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FIXED POINTS FOR CONDENSING MULTIFUNCTIONS IN

METRIC SPACES WITH CONVEX STRUCTURE

BY LOUIS A. TALMAN

In this paper, we prove a fixed point theorem for condensing multifunc-
tions with convex values, closed graph, and bounded range acting on a metric
space endowed with a simple but powerful notion of convexity.

In Section 1, we discuss a notion of convexity for metric spaces which
was introduced in [8] by W. Takahashi. We develop here some geometric and
topological properties which result when a uniqueness assertion is added to
Takahashi's requirements.

In Section 2, we introduce a new notion of convex structure for a metric
space. This new notion is based on the Takahashi notion, but has some plea-
santer geometric properties, which we investigate here. In particular, we are
here able to permute the order of repeated convex combination.

In Section 3, we introduce the "measure of noncompactness" and study it
in relation to a "stable" convex structure. The major fact here is that the
measure of non-compactness is invariant under passage to convex hulls.

Section 4 is devoted to our major result (Theorem 4.2): A condensing
multifunction with convex values, closed graph, and bounded range, which
acts on a complete metric space with stable strong convex structure has a
fixed point.

1. Takahashi convex structures.

1.1 DEFINITION : Let (X, d) be a metric space, and let / be the closed unit
interval [0,1]. A Takahashi convex structure (TCS) on X is a function
W: XxXxI-^X which has the property that for every i j ε l and t^I we
have

d(z, W{x, y, t))^td(z, x)+a-t)d(z, y) (1)

for every z^X. If (X, d) is equipped with a TCS, we call X a convex metric
space. When (X, d) is a convex metric space and SaX, we say that S is con-
vex provided that W(x,y,t) lies in S for each (x,y,t) in SxSxL

Takahashi convex structures were introduced by W. Takahashi in [8], and

Received May 24, 1976.

62



FIXED POINTS FOR CONDENSING MULTIFUNCTION 63

have been studied by H. Machado [6] as well. The following proposition col-
lects some results from [8] which follow immediately from the definition; see
[8] for details.

1.2 PROPOSITION: Let W be a TCS on a metric space (X,d). If x,y^X
and fe/, then

(a) W(x, y, ϊ)=x and W(x, y, 0)=y.
(b) W(x,x,t)=x.
(c) d(x, W(x, y, f))=(\-t)d(x, y) and

d(y,W(x,y,t))=td(x,y).

(d) Balls (either open or closed) in X are convex.
(e) Intersections of convex subsets of X are convex.

1.3 DEFINITION : Let W be a TCS on a metric space (X, d). We say that
W is a strict TCS if it has the property that whenever w^X and there is (x,
y, t)(ΞXxXxI for which

d(z,w)^td(z,x)+(l-t)d(z,y), for every z<=X,

then w—W(x,y, t). If W is a strict TCS on the metric space (X, d), we call X
a strictly convex metric space.

The reader is warned that our use of the term "strictly convex" does not
conform to standard usage for Banach spaces. For example, the plane equipped
with the norm \\(xlf X2)\\ — \χi\ + 1*21 is strictly convex in our sense, but not in
the standard sense.

1.4 LEMMA : Let W be a strict TCS on the metric space (X, d). Then for
every x,y^X and t, SG/. we have

W(W(x,y,t),y,s)=W(x,y,ts).

Proof: Let z^X. Then

d(z, W{W(x, y, 0, y, s))^sd(z, W(x, y, t))+(l-s)d(z, y)

^std(z,x)+(l-st)d(z,y),

whence, by strictness, W(W(x, yy t), yy s)=W(x, y, ts).

We now investigate the continuity properties of a strict TCS.

1.5 THEOREM : If W is a strict TCS on a metric space (X, d), then for
every pair x,y(ΞX with xφy the function t^W(x,y,t) is an embedding of I into
X.
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Proof: Let tlft2<=I, and assume, without loss of generality, that t1<t2.
Then

d(W(x, y, O, W(x, y, U))=d(W(x, y, WJU)), W(x, y, Q)

=d(W(W(x, y} U), y, tJQ, W(x, y, Q)

which establishes the theorem.

