
ON THE ESTIMATION OF THE COEFFICIENT OF VARIATION
BY THE RATIO OF TWO QUANTITIES IN LARGE SAMPLES
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1. INTRODUCTION. It is well known
that the coefficient oV variation
of a distribution, defined as its
standard deviation *•* divided by the
mean ifrU , is one of the most useful
statistical measure especially
in situation where the distribution
is normal. When the population dis-
tribution is such that the variable
X takes only positive values and

has at least the fourth moment, we
can show that the sample coefficient
of variation, defined usually as
sample standard deviation s divided
by the sample mean x , is a consis-
tent estimate of the population coe-
fficient of variation jf , and its
mean and variance are respectively
as follows

 fl)
 :

(0

where jw.< denotes the *."
t
*' central

moment of the distribution and *vi
denotes the sample slze A normal
distribution does not satisfy the
condition that the variable takes
only positive values, therefore we
cannot admit these arguments in this
case But, practically, we may con-
sider a normal distribution with po-
sitive mean truncated at x and
when XΓ\* *%*) is fairly small, the
central moments of such a distribution
will be approximately equal to the
corresponding moments of a complete
normal distribution. In this case
the approximate expressions for the
mean and the variance of the sample
coefficient of variation s/- are
respectively as follows:

In this paper we shall propose
another new method of estimating the
coefficient of variation of a normal
distribution in large samples which
is constructed by the ratio of two
appropriately chosen quantiles and
set up the confidence interval cor-
responding to a given confidence
coefficient* Optimum spacing of the
quantiles anci. its efficiency are also
discussed*

Although it is not efficient, this
method promises to furnish a simple
and effective method lor estimating
the coefficient of variation oϊ a
normal distribution especially
in situation where large samples are
easily available.

2. JOINT DISTRIBUTION OF TV/0 QUAN-
TILES. Consider a random sar iple of
size *n- from a one-dimensional dist-
ribution of the continuous type,
with the distribution function R Ό
and the probability density function

•j-U) = p
/
U) . Let 5, and T^

are the quantiles oV order p
t
 and

F
%
 of the distribution respectively

(we assume as 9<h<fo<ι ), i.e.
the roots (assumed to be unique re-
spectively) of the equations:

We shall suppose that fl£;)^o ίi»i,»)
and that in the neighbourhood of
X-Si, (<»**•£ , J κ> is continuous

and has a continuous derivative
$'(*.} We denote by a

4 /
H ι.a0

the corresponding quantiles of the
sample, that is, if we arrange the
sample values in ascending order of
magnitude:

to < *la)<

(we have assumed no ties, which is
a consequence, witli probability one,
of the continuous distribution of t. ),
we define

where CnfJ denotes the greatest
integer not exceeding Ή f Now
we quote the following theorem

 ta
* .

The joint distribution of two quan-
tiles z.̂  and *

x
 is asymptotically

normal. The means of the limiting
distribution are the corresponding
quantiles 5

t
 , and "5. of the popu-

lation, while the asymptotic expres-
sions of the second or del

1
 moments

/**• , M.
fl
 , M

# Λ
 are respecti-

vely
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where ^ « H f . U-/.*>

We omit One prooΓ here.

For Lho case oi' a normal popuxa-
tion, with mean -*c ana standard
deviation <r^ , if we denote

where

and ?V ̂ ) is also a distribution
function of the roπa:

( Jrp us d9

and

z
'

J
-?ί

we have

The probability density function
of g is obtained by differentia-
tion, namely,

Hence the joint distrloution oΓ two
sample quantiles Z,

x
 and z

x
 is

asymptotically normal and its proba-
bility density function is

l o)

where

o )

5. DISTRIBUTION OP ΪHE RATIO AND
ITS APPROXIMATION. When the joint
probability density Γunction or va-
riables *

κ
 and z* is (10), the

distribution oi* the ratio j ox'
two Joint normally distributed vari-
ables 2, and z,

 t
 namely

is well known as the distribution or
the "Index

11
, to which several contri-

butions have been made
 (
» • The author

ulso obtained a new rorniula oi* its
distribution function as a mixture
oi' distribution ̂  and nade^some con-
tributions concerning it

