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ASYMPTOTIC BEHAVIOR OF THE W-K-B
APPROXIMATIONS NEAR A STOKES CURVE

BY TOSHIHIKO NISHIMOTO

§ 1. Introduction.

In this paper we consider the asymptotic behavior of solutions of the se-
cond order differential equation

(1.1) e*^-po(x)y=0,

and of fourth order differential equations of the form

(1.2) ε 2 ^

for small positive parameter ε. The asymptotic analysis of the above equa-
tion (1.1) has been studied in connection with quantum mechanics by many
authors and one equation of the form (1.2) is concerned with the Orr-Sommer-
feld equation which appears in the stability theory of parallel flow of viscous fluids.

It is well known that the equation (1.1) and (1.2) have asymptotic solu-
tions as ε^O such that

3Ί(*)~ίo(*)-1/4 exp [y

(1.3)

y*(χ)~P>(χYm exp {--ί- J" VJIχ)dx\,

and

3>1(*)~(*--α)iί1(*-α),

y2(x)~u2(x-a)--^7^yί(x) log (x-a),
P a)

exp {-ί- J* Vpo(x) dx) ,
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yΛx)~Po(x)'*» exp { —

where a is a zero of the function po(x) and u^x—a) ( i=l, 2) are convergent
series in powers of (x—a). The points where po(x) vanishes are called turning
points of the equations, and the curves starting from turning point defined
by

Re ξ(x, xo)=constant,

where

(1.5) ξ(x,xo)=\*

are called Stokes curves. The Stokes curves configuration in the complex x-
plane does not depend on the choice of x0, or of the square root of po(x).
The above asymptotic approximations (1.3) and (1.4) are valid in appropriate
regions of the complex x-plane bounded in part by Stokes curves and turning
points. The exact definition of the regions of validity of these asymptotic
approximations are given for example in Evgrafov and Fedoryuk [1] or Wasow
[5] for (1.1) and Nishimoto [2] for (1.2).

We assume throughout this paper that all of the coefficients in the equa-
tions (1.1) and (1.2) are entire functions.

Let D be a canonical region in the sense of [1]. Specifically we assume
that

(i) D is an unbounded region whose boundary consists of Stokes curves and
turning points,

(ii) D is mapped by (1.5) onto the whole f-plane cut by a finite or infinite
number of verticals each of which is unbounded, and

(iii) if there exist infinite number of verticals the distance of two verticals
are bounded from below by positive constant, say ip.

The conditions on the entire function po(x) to fulfill the above assump-
tions (i) and (ii) are given in [1], while the assumption (iii) is added in this
paper. Usually the asymptotic expansions are valid in a compact region con-
tained in D. Their asymptotic nature when x tends to infinity or to a turning
point is studied in [1] and Nishimoto [3] respectively.

The purpose of this paper is to find out the asymptotic behavior of the
solutions (1.3) and (1.4) when x is near a Stokes curve on the boundary of D.
That result with respect to (1.2) gives a partial justification for the complete
asymptotic expansion of the Orr-Sommerfeld equation constructed by Reid [4].
That is, the complete asymptotic expansions consist of the usual terms of
W-K-B type and another term which is small in Poincare sence. He expects
that thus obtained expansion gives better approximation near the Stokes curve
of the boundary. Our results in § 2 prove that the W-K-B type approximation
may become no useful near the Stokes curve of the boundary and so it turns
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out.to be necessary to fill up by appropriate compensations.

§ 2. Second order equation.

The differential equation (1.1) can be written in the vector form

Hv ί 0 1
(2.1)

dx { p(x) 0
y,

Let

(2.2) y-
1 1

VJ -VJ

Then (2.1) becomes

dz r V J 0
£ d χ { 0 _^/j

1—εr — εr

εr 1+εr
r =

p>
SpVp '

PL
Ap

1 0

0 1

8pVp 32 pWp "

If we put

(2.3) z=(E+iv)p-1/i

w=

0 exp

wn wλ

Wo, Wo

I JXQ ε J
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where £ is the second order unit matrix, then we obtain for w the differential
equation

(2.4)
dw „

Λ Γ C

+«
1

1

1

- 1

]

+{
}•

0

υ—w

0

' VJ

0

0

-VJ

For each component, the above equation takes the form

(2.4),
;

2] = —ε2s—2Vp w21—ε2s(wn

J

Γw21).
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(2.4)2
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εw[2=ε2s+2V p w12+ε2s(w12+w22),

εw22=—ε2s—ε2s(w12+w22).

Since the analysis of the equations (2.4)! and (2.4)2 is quite similar, we treat
only the equation (2.4)2.