1.6 REMARK : The above argument shows that the map W(x, y, f)*-*td(x, y)
gives an isometry of the subspace {W(x,y,t): ίe/} of X onto the closed in-
terval [0,d(x,y)']. In particular, {W(x,y,t): ίe/} is homeomorphic with I if x
Φy, and is a singleton if x=y. Thus the strictly convex metric spaces are
seen to be SC2-metric spaces as defined by J. Dydak [1].

It does not appear that even a strict TCS is necessarily continuous as a
function from XxXxI to X. However, we have the following:

1.7 THEOREM : Let W be a TCS on a metric space (X, d). Then W is con-
tinuous at each point (x, x, t) of XxXxI.

Proof. Let {(xn,yn,tn)}n=i be a sequence in XxXxI which converges to
(x, x, t). In view of Proposition 1.2(b), it suffices to show that {W(xn, yn, tn)}%=1

converges to x. But this is immediate, since the sequences {xn}n=i and {yn}n=i
both converge to x, and (1) yields, for each n, d(x,W{xn,yn,tn))igtnd(x,xn)

Jr
(l-tn)d{x,yn).

The difficulty in obtaining continuity of W as a map from the product lies
in the fact that there seems to be no way to guarantee that the sequence
{W(xn,yn,tn)}~=1 will converge when {(xn,yn, ΐn)}n=i converges to (x,y,t) with
xφy. When X is compact, we can eliminate this difficulty. I am indebted to
Prof. CJ. Himmelberg for the proof of the following theorem.

1.8 THEOREM : (CJ. Himmelberg. unpublished notes) Let W be a strict TCS
on a compact metric space (X, d). Then W is continuous as a function from
XxXxI to X.

Proof-. Let {(xn, yn, tn)}n=i be a sequence in XxXxI which converges to
(x, y, t), and let w be a limit point of the sequence {W(xn, yn,tn)}n=i Select a
subsequence {W(xnk, ynk,t7lk)}<£=1 which converges to w. Then for any Z G Z ,
we have d(z,W(xnk,ynkJn^)^tnkd(z,xn^+(l--tnk)d(z,ynk) for k=l, 2, —. By
continuity of the metric, we conclude that d(z,w)^td(z, x)-\-(l — t)d(z,y). Stric-
tness now guarantees that w=W(x,y,t). It follows that W(x,y,t) is the only
limit point of the sequence {W(xn,yn,tn)}n=lm Since X is compact, {W(xn,yn,
tn)}n=i must converge to W(x,y,t), and we are done.
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2. Strong convex structures.

Takahashi convex structures provide a reasonably rich notion of convexity
for abstract metric spaces. However, they suffer from two serious flaws. The
first, which we have already noted, lies in their rather weak continuity pro-
perties. The second lies in a lack of identities which would allow permutation
of the order of repeated convex combination, i.e., given tlft2^I, we would like
to know that we can find s1,s2<=I in such a way that W(W(x,y,t1),z,t2)=
W(W(x,z,Sί),y,s2).

The first difficulty seems to be inherent to the Takahashi notion, and must
be circumvented by explicit assumption of compactness on the one hand or
continuity itself on the other. Surprisingly, the second difficulty can be recti-
fied within the spirit of Takahashi's definition by simply "going up a dimen-
sion". This is the purpose of our next definition.

2.1 DEFINITION: Let (X,d) be a metric space, and let P={(t1,t2,t3)^IxT
XΪ: £i+f2+*3=l}. A strong convex structure (SCS) on X is a continuous func-
tion K: XxXxXxP->X with the property that for each (xlf x2, Xs,tlft2,t3)e
XxXxXxP, K(xu x2, x3, tu t2, ί3) is the unique point of X which satisfies

d(y, K(xl9 x2, xz, tl912, Q)S Σ tkd{y, xk) (2)

for every J / G X A metric space with a strong convex structure will be called
strongly convex.

