A MONE ON NORASD RING.
By Naoki mixa

1. IoGelfand has shown in his first paper on Nommierte Ringe (Recuell Mathematique, T. 9 (51), 1941) that if R satisiles fous conditions $(\alpha),(\beta)$, (δ), and (8) given below, then R is algebraically isomorphic and topologically homeomorphic to R^{\prime} with the same three conditions $(\alpha),(\beta),(\mathcal{V})$, and (8) which is atrictiy atronger than (8).
sccording to his proof, he assumed commutativity of R or, at least, the existence of right unit element of R. In this noto, we shall show that his assertion is still valid in the case without assumption such as commutativity of R.

It is to be mentioned, however, that our concition (T) has a pight unit ole. ment, while Gelfand's (V) hat left unit element.
2. Let R be set of elements $x_{\text {, }}$. Jo z. . . which atisifies the following foup conditions (α), (β)) (γ) and (d).
(A) 8 is a Banach space with complex numbers as ita coerfioient field.
(β) is arings
$x(\lambda y+\mu z)=