To estimate the function w12(x) and w22(x), we transform the differential
equation (2.4)2 into the following integral equation

w 2(x, e) = — e \ {exp Γ

τ)} dτ ,

where the integral path γ+(x) is a curve connecting x and infinity in D as
follow. Let ^) be the image of D under the mapping (1.5), and then 3) is the
whole f-plane with unbounded vertical cuts issuing from images of turning
points (Fig. 1 and 2). We define firstly a curve C+(ξ) in 3) and γ+(x) is defined
as the inverse image of C+(£) under the mapping (1.5).

Λ:-plane

Fig. 1

We describe a circle of radius p around each ξ(a, x0) and two vertical lines at
the distance p from the cut. Let l(a) be a cut issuing from ξ(a, x0) and let
37(/(α)) be the neighborhood of /(α) bounded by a half circle and two vertical
lines (Fig. 2). We define curves C+(ζ(x, x0)) in 3) starting at ξ(x, x0) and tend-
ing to oo so that Reξ is non decreasing along C+(ξ). The choice of C+(f)
may be quite arbitary, but we specify it in order to derive the inequality
(3.10) in section 3.
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(i) If ξ is not an interior point of a neighborhood of cut, then C+(ξ) starts
at ξ and goes vertically up or down to a point, say P, on the real axis
or on the half circle. From P, it proceeds to the right along either the
real axis or the boundary of Jl{l) (Fig. 2. C+(fi)).

(ii) We assume ξ is in 3Z(/(α)) and at the right side of the cut /(α). If ξ is
at the right side of the cut, then C+(?) proceeds along a vertical line
until it meets with the horizontal line lmξ=lmζ(a, x0), then to the right
along this line until C+(ζ) reaches a boundary point of 37(/(α)), thereafter
along the curve defined in (i) (Fig. 2. C+(ξ2)).

(iii) If ξ is in ϋl(l(a)) and in the half disk, then C+(ζ) is a curve along the
circle of radius \ξ—ξ(a,xo)\ from ξ to ξ(a, xo)+\ξ—ξ(a, xo)\ and connects
with a curve defined in (ii).

(iv) If ξ is in U2(l(a)) and is at the left side of the cut, then C+(f) consists of
a vertical line from ξ to ξ(a, x0)— |Re [f—ξ(a, * 0 ) ] | and connects with a
curve defined (iii) (Fig. 2 C+(£3)).

We define the integral path γ+(x) as the inverse image of C+(ξ) under the
mapping ξ=ξ(x, x0), and we also define neighborhood N(a) of Stokes curves
that bound D as the inverse image of U2(l(a)) (Fig. 1). Similarly we can define
path γ.(x). along which Reξ(x,x0) is nonincreasing.

LEMMA 2.1. Suppose that the total variation of εs(x) along γ+(x) is bounded:

then we have

\w12(x,ε)\, \w22{x,ε)\ ^

Proof. We first observe that from the properties of γ+(x), it follows that

2£(*,r)τ ^
(2.5) exp

ε

We successively define functions1 wί2

w(x), w2Z

in\x), as follows

wu(χ>ε) = --ε\ Ί^xp —\s(τ)dτ ,

and

w[f(x, ε) = —ε \ jexp ——-—p(r){i6'S^~1)(r, e) + w$~1)(τ, ε)}dτ ,
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By induction we can then prove the inequality

(2.6) I wkt«\x, e) I g; {2V^f^+1 , (*=1, 2)

For ft=0, this is obvious, and if we assume the inequality (2.6) to be true for
n—1, we have, using (2.5),

d

2{2F[s(τ)]r
n!

2{2F[s(r)]Γ
ft!

εs(τ)\\dτ\

The lemma is now obtained at once by applying the usual Picard iteration
argument to the integral equations.

Let ΊJ(a, p) be the open disk of radius p with center ξ(a, x0) in ξ-plane,
and let U(a, p) be the inverse image of <U(α, p) under the mapping ξ=ξ(x, x0).
We define C+(f, a) and 7*+(jc, α) by

c+(£, fl)=c+

Clearly ^+(x, α) is transformed into C+(|, a) (Fig. 3).

Fig. 3

Suppose that the function p(x) has a zero of order q at *=α. Let S+(a) be
the Stokes curve such that it starts at x=a, bounds D and its left hand side
is an interior of D (Fig. 1). Then we have the following lemma.