2.2 REMARK. The uniqueness assumption in Def. 2.1 guarantees that if p
is a permutation of {1, 2, 3}, then, for (xlf x2, xs, tlf t2, t3)<=XxXxXxP, we have

It is from this trivial observation and the following lemma that we obtain
a well-behaved TCS on X.

2.3 LEMMA : Let {X, d) be a strongly convex metric space, K its SCS. De-
fine Wκ: XxXxI-^X by Wκ(xu x2, t)=K(xu x2, xu t, 1-t, 0). Then Wκ is a
continuous strict TCS on X. Moreover, for any xu x2, x 3 e l and t,s^I, we have

Wκ(Wκ(xlf x2, s), x3, t)=K(xl9 x2, xz, st, t(ls), 1-0 . (3)

Proof. That Wκ is a continuous strict TCS for X is immediate from the
properties of K and the definition of a strict TCS; the details are left to the
reader.

To prove (3), let y^X be arbitrary. We then have

d{y,Wκ{Wκ{xλ,x2,s),xz,t))

u x2,
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^st d{y, Xl)+(l-s)t d(y, x2)+a-t)d(y, xz).

Thus, Wκ(Wκ(xlf x2, s), xs, t) satisfies (2) with t1=st,t2=(l—s)t, and t,=l-t. (3)
follows by uniqueness.

We remark that the value of the third argument for K in the definition of
Wκ is irrelevant, as is easily seen. We have chosen xλ for definiteness.

In the remainder of the paper (X, d) will denote a strongly convex metric
space; K, its SCS; and W—Wκ, the induced strict TCS provided by Lemma
2.3.

2.4 PROPOSITION. / / xu x2, I 3 G I and t, se/, we have

(a) W{xux2,s)=W(x2ix1,l-s)

(b) W(W(xux2fs\x3>t)

9 *., ^[l-ί(l-s)]"1), xt, 1-ta-s)),

where the right side of (b) should be interpreted as meaning x2 when 1—ί(l—s)
- 0 .

Proof, (a) is immediate from the strictness of W and Proposition 1.2 (in
fact, (a) holds for any strict TCS).

(b) follows easily from Remark 2.2 and Lemma 2.3. The details are left
to the reader.

2.5 DEFINITION : A subset S of a strongly convex metric space is said
to be convex if it is convex for the induced Takahashi convex structure. If
H c l , then C(H) denotes the intersection of all convex subsets M of X for
which HdM. C(H) is called the convex hull of H.

2.6 REMARK: C(H) is convex by Proposition 1.2(e), so that the termino-
logy "convex hull" is reasonable. Moreover, W is continuous and this guaran-
tees that the closure of a convex set is convex. It is, however, not true that
the convex hull of a closed set is necessarily closed. (Consider the set {(x,y)

Our next lemma depends heavily on Prop. 2.4, and is the fundamental pro-
perty of convex hulls in strongly convex metric spaces.

2.7 LEMMA: Let HaX be convex, and let xQ^X\H. Define a subset H(x0)
of X by H(xo)={W(xo,y, t): yς=H and ί e / } . Then C{HVJ{xo})=H(xo).

Proof: It is clear that HaH(xo)(ZC(HyJ{x0}), so it suffices to prove that
H(x0) is convex. To this end, let yu y2 e H(x0), and let ί e / . We show that
W(yu y2, t)eH(x0). By definition of H(x0), we can find xux2^H and n, r 2 e / so
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that yi=W(xo,xt,rt),i=l,2. Applying Prop. 2.4 several times, and using Prop.
1.2(b), we obtain a succession slf s2, •••, s6 of elements of / such that

W(yu y2, t)=W(W(x0, xl9 rx\ W(x0, x2, r2), t)

= W(W(x0, W(x0, x2, r2), sθ, xu s2)

= W(W(W(x0, x2, r2), x0, 1-Si), x, s2)

= W(W(W(x0, x0, sΛ), x2, s4), xlf s2)

= W(W(x0, x2, s4), xlf s2)

= W(W(x2, x0, 1—S4), xlf s2)

= W(W(x2, xl9 s6), x0, sB)

= W(x0, W(x2,xlfs5),lsβ).

