}^{2}}\left(1+u_{2} \nabla_{0}\right)^{2}-\frac{2 p_{1} \eta_{2}^{2}}{g_{1} g_{2}}\left(1+u_{2} \nabla_{0}\right)\left(1+u_{1} \nabla_{0}\right)+}{\left(u_{2}-u_{1}\right)^{2} \nabla_{0}^{2}} \\
& +\frac{p_{2} q_{2}}{g_{2}^{2}}\left(1+u_{1} \nabla_{0}\right)^{2}
\end{aligned}
$$

The values of P_{1} and P_{2} which minimize (32) essentially depend upon the value ∇_{0}. Unfortunately the writer cannot obtain the values in general. Owing to the symmetric propertly of the functional form or (32), it may be adequate to assume the symmetricity of spacing, that is,
(33) $p_{1}+p_{2}=1$ or $u_{1}+u_{2}=0$

Under such assumption we can solve the problem nuraerically and determine the spacing as follows.

Let
(34) $u \equiv u_{2}=-u_{1}, p \equiv p_{2}=1-p_{1}, g \equiv g_{1}-g_{2}$,
then (32) reduced to

$$
(35) \quad \Psi\left(p, \nabla_{0}\right)=\frac{1}{2 \nabla_{0}^{2}} \Psi_{1}\left(p+\frac{1}{2} \Psi_{2}(p)\right.
$$

where

$$
\text { (36) } \Psi_{1}(p)=\frac{1}{u^{2}} \cdot \frac{1-p}{g} \cdot \frac{2 p-1}{q}, \Psi_{2}(p)=\frac{1}{g} \cdot \frac{1-p}{g}
$$

The curves of $\Psi_{1}(p)$ and $\Psi_{2}(p)$ for $\frac{1}{2}<p</$ are illustrated in Fig.l. By numerical computation we find that the values oi $\Psi_{1}(p)$ become minimum when

Fig. 1
(37) $p=0.930, u=1.4758$
and fortunately for all $\boldsymbol{V}_{0} \leqslant 0.1$ the el'rect of $\Psi_{2}(p)$ in $\psi\left(p, T_{0}\right)$ is negligibly small and the value of P which minimizes the value

If $\left(p, \nabla_{0}\right)$ is included in the interval ($0.9295,0.9305$), although it depends on the value σ_{0}. Hence we may adopt (37) es optimum spacing whit ch minimizes the value $\Psi\left(\geqslant, V_{0}\right)$ for al V_{0} not exceeding 0.1. When ∇. moves up to 0. ie tho spading which minimizes the value $\psi\left(p, \nabla_{0}\right)$ moves up to

$$
\text { (31) } p=0.9 \mathrm{22}, u=1.419 \text {, }
$$

owing to the ori'oct of $\psi_{=}(p)$. However the oliect or increase in $\psi\left(p, T_{0}\right)$ is rather small when we adopt the spacing (37) as optimum symmetric spacing.

In usual practical cases, as tar as I know, the coefficient or variaion of the population is less than 0.1. Hence it is reasonable to adopt as optimum symmetric spacing the
following,
(39)

$$
\begin{array}{ll}
P_{1}=0.070, & u_{1}=-1.4758 \\
P_{2}=0.930, & u_{2}=1.4758
\end{array}
$$

and in this case the confidence limils (28) reduced to
(40) $\underline{V}=\frac{3-1}{1.4 \pi 3 \delta(3+1)+\frac{t}{\pi} \Delta}, \bar{\nabla}=\frac{3-1}{1.4958(\xi+1)-\frac{t_{k}}{V} \Delta}$, where
(41) $\Delta=\sqrt{3.6111\left(3^{2}+1\right)-0.54363}$

It may de convenient to provide the table of Δ for various values of 3 or the chart of conididence belt for various sample size and for some given confidence coelificient as illustrated in ruble i and in Fig. 2 under the spacing (39).

Finally we want to compare the el'iliciency of our method with ordinary method cited in $\xi 1$ in the following manner. If we construct as usual the confidence interval in large samples by using standard error (2) oi s / \bar{x} and $100 \alpha \%$ point
t_{α} of standard normal distribution, we obtain the following as average length of confidence intervals:

$$
\text { (42) } \quad 2 t_{\alpha} D\left(\frac{s}{x}\right)=2 t_{\alpha} \frac{V}{\sqrt{2 x}} \sqrt{1+2 \nabla^{2}}
$$

Hence we define the olificiency of our method compared with ordinary method by the ratio oi the reciprocall of average lengths of intervals as follows:

(44) $e=\frac{1}{\sqrt{\Psi_{1}(p)}} \sqrt{1+2 V_{0}^{2}}$

Although this efficiency depends on
∇_{0}, it is almost equal to 0.80 .

The author expresses his indentness to Professor Jougawa of the Osaka University for helpful discession and for encouragement. Mr. K. Abe of Nara Medical college has kindly assisted in the numerical computations.

TABLE $]$

(*) Fitceived May 3 3 , 1952.
(2) Cramier, H.; Mathematical methods of statistics. Princeton University Press, (1946), pp.357-358.
(2) Cramer, H.; Ibid., pp. $569-370$. Smirnol't, No; Uber die Vertoilung des aligemeinen xiledes in der Variationsreche. Metron, 12, (1936).
(3) Merríl,h.s.; Frequency distribution of an index when both conponents rcliows the normal law. Bion., 20, (1928).
Geary, R.C.; The Trequency distribution ol the quolient or two nornal variables. Jour. Roy. Stat. Soc., 93 (1930).
Fieller, E.C.; The distribution of an index in a normal bivariate population. Eiom., 24 (1932).

Nicholson, (C.; A geometrical analysis of the lrequency-distribution o1 the ratio between two variables. Biom., 32 (1941).
(4) Robbins, H.; Mixture oi distributions. Amm. Math. Stat. 19 (1948).
(5) Vamamoto, S.; on the distribution of the ratio or two norraally distributed variables (in Japanese), "Kokyuroku" oi the Institute of statistical Matherntics. Vol.7 (1951).

Nara Medical College.

