By Takasi TURUMARU

(Communicated by T Kawata)

Let R be a concrete cf-algebra in the sense of I.E.Segal, and A **be the totality of all self-adjoint elements of R For x, y of A, de fine the formal product**

 $x \cdot y = (xy + yx)/2$

then for every x, y, z of A, and for every real scalar $\boldsymbol{\kappa}$ **, we have**

$$
(\alpha x) \circ y = \alpha(x \circ y), \quad x \circ y = y \circ x,
$$

and

$$
(x + y) \circ z = (x \circ z) + (y \circ z).
$$

Moreover, if R is commutative, then the associative law (*)

 $(x * y) o z = x o(y o z)$

holds in A. In this note, we shall prove the converse

Theorem, If the associative law (•) is satisfied in A, then R is commutative.

Procf. Substituting $y = xz + f$ \overline{z} **z** in $(\overline{\star})$, we have $\overline{x}z^2\overline{x} = zx^2z$ **for every x, z of Ac**

Let

$$
x = \int \lambda dq
$$
, $y = \int rde^{2}$

be the spectral representations of x and y respectively. Then from the well known fact, the commuta tivity of the product xy is equiva lent to that of $e_{\lambda}e_{\mu}$ for all λ , *x* **.** Moreover by a theorem due to J. von Neumann, \boldsymbol{w} **ex** is the **strong limit of a sequence from A, for every λ. , so that, for every** fixed λ , μ , we get two sequen- $\cos \theta = \{x_n\}$ and $\{y_n\}$ sucn that

strong lim
$$
x_n = e_\lambda
$$
,
\nstrong lim $y_m = e'_\mu$;
\n $x_n \in A$, $y_m \in A$.

Hence

strong lim strong lim
$$
x_n y_m x_n
$$

\n $x \to \infty$
\n $x \to \infty$

and

strong lim strong lim
$$
y_m x_n y_m
$$

\n $m \rightarrow \infty$
\n $\equiv \phi'_e e^A$, $\phi'_e \equiv \phi'_e e^A_{\psi'}$.

On the other hand we have

 $x_n y_m x_n = y_m x_n y_m$

for every m, n; therefore

 $e_{\lambda}e_{\lambda}'e_{\lambda} = e_{\mu}'e_{\lambda}e_{\mu}'$.

Set now $u = e_{\lambda} e_{\lambda}^{\prime} - e_{\lambda}^{\prime} e_{\lambda}$ then

$$
uu = (e_{x}e_{y} - e_{y}e_{x})(e_{y}e_{x} - e_{x}e_{y})
$$
\n
$$
= e_{x}e_{y}e_{x} - e_{x}e_{y}e_{x}e_{y} - e_{y}e_{x}e_{y}e_{y} - e_{y}e_{y}e_{y}e_{y}e_{y} - e_{y}e_{y}e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{y}e_{z} + e_{y}e_{y}e_{y}e_{z} - e_{y}e_{y}e_{z} - e_{y}e_{y}e_{z} - e_{y}e_{y}e_{z} - e_{y}e_{y}e_{z} - e_{y}e_{z}e_{z} - e_{y}e_{z}e_{
$$

so u = 0; that is, e, e, = e, e, =
for every **x**, *μ* . Thus we get

$$
xy = yx.
$$

(*) Received May 24, 1951«

(1) J von Neumann: Zur Algebra der Punktionaloperationen und Theorie der normalen Opera toren, Math. Ann., 102(1927) pp.370-427, especially 391 *2.*

Tδhoku University, Sendai.