LEMMA 2.2. // d denotes the distance between x and S+(a), then we have
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| ε s ( r ) | \dτ\ ^Kεd~CQ+2χ'2

for positive constant K. Here K does not depend on ε, and it may depend
on \x—a\ but can be taken independently on x if we confine x bounded, say
\x—a\ <M for arbitrary M.

Proof. In the proof below, Ku K2, etc, denote constants having the same

properties as K in the lemma.
It is clear that in the neighborhood U(a, p) we have

(2.7) KλI * - f l I < * + 2 > ' 8 ^ Iξ(x, x,)-ξ(a, x0)\^

There fore it is convenient to estimate the integral in the f-plane. By consider-
ing the order of the pole of s(x) from its definition, we have

Λ ε\V-ξ(a,x0)\-2\dη\.
cζ,a)

The integral curve C+(ξ, a) consists of three parts, the vertical line C+

aXζ, a),
the half circle C+

C2)(f, a) and the horizontal segment C+

C3)(f, a) (Fig. 3).
Firstly the contribution from C+

C1)(f, a) is bounded by

where δ means \R&ξ(x, xo)—Reξ(a, xo)\ and cosθ0=δ/p. Next

and

( \η-ξ(.a,xa)\"\dv\£Ktδ-1.

By adding the above three inequalities, we have

(2.8) ( Ids(τ)\\dτ\^Kδε\Re ξ(x, xo)-Re ξ(a, x0)\ ~\

Consider the curve: Reξ(τ, xo)=Reζ(x, x0) and let y be the crossing point
of this curve with the anti Stokes curve Im ξ(τ, xo)=lmξ(a, x0) (Fig. 1, dotted
curve). Then there exists a positive constant K6 such that

I Re {£(*, xo)-ξ(a, Xo)} I - I Re {ξ(y, xo)-ξ(a, x0)}
(2.9)

and it is easy to see that for x in the neighborhood of the Stokes curve
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bounding D we have

(2.10) \y-a\^KΊd

where K7 is a positive constant depending on \x—a\ and p. By combining the
inequalities (2.8), (2.9) and (2.10), the proof of the lemma is completed.

From Lemma 2.2, the following lemma follows easily.

LEMMA 2.3. Let D be a canonical region and let DM be the region

DM={x: \x\D,\x\<M]

for arbitrarily large positive number M. Then for all x in DMr\N(a) where a
is a turning point, there exists a constant K depending on M and p such that

(2.11) es(τ)dτ

From Lemma 2.1 and Lemma 2.3 we deduce the existence theorem for
solutions of the equation (2.4)2 as well as the asymptotic behavior when x is
near Stokes curves of boundary. The same procedure gives us similar results
about the euqation (2.4)!. Thus by taking the equations (2.1), (2.2) and (2.3)
into our consideration, we have proved the following theorem.

THEOREM 1. The differential equation (1.1) has a fundamental system of
of solutions in DM such that

ylx, e)=/>0(x)-Wexp f* ^^dΛil+ω^x, e)},

y[{x, e)=—M*)1 / 4{exp (* ^^-dΛu+ω^x, ε)},
ε V JX ε J

ylx, 6)=/>o(*)-vl{exp - ( * ^^-dΛ{l+ω2(x, ε)},
I JX ε J

y'lx, e) = -—pt(x)1't jexp - ( ' ^^-dτ\{l+w2(x, e)}.
ε I jχ0 ε J

Here ωt(x, ε), ω%{xy ε) (z=l, 2) satisfy

\<ύi(x,ε)\Λ , Kε, for x outside of all N(a),
Ml

I wax, ε) IJ [ Kεd-^^\ for x in N(a),

where K is constant depending on M and p, and d is the distance between x
and the Stokes curve of boundary.
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§ 3. Fourth order equation.

The fourth order equation (1.2) is transformed into the vector equation of
the form

(3.1)

0

0

0

= {y, yr>yf'> ε /

q{x,ε) 0 p(x,ε) 0

where y is a column vector of the entries {ylfy2, ^

p(x, ε)=po(x)+p2(x)ε2, q(x, ε)=qo(

In this section we suppose that the function pQ(x) satisfies the conditions
stated in the introduction and all of the turning point are simple, that is, all
of the zeros are simple.

We can consider that the coefficient matrix of (3.1) is a power series of ε.
In order to make a first few terms of the series diagonal, we make the follow-
ing transformations as we did in [2].

E2 0

0 Ω

I E2+tQR tQS

R S
, t=εpo(x)-

Here u1 and u2 are two column vectors, E2 is the 2-dim. unit matrix, and the
other two by two matrices are defined as follow.