But H is convex, and x2yxλ^H, whence W(x2, xlf s5)e//, so that
W(x0, WX, *i, s5), 1—s6)e//(x0). The argument is complete.

3. Convex hulls and compactness; the measure of non-compactness.

3.1 THEOREM: // SaX is a finite set, then C(S) is compact.

Proof: We proceed by induction on | 5 | , the number of elements in S.
Since the assertion is trivial for | S | = 1 , we assume that for some integer, n,
C(S) is compact whenever \S\^n. Suppose that SdX is a set with | S | = n + l .
Let x0 be any element of 5. The induction hypothesis guarantees that C(S\
{x0}) is compact, so if I O G C ( S \ { I O } ) , we are through. If xo&C(S\{xo}), then
Lemma 2.7 yields that C(S)=C(C(S\{xo})\J{xo})={W(xo,yJ):yeiC(S\{xo}),t<=I}.
Thus, C(S)=W({x0} xC(S\{xo})xI), and, as W is continuous and {xo}xC(S\
{xo})χl is compact, the proof is complete.

In what follows, when SdX and r is a positive real number, we shall use
the notation Sr for the set {x^X: d(x,S)<r}.

3.2 DEFINITION: Let X be a strongly convex metric space, and let SdX
be convex. We say that S is stable if Sr is convex for every r>0. We say
that the SCS on X is stable if the set {W(x, y, t): ίe/} is stable for every pair
X J G I (Note that {W(x,y,t): t^I}=C({x,y}) is convex by Lemma 2.7.)

3.3 THEOREM : Let X be a strongly convex metric space. The SCS on X is
stable iff every convex subset of X is stable.

Proof: If every convex subset of X is stable, it is clear that the SCS is
stable.

Conversely, suppose that the SCS is stable and let SciX be convex. If
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r>0, let xo,yo^Sr. We can then find ^ J J G S with d(xOf xλ)<r and d(y0, yλ)<r.
Since S is convex, if we let J={W(xu yut): fe/}, we must have JdS. But /
is stable, so that Jr is convex. Moreover, xQ,y^Jr. Thus {W(xo,yo,t): fe/}
djr. Clearly, JrdSr, and this implies that {W(#o, Jo, 0 : t^I}dSr, i.e., Sr is
convex.

3.4 THEOREM: // X has stable SCS, then the convex hull of any precompact
subset of X is precompact.

Proof: Let SdX be precompact, and let r>0 be given. Choose a finite
set FdX in such a way that SdFt, where f=r/2. Since F is finite, C(F) is
compact, and there is a finite set TdX such that C(F)dTt. But then SdFtd
[C(F)]£, which is convex. Hence, C(5)c[C(F)] ί C[T £ ] ί c7 r , and C(S) is precom-
pact.

The reader should note that the convex hull of a compact set need not
be compact, even under the stability assumption. For let X be the subspace
of /2 which consists of all sequences which are zero from some point on. If
{en}n=i denotes the usual basis for /*, then S={0}W{n"1eJ~=1cZ is a compact
set whose convex hull is not compact.

3.5 DEFINITION: Let (X, d) be a metric space, and let SdX be a bounded
subset of X. Then m(S), the measure of non-compactness of S, is the real
number defined by

m(S)=inf {r>0: SdQr for some precompact QdX}.

The above notion of measure of non-compactness has been called the
Hausdorff measure of non-compactness by some authors, and the ball measure
of non-compactness by others. For references, as well as a treatment of this
and other measures of non-compactness, see Sadovskii [7]. For a somewhat
novel approach to the idea of measuring the way in which a set fails to be
compact, see [5]. A non-numerical measure of non-compactness was used in [4]
to obtain the analogue for locally convex topological vector spaces of Theorem
4.2, below.

We digress momentarily to give an alternate description of m.

