ON THE ESTIMATION OF THE COEFF1ICIENT OF VARIATION

BY THE RATIO OF

WO QUANTITLES IN LARGE SAMPLES

By Sumiyasu YAMAMOTO

1. INTRODUCTION. It is well known
that the coefticlent of variation
or' a distribution, detined as its
standard deviation O~ divided by the
mean M. , 1s one of the most useful
statistical measure --- especlally
in situation where the distribution
is normal. When the population dis-
tribution is such that the variable
x takes only positive values and
has at least the fourth moment, we
can show that the sample coeificlent
of variation, defined usuually as
sample standard deviation s dlvided
by the sample mean %X , is a consis-
tent estimate of the population coe-
fficient of variation ¥ , and its
mean and variance are respectively
.as tollows © .
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where M: denotes the i-% central
moment of the distribution and
denotes the sample size. A normal
dlgtribution does not satist’y the
condition that the variable takes
only positive values, therefore we
cannot admit these arguments in this
case, But, practically, we may con-
sider a4 normal distribution with po=~
sitive mean truncated at x=e and
when V (= "/a.) is rairly small, the
central noments ol such a distribution
will be approximately equal to the
corresponding moments ot a complete
normal distribution. 1In this case
the approxinate expressions tor the
mean and the variance of the sarnple
coelf'icient of variation aﬁ- are
respectively as follows: x
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In this paper we snail propose
another new method of estimating the
coellicient or variation ol a normal
distribution in iarge samples which
1s constructed by the ratio ol two
appropriutely chosen quantiles und
set up the confidence interval cor-
responding to a given conridence
coelficlent. Optimum spacing of the
quantiles and its efficlency are also
discussed,

Although il is not efricient, this
method promises to r'urnish a simple
and el'fective method tor estimating
the coefficient of variation ot a
normal distribution --- especially
in situation where large sarnples ure
easily available.

2. JOINT DISTRIBUTION OF TWo QUAN-
TILES. Consider a random sarple of
slize m f{rom a one-dimensional dist-
ribution ot the continuous type,
with the distribution function Fa)
and the probability density function

$y=Fu) . Let 3, and 3,
are the quantiles of order p  and

P, of the distribution respectively
(we assume as oe<p< <! ), Ll.e.
the roots (assumed to be unique re-
spectively) or the equations:

(£=1,2)

(3) F(;.‘,)= r(

We shall suppose that f(&)*o (i=12)
and that In the neighbourhood of

x=3:, (4=12)  § 1is continuous
and has a continuous derivative

§«) . We denote by z, li=l2)

the corresponding quantiles ol the
sample, that is, i1’ we arrange the
saxmple values in ascending order or
magnltude:

“)  xw< - ¢ An)

(we have assumed no tles, which is

a consequence, with probability one,
of the continuous distribution o' ¢z ),
we deline

) z‘ix((ar.)q-)’ z, = 1((1\.]'.]*')

where (p) denotes the greatest
integer not exceeding mp . Now

we quote the rollowing Lheorem ' .,

The Joint distribution of two quan-
tiles z, and 2, ig asymptolically
normal. The neans of the limiting
distribution are the corresponding
quantiles 3, , and 3, ol the popu=-
lation, while the asymptotlic expres-
sions ot the second order momenty .

Mze w s ure respecti-
vely 7" Flon
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where

z«:‘- =k (&£=12)

We onit tne prool here,

For ihe case ol & normal popuié-
tion, with mean # anua standard
deviation o~ , 11 we denote

(1) 3= mt oW, (iwia)

and

1) J=g=€

we have

3. ,(4~|z)

Hence the jolnt distrioution of two
sample quantiles 2, and z, 1s
asymptotically normal and its proba=-
bility density function is

o) z:::F—_; p [— w—’_r,{ci;-_-“)‘
G (5]
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S. DISTHIBUTION OF WHE RATIO AND
I1S APPHOXIMATION. When the Joint
probability density function oL va=
riables = and z, is (10), tho
distrivution ol the ratio %
two Jolnt normally distributed vari-
ables 2, and z, , namely

(vz) = 2%5|

i1s well known as the distribution ot
the "Index", to which several contri-
butions have been made >, The author
ulso obtained a new formula of its
distribution function as a nixture

of distribution ® and made some con-
tributivns concerning it . We shall
quote then here briefly und details
will be omitted.

