By Takasi TURUMARU

(Communicated by T. Kawata)

Let R be a concrete C^{*} -algebra in the sense of I.E.Segal, and A be the totality of all self-adjoint elements of R. For x, y of A, define the formal product

 $x \bullet y = (xy + yx)/2$

then for every x, y, z of A, and for every real scalar α , we have

$$(\alpha x) \circ y = \alpha(x \circ y), \quad x \circ y = y \circ x,$$

and

$$(x + y) \circ z = (x \circ z) + (y \circ z).$$

Moreover, if R is commutative, then the associative law (\star)

 $(x \bullet y) \bullet z = x \circ (y \circ z)$

holds in A. In this note, we shall prove the converse

Theorem. If the associative law (*) is satisfied in A, then R is commutative.

Proof. Substituting y = xz + zx in (\bigstar), we have $xz^2x = zx^2z$ for every x, z of A.

Let

$$x = \int \lambda dq$$
, $y = \int u de'_{\mu}$

be the spectral representations of x and y respectively. Then irom the well known fact, the commutativity of the product xy is equivalent to that of e e i or all λ , \mathcal{M} . Moreover by a theorem due to J. von Neumann, \mathcal{M} e is the strong limit of a sequence from A, for every λ , so that, for every fixed λ , \mathcal{M} , we get two sequences $\{x_n\}$ and $\{y_n\}$ such that

strong lim
$$x_n = e_n$$
,
 $n \rightarrow \infty$
strong lim $y_m = e'_{\mu\epsilon}$;
 $m \rightarrow \infty$
 $x_n \in A$, $y_m \in A$.

Hence

strong lim strong lim
$$x_n y_m x_n$$

 $m \rightarrow \infty$
 $\pi \rightarrow \infty$
 $\pi \rightarrow \infty$
 $\pi \rightarrow \infty$

and

strong lim strong lim
$$y_m x_n y_m$$

= $e_{\mu}^* e_{\lambda}^* e_{\mu}^* = e_{\mu}^* e_{\lambda}^* e_{\mu}^* \cdot$

On the other hand we have

 $x_n y_m x_n = y_m x_n y_m$

for every m, n; therefore

 $\Theta_{\chi} \Theta'_{\mu} \Theta_{\chi} = \Theta'_{\mu} \Theta_{\chi} \Theta'_{\mu}$

Set now $u = e_{\lambda} e'_{\lambda} - e'_{\lambda} e_{\lambda}$, then

$$uu = (e_{x}e'_{\mu} - e'_{\mu}e_{\lambda})(e'_{\mu}e_{\lambda} - e_{x}e'_{\mu})$$

$$= e_{x}e'_{\mu}e_{\lambda} - e_{x}e'_{\mu}e_{\lambda}e'_{\mu} - e'_{\mu}e_{\lambda}e'_{\mu}e_{\lambda} + e'_{\mu}e_{x}e'_{\mu} + e'_{\mu}e_{\lambda}e'_{\mu}e_{\lambda}$$

$$= 0,$$

so u = 0; that is, $e_{\lambda}e_{\lambda} = e_{\lambda}e_{\lambda}$ for every λ , μ . Thus we get

$$xy = yx$$
.

(★) Received May 24, 1951.

 J.von Neumann: Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann., 102(1927) pp.370-427, especially 391-2.

Tôhoku University, Sendai.