3.6 PROPOSITION : Let (X, d) be a metric space, and let m be the measure
of non-compactness on X. If SdX is bounded, then

w(S)=inf {r>0: SdFr for some finite FdX}. (4)

Proof: Let a(S) denote the quantity on the right side of (4). Clearly
m(S)^a(S), so let r>m{S) be given. We choose a precompact set QdX so
that SdQrf and let ε>0 be arbitrary. We then choose a finite set FdX in
such a way that QdFε. But then S c ζ ? r C [ F e ] r c F r + ε . Since ε>0 was arbitrary,
we ses that a(S)^r. But r>m(S) was arbitrary, so it follows that
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and the proposition is proved.

It is clear that a (bounded) subset 5 of a metric space X is precompact
iff m(S)=0. The following theorem is thus an extension of Theorem 3.4.

3.7 THEOREM : Let X be a strongly convex metric space with stable SCS. If
SdX is bounded, then m(S)=m(C(S)).

Proof: Let r>m{S). There is a precompact set QdX such that SdQr.
By Theorem 3.3, C(Q) is stable, so [C(Q)]r is convex. Thus Sc<? rc[C«?)] r,
and it follows that C(S)c[C«?)]r. But, by Theorem 3.4, C(Q) is precompact,
so that m(C(S))^m(S). The reverse inequality is clear, and we conclude that
m(S)=m(C(S)).

Observe that we could have based the proof of Theorem 3.7 on Prop. 3.6
and Theorem 3.1, and then deduced Theorem 3.4 as a corollary.

4. Condensing multifunctions a fixed point theorem.

Recall that a multifunction F\ X^Y is a function which assigns to each
i e l a subset F(x) of Y. If F: X-^Y is a multifunction, and SdX, then by
F(S) we mean the set {y^Y: y<=F(x) for some X E S } . The graph of F is the
set {(x,y): y<ΞF(x)}dXxY. A fixed point of a multifunction F: X-+X is a
point which satisfies i e F ( i ) .

4.1 DEFINITION : Let (X, d) be a metric space, m the measure of non-com-
pactnes on X, and F: X->X a multifunction. We say that F is condensing if
for every bounded subset 5cX, the relation m(S)>0 implies that m(F(S))<m(S).

4.2 THEOREM : Let X be a complete strongly convex metric space whose SCS
is stable, and let F: X-^X be a condensing multifunction with convex values,
closed graph, and bounded range. Then F has a fixed point.

Proof: The argument parallels, in large measure, that of Himmelberg,
Porter, and Van Vleck in [4]. By hypothesis, F(X) is bounded. Let S be the
closure of the convex hull of F{X). Then F{S)dS, and S is bounded, com-
plete, and convex.

Let I E 5 , and let Λ= {x}\JF(x)VJF\x)VJF\x)U-. Then AdS is bounded,
and A={x\\JF(A). Hence, m(A)=m({x}yJF(A))^m(F(A)). Since F is condens-
ing, A must be precompact. Thus, cl A is compact. By Lemma 1 of [4],
there is a non-empty compact subset K of S such that F(K)Z)K.

Now put S0=S, and if a is an ordinal, put

C(F(Sα_i)) when a is not a limit ordinal,

Sa = {
Γ\ SQ when a is a limit ordinal.
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Then for every a,

(i) Sa is a bounded convex subset of S
(ii) F(Sa)c:Sa;

(iii) SaZDKΦφ.

It follows that there is an ordinal, γ, such that Sr+1=C(F(Sr))=Sr, and m(F(Sr))
=m(C(F(Sr)))=m(5r4.i)=m(5r). Since F is condensing, 5 r is precompact and cl Sr

is a convex compact subset of S.
Now define a multifunction G: cl Sr^cl Sr by G{x)—F{x)r^cl Sr for every

^Gcί Sr. G has convex values and closed graph. Moreover, cl Sγ is compact
and acyclic (in fact, contractible). By Theorem 4 of [3], cl Sr is an ANR.
Since G(x) is convex for each x e d Sr, G has acyclic images. It therefore
follows from Theorem 1 of [2] that G has a fixed point, which is also a fixed
point for F.
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