 (s
>. We shall

quote them here brieΓly und details
will be omitted*

The distribution Γunction oΓ the
variable 5 is in the form or mix-
ture of distribution:

or In the form due to Fiellβr

r, 15,*;-

^

The υxact distribution oΓ the ratio
1 cited abovo is very complicated

and Momβntlθss, so we cannot treat
it well. But when /

x
 is large, the

distribution of the variable

L
is approximately normal with zero
mean and unit variance. This will
be shown as follows. Let
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then

and

sα wo can reduce the probability den-
sity function of ij in the Γorra

For any fixed »
therefore *- '

is approxiiύately normal with zero
mean and unit variance. For given
spacing spacing means the choice
ox the orders f>i and f* of two
qυantΐles %

|
 , J

x
 , W/ and

(Λx are all knβwn constants* Hence
it is a remarkable fact that ^ ^-

n
~

volves in its expression only one
unknown parameter "JΓ" Accordingly
we can test the statistical hypothe-
sis or estimate *|? by using *^ as
follows.

As a point estimate of ]/ we may
take

«-)

Hence n e have the approximate Γormula
Γor the probability density function

for which +L vanishes. For testing
statistical hypothesis JT"~ IT*

 Wfe

propose as the critical region of
size ck :

4. ESTIMATION OP THE COEFFICIENT
OP VARIATION. In 2 wo have auon
that, whon the population distribution
is normal with mean ->i and standard
deviation r~* , and if we denote two
sample'quantiios of orders Λ and
P» oί'-ordered sample (4) by (6) and

the corresponding population quanti
les by (7), the asymptotic fίxpreaaion
of the probability density function
of the joint distribution of variables
*ι and Z^ is normal (10)

As far as tho coofflciunt of vari-
ation V (*"•*%*) is concerned, It
frequently occurs that the mean in.
is positive and the coefficient of
variation V Is nt most about δOjί,
so we can suppose ?, > o and

?
pp

therefore ?« >
 o

While r; * and

^7 are of order W
1

ana
'His positive and less than one, 'Hence

g tends to infinity as *U tends
to infinity and wo can use the appro-
ximation for the distribution of
5 (

β2
viι) the criterion shown

in § 3 in large samples. Under
these circumstances

5.1-I*

or

where t^ is the lOOdJ? point of the
standard normal distribution. For
setting up the confidence interval
for "JΓ" , solving the inequality

we got after some easy calculations
the required confidence intervals
with confidence coefficient l-βl

M) f
where

Γ- ϊ-l
/Γ- T-'

and

M )
p'-*&**}

5. OPTIMUM SPACING AND ITS EFFI-
CIENCY. Now we proceed to determine
the optimum spacing of the quantiles
and evaluate its efficiency in a
certain sense considered below. Ac-
cording to (28), as the length of
random interval (27) is

(3c)
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it is sufficient to determine the
spacing oί' two quantiles to i.iiru*.. " :;u
the length of interval in the average
under the following sense. That is,
under the hypothesis y = TΓ

m
 ,

when the variable J takes its me-
dian $* , which render the value
+1 — o , namely

it may be adequate to determine the
orders f\ and f

%
 of quant lies to

minimize the length of interval (30)
as the optimum spacing. For this
purpose it is sufficient to find the
values P, and /\ which minimize
the function:

The values of Λ and /* which mini-
mize (32) essentially depend upon
the value Ύ^ . Unfortunately the
writer cannot obtain the values in
general. Owing to the symmetric pro-
perty of tho functional form of (32),
it may be adequate to assume the sym-
metricity of spacing, that la,

in) P . «• /

Under such assumption we can solve
the problem nurαerically and determine
the spacing as follows.