Ω=

R=

1

0

1

0

\/Po(χ)

-Qo/Po

l + tr-t2r2

l-tr+t2r2

o=ί °
I PoPo't

0

-1+tr )

1+tr >

0

Po

γ —
I —

(p'- dp0

V ° dx

_ 1 y
8 p'

By the above transformation, the equation (3.1) becomes

du1

(3.2)
dx ^(A.+A^ΰ.+B,^,

Pot dχ -C«

where
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0

-Qo/Po

1

0

1

k 0

0

- 1

1

4
'Po't

1 0

0 1

The matrices A1R,B1R,C1R and D1R^can be^ written as i4 1 B ί 2 ί 0 "M Λ , B1R=t2BR,
C1R

z=zt2p0~
1CR and D1R=t2DR, where AR,BR,CR and DR are polynomials of t and

x.
Put « !=#! and u2=p0u2f then from (3.2) we have

duλ =(A+AR)Ul+BRu2,

(3.3)

with A=AU AR=A1R, BR=B1Rp0-
1,CR=C1Rf DR=D1Rp0-

1

f and

1 0

0 - 1

Q Ή / 1 0

0 1

Let U0(x) be a fundamental system of solutions of the equation

in a neighborhood of a turning point x=α which is a regular singular point
for this differential equation. One such fundamental system has the form

( (x-a)p1

U0(x)=U0(x)Λ(x)=

(3.4)

X

1

where #<>(*) and /ί(x) are defined by the third member, and Pλ and P2 are
convergent power series of x—a. Consider this matrix U0(x) as defined for all
x in relevant region by analytic continuation.

Next we define the matrices V0(x, ε) and W0(x, ε) by

V0(x,e)=p0(x)*'*

exp ί-1^}
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(3.5) x,Xo) = \" Vpo(τ)dτ,

U0(x) 0
W0(x,ε)=

0 V0(x, ε)

Let W(x, ε) be a fundamental system of (3.3) and consider W0(x, ε) as the
first approximation of W(x, ε). The error function WR(x, ε) is defined by

WR{x,ε)=
£/ c l )

Ί
£/(2) y(2) J

(3.6)

V22

V32

VA2

W(x,e) =
0 E E+ F(2) 0

where ί/ci), F ( ί ) (i=l,2) are two by two matrices. Then ί/Cι>,
tisfy the following system of integral equations.

(3.7)!

(x=l, 2) sa-

)= 7,(x, ε) j *

(3.7),
τ) F<2>(r)} V0(τ, ε) V0(x, εY'dτ,

) = V0(x, ε)

where t=εpo(τ)~s/2, and the integral is taken along an appropriate curve to be
specified in later for each entry of the matrices Uιi\ F ( ί ) (f=l, 2). Let Z> be a
canonical region as in the previous section, and let the turning point x=α be
located at the boundary of D. For all x in D the paths γ+{x) and γ.(x) are
defined as before. In this section we restrict our consideration to a bounded
subregion DB of D for which we assume that γ+(x), γ.(x) end at fixed points
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4+ ), *V of boundary of DB. To estimate the error WR(x, ε), we write down
the integral equation for each column vector. For simplicity of description,
we put

. hi(τ) a22(τ) J I b21(τ) b22{τ)

Ci2(τ) dn{τ) dl2{τ)

kiM d22(τ)

Then by using the formula

I l/(r)+g(r)log τ_ \h(τ)dτ=Λ \h(τ)f(τ) \ g(s)h(s)ds\dτ

valid for continuous /(τ), g(τ), and Λ(τ), the first column vector of (3.7)i is seen
to satisfy

+b12(τ)uu(τ)Ί+—^— \ [β2i(s)+β

+b21(s)u31(s)+b22(s)u41(s)lds}dτ,

(3.9)

τ)} dτ,

where :μ=qQ(a)/po

f(a).
As we did for the second order equation, we define iterative sequence of

functions formed by applying the integral operations in (3.9):

=Λ \an(τ)+-^- \ a21(s)ds\dτ,
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a21(τ)dτ,

u

and Wii(n)(x) (i=l,2,3,4, n = l , 2 ) are defined in an obvious way. We define
v, g(τ), Ln(x), Mn(x) as follow

v— max

α,/r)|, \bυ(τ)\, |c,/r)|, |du(r)| (i,j

)=ΣKW I,

{l+v)g{τ)Mn.1\dτ

( M J - ' Ή 1 ίί+

It is clear that

Ln{X)^Mn(X) (n=0,l,2, ),

and owing to the definition of the curves γ+(x), γ~(x) we have

{l+v)g{τ)M»(τ)\dτ\ ^(3.10)