The distribution tunction ol the

variable 3 is in the lorm ol nmix-
ture of distribution.
ﬁ (‘
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The probability density lunction
oir g 1is obtained by dirterentia-
tion, namely,
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The exact distribution of the ratio
§ cited above is very complicated
and momentless, so we cannot treat
it well, But when £* 1s large, the
distribution of the varlable

3,3 — 3.
Tf- J -afﬁd‘gur‘
is approximately normal wiih zero

mean and unit variance. This will
be shown as toilows., Letl

ob)
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so. we can reduce the probabiiity den-

in the torm

F (= _“‘] < ‘t)

11-'{—700 as £_—90° »

sity function ot ¥

(z9 5;, zll

For any lized
therefore

@) —;é_'c"i{z,_, ) / - u,t ‘/"“

Hence we have the approximate rormula
for the probability density tunction
of 3 ,
! -1y* dy
22 . *
(23) Re"'ﬁl‘_{
4. ESTIMATION OF THE COEFFICIENT
OF VARIATICN. 1In 2 wo have seon
that, when the population distribution
is normal with mean -« and standard
deviation ¢- , and i1 we denote two
sample ‘quantiles ol orders /A and
Pa of ordered sunple (4) by (5) und
the corresponding population quanti=-
les by (7), the aaymptotlc expression
ol the probubility densitiy [unction
of' the JolntL distribulion ol variables
2, and 2, 1ls normal (10).

As lar as the coetrlclent ol vari-
ation 7 (== is concerned, it
frequently occuls that the mean -w
is positive und the coelticient of
variation is at most about 309,
80 We can Suppose 2,709 and
theretore 3,0 . While e3* and

c;'_" are ol order =~ ana )p
1s positive und less than one. /Hence
A tends to inrinity as 7L tends
to infinity and we can use the appro-
ximation for the distribution ot
3 (=%%2,) the criterion shown
in § 3—1in large samples. Under
these circumstances

3,3—-%,
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is approximutzly normal with ZeTro
meen and unit variance. For given
spacing --- spacing means Lhe cholice
o+ the orders p, and Pa oI twWo
quantiles --- . 2 92 » YU, and

W2 are all kndwn constants. Hence
it is a remarkable fact that *{ in-
volves in its expression only one
unknown parameter J . Accordingly
we can test the statlistical hypothe-
sis or estimate T by using 9 as
follows.

(23) $(

As a point estimate of V. we nay
take
4  Za-2
n,z,-u,2,

(24) V

u;-u 3

tor which 7 vanishes. For testing
statistical hypothesis =7, we
propose as the critical region of
size A

(=y)

where L4 1s the 100d% point of the
standard normal distribution., For
setting up the conf'ldence interval
for Y~ , solving the inequality

Iil 2ty

=) <t

we got alter some casy calculatlons
the required cont'idence intervals
with conridence coefliclent =gl :

T AT<T

where
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5. OPTIMUM SPACIN% AND ITS EFFI-
CIENCY. Now we proceed to determine
the optimum spacing or the quantiles
and evaluate its eificlency in a
certain sense considered below. Ac-
cording Lo (28), as the length ol
random interval (27 is

D
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it 18 sulficient to determine the
spacing ol two quantiles to min..- =e
the length ol interval in the averuge
under the lollowing sense. That is,
under the hypothesis V=77, ,
when the variable ¥ takes its me-
dian 3§, , which render the value
1=o > namely

tealo oV - 3ot
1+ “\Tb e “&—“';n

(31) 3=

it may be adequate Lo determine the
orders [. and f. oI quantiles to
minimize the length ol interval (30)
as the optimum spacing. For this
purpose it is sulficlent to r'ind the
values zz and P, which nininize
the tunction:

6 ¥ ip V)= (52
_ e~ 2L (i T, Koo )+

(us-u, ) T2

*Z‘z: &l

The values of / and = wnich mini-
mize (32) essentially depend upon

the value VT, . Unfortunately the
writer cannot obtalin the values in
general. Owing to the symmetiric pro-
perty of the functional fornm of (32;,
it may be adequate to assume the sym-
metricity of spacing, that is,

(33) [t{~=

Under such assumption we can solve
the protlem numerically and determnine
the spacing as ollows.

or u,*“,_ =0

Let

(3‘}) M!M,_:'—M,’ firz.=l"fl’ 7'57-"]-1

then (32) reauced to

6s) Tq.V)=mbprxthp)

where
ob ¥ =i -y §
and 1“({)

The curves of %df)

for <p</ are {llustrated in
Fig.l. By numerical computation we
t'ind that the values ol f(f) be-
come minimum when !

Jig. 1

1) f= o130, W="/ 4758

and fortunately for all 7. < 0./

the elfect of ¥,¢) in W T:)

is negligibly small and the valiue

of . f which minimizes the value
Z¢p, Vo) 1s included in the inter-

val (0.9295, 0,9305), although it

depends on the value V., , Hence

we may adopt (37) as optiium spacing

which minimizes the value .Y (=

for &'l o not exceeding 0.

Whew T, moves up to (.2 the spa=-

cing which minimizes the value

1&({,7}) roves up to

(¢2)) = 0922, y=,49,

owing to the eflect of 'ﬁ;lf) .

However the ellect ol increase in
tp,7s) 18 pruther small when

we adopt the spacing (37) as optimum

symmetric spacing,

In usual practicul cases, as yar
as I know, the coefficient oy varia-
tion oi the population is less than
0.1l. Hence it is reasonable tc adopt
as optimum symmetric spacing the
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following,

@0 f=0.070, U, = -1,4758
fi=0.930, 1,4758

Ay =
and in this case the contidence 1i-
mits (28) reduced to

(40) T= 3- 7— 3~/
- (4158 G~

48T )+ A,

where

) A= \ﬁ-éul (8% —0.54343

It may be convenient to provide
the table of & 1or various values
of ¥ or the chart ol conridence
belt for various sample size and for
some given confidence coeiricient
as 1llustrated in Table 1 and in Fig.
2 under the spacing (39).

Finally we wani to compare the
elriciency of our method with ordi-
nary method cited in $ 1 in the
following manner. If we construct
as usual the conf'idence interval
in large samples by using standard
error (2) of $/%x and 1004 % point

of standard normal distribution,
we obtain the tollowing as average
length of' confidence intervals:

4z) =21, D(‘sf) “21'*%‘-; {iv27?

TABLE I

3 A g A

1,01 2,5972 1.21 2.8706
1.02 2.6103 1.2¢ 2.8849
1.03 2.6234 1.23 2.8992
1.0¢ 2.6366 1.24 2.9137
1.05 2.6498 1.256 2.,9261
1.06 2.6631 1.26 2.9426
1.07 2.6765 1.27 2,9572
1.08 2.6900 1,28 2.9718
1.09 2.7035 1.29 2.9865
1.10 2.7171 1.30 3.0012
1,11 2.7307 1.31 3.0159
1.12 2.7444 1.32  3.0308
1.13 2.7582 1.33 3.0456
l.14 2.7721 184 B.0606
1.15 2.7860 1.5 3.075%
1.16 2.7999 1.86 3.08904
1,17 2.8139 1.37 $.1085
1.18 2,8280 1.38 3.1206
1.19 2.8422 1.39 3.1357
1,20 2.8563 1.40 3%,1508

Hence we define the erriclency ol
our method conpared with ordinury
method by the ratio or the recipro-
cals ol aversage lengths ol intervals
as foliows;

Vi«2l 2 2%‘ J;;‘fo"o)
o VGT)

, neglecting Y, (,) ,

= L V;
(#3) e 1;‘,:‘.91“"«5&

For V <o./

we obtain
/ 3
= e I+2V_°

(44) &€ ﬁ@;})v

Although this etfficiency depends on
, 1t 1is almost equal to 0.80.

The author expresses his indeut-
ness to Professor J.ugawa ol the
Osaka University ror helpfui dis-
cussion ana lor encouragement. Mr.
K.Abe o1 Nara Medical Coliege has
kindly uassisted in the numerical
compututions,

3 A k3 PaN
l1.41 3.1660 1.61 3.4780
l.42 3.1813 1,62 3.4939
l.45 3.1966 1.63 3.5099
l.44 3.2119 l.64 3,52589
l.4b 3.2272 L.65 3.5419
1.46 3.2427 1.66 3.5880
1.47 3,258l 1.67 3.5741
1l.48 05,2736 1,68 3.5902
1.49 3$.2891 1.69 3.6064
1.50 3.3046 1,70 3.6226
1.81 3.3202 1.7l %.6388
1l.52 3.3%58 1.72 3.6550
1,853 3.3518 1.73 3.6713
1.54 3.3672 1,74 5.6876
1.8 3,%829 1,75 3.7038
1,66 3.3987 1l.76 3.7202
1.57 3.4146 1.77 3.7366
1.68 3.4503 1.78 $.7530
1.89 8.4461 L.79 3.7694
1.60 33,4620 1.8¢ 3.7858
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