Let

then (32) reuuced to

where

The curves of "^Λp and ^Jft
for ±<f<i are illustrated in
Pig.l. By numerical computation we
find that the values of zf (?) be-
come minimum when ^ '

ΛO I4S 7rδ ΛO flG ΪJ o

and fortunately for all TΓ
9
 ̂

 0%
l

the effect of ^(P) in V ^# U)
is negligibly small and the value
of j.f which minimizes the value

itfXo) is included in the inter-
val (0.9295, 0.9305), although it
depends on the value Ύl

 P
 Hence

we may adopt (37) as optimum spacing
which minimizes the value ^ί^.ίζ)
for a

Ί
1 Vβ not exceeding 0.1.

Whβtt Ύ\ moves up to 0 2 the spa-
cing which minimizes the value
7£ ίf, 7β) moves up to

owing to the effect of "]?* '/*̂
However the eXfect of increase in
x
 i
f»'ti) i« rather small when

we adopt the spacing (37) as optimum
symmetric spacing.

In usual practical cases, as far
as I know, tho coefficient of varia-
tion ox the population is less than
0.1. Hence it is reasonable to adopt
as optimum symmetric spacing the
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following,

ί« 0.070,

L= 0.930,

t. - -1.4758

«.=• 1.4758

and in this case the confidence li-
mits (28) reduced to

where

L+0 A => p. £ „/ lι\t) - *

It nay be convenient to provide
the table of Z^ Γor various values
of 5 or the chart or conΓidence
belt for various sample size and for
some given confidence coefficient
as illustrated in Table 1 and in Fig.
2 under the spacing (39).

Finally we want to compare the
efficiency of our method with ordi-
nary method cited in S i in the
following manner* If we construct
as usual the confidence interval
in large samples by using standard
error (2) of $/χ and 1004 % point

t* of standard normal distribution,
we obtain the following as average
length of confidence intervals:

Hence we define the efficiency of
our method compared with ordinary
method by the ratio of the recipro-
cals of average lengths of intervals
as follows:

For

we obtain

neglecting (P)

Although this efficiency depends on
Y2 , it is almost equal to 0.80.

The author expresses his indeut-
ness to Professor J.Ogawa of the
Osaka University for helpful dis-
cussion ana for encouragement. Mr.
K.Abe of Nara Medical College has
kindly assisted in the numerical
computations.

I
1.01
1.02
1.03
1.04
1.05

1.06
1.07
1.0Θ
1.09
1.10

1.11
1.12

1.13
L.14
1.15

1.16
1.17
l.lθ
1.19
1.20

Λ
2.5972
2.6103
2.6234
2.6366
2.6498

2.6631
2.6765
2.6900
2.7035
2.7171

2.7307
2.7444
2.7582
2.7721
2.71360

2.7999
2.8139
2.8280
2.8422

2.8563

I
1.21
1.2*
1.23
1.24
1.25

1.26
1.27
1.28
1.29

1.30

1.31
1.32
1.33

1.34
1.3*

1.36
1.37
1.38
1.39
1.40

TABLE I

Δ
2.8706
2.8849
2.8992

2.9137
2.9281

2.9426
2.9572
2.9718
2.9865
3.0012

3.0159
3.0308
3.0456

3.0605
3.0755

3.0904
3.1055
3.1206
3.1357
3,1508

I
1.41
1.42
1.45
1.44
1..45

1.46
1.47
1.46

l 4ϋ
1.50

1.51
1.52
1.53

1.54
1.55

1.56
1.57
1.58
1.59

1.60

3.1660
3.1813
3.1966
3.2119
3.2272

3.2427
3.2581
3.2736
3.2891
3.3046

3.3202
3.3358
3.3515
3.3672
3.3829

3.3987
3.4145
3.4303
3.4461
3.4620

5
1.61
1.62
1.63
1.64
1.65

1.66
1.67
1,68
1.69
1.70

1.71
1.72
1.73

1.74
1.75

1.76
1.77
1.7b
1.79

1.80

3.4780
3.4939
5.5099
3.52δy
3.5419

3.5580
3.5741
3.5902
3.6064
3.62P6

3.6388
3 6550
3.6713

3.6676
3.7039

3.7202
3.7366
3.7530
3.7694
3.7858
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