The definition of g{τ) and v implies that there exists a constant k indepen-
dent of τ and ε such that

(3.11) \μ\
(l+v)\τ-a

-<k-
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This is easily seen as follows. If x is away from the Stokes curve or turning
point, the quantities v, \τ—a\,g(τ) and | ί | are bounded and g(τ)/\t\ is bounbed
below by positive constant. While if x is near the Stokes curve or turning
point, v is of the order 0(|r—α|~3 / 4), and g(τ)/\t\^po(τ)-\ From these facts
the inequality (3.11) follows at once.
Thus we can prove inductively that

0+^-M0

2)n, to=min\εpo(τy*/2\,

from which we get

oo oo λ/f

(3.12) |Mlι(x)|^Σi»W^ΣM,,(x)^ i V \ d-1,2,3,4),
l

under the condition that M0 + kt0"
1M0

2<l, which is satisfied for sufficiently
small ε.

Since the entries of the matrices AR, BR, CR, DR are of the order O[tpQ{τ)~1']
and U(τ), ίZ(τ)"1 are bounded, then all functions in (3.8) and g(τ) are of the
same order O[tpQ(τ)~1Ί. From analogous procedure as in section 2, the integral
MQ(x) is bounded by the order O\i{l+v)Q. If x is near the Stokes curve of
boundary of DB, v is of the order 0[d~3/4] and then M0(x) is of the order
O[εύf"9/4], where d is the distance from x to the Stokes curve. Therefore the
inequality (3.12) prove that there exists a solution of the integral equation (3.9)
for sufficiently small ε in a region, say DB[_ε] which is obtained from DB by
removing a strip of width O(ε4/9) along the boundary. Also (3.12) means that
the error functions may become infinite as x approaches to the Stokes curve
on the boundary or the turning point x—a.

The same properties can be proved for the solutions of the second column
vector of the integral equation (3.7)! by a trivial modification.

Next, we analyse the integral equation (3.7)2. By using the abbreviation
(3.8), the first column vector of (3.7)2 can be written in the form

+ a12(τ)v21(τ)+bn(τ)vsl(τ)+b12(τ)v41(τ)}dτ

[-£- f ^-<-^) 3 / > 2 1 (
r-wLr—a Jr-cr) V po{x) /

Vt1{s)} ds^dτ,



(3.13)
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+ a22.(τ)v21(τ)+b21(τ)vn(τ)+b22(τ)vil(τ)} dτ,

We define, as we did for (3.9), a successive iteration ^ ! ( n ) (z=l, 2, 3, 4, n=0,1,
•••), and set

v= max

α w ( r ) | , \bt,(τ)\, \cι}{τ)\, \d^

£Λ(*)=Σ \Vιΐn\x)\ 0=0,1,2
1 = 1

N(t{x)=^_iχ2(l+v)g{τ)\dτ\.

Then one easily derives that

ί_w2{l^v)g{τ)Ln.1{τ)\dt\

where ft is such that

2(l+v)\τ-a\

From this we can prove that

(3.14) \vil(x)\£'ΣLn

n=0

where

>, (ι=l,2,3,4)
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From this inequality and the evaluation of N0(x) it follows, as in section 2,
that the error function vn(x) (z=l,2,3,4) are of the order O[εί/~9/4] as x ap-
proaches the boundary of DB. Clearly the same asymptotic property holds
for vi2(x) (i=l, 2,3,4). Thus we arrive at the following theorem.

THEOREM 2. There exist a subregion DB[_ε] of DB, which is obtained from
DB by removing a strip of width <9[ε4/9] along the boundary so that the following
inequalities hold:

Mo(x)+kto'
1Mo(xy<l, N0(X)<OD ,

and the OrrSommerfeld equation (3.1) has an fundamental system of solutions
in DB[β~\ whose asymptotic expansion is of the form

1

Y{x,

1

0

" A T

0

1

0

V2

1

V2
1

vτ

Po2

ε

PoVJo

1

Po
i

"V2

1

V2
1

ίo2

ε

1

Po

1

0

V0(x,

77i£ βrr6>r functions defined at (3.6) satisfy

M0(x)

({=1,2,3,4., .7=1,2).

These error functions may become infinite as fast as εd~9/i when x approaches
Stokes curves of the boundary.

Remark. It may be conjectured that the error functions of the Orr-Som-
merfeld equation (3.6) are of the order O[_εd~z/2~] when x is near Stokes curves
of boundary. This is the case for the second order equation. I could not
prove this for the Orr-Sommerfeld equation at the present.

Acknowledgement. The author would like to express his heartiest thanks
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paring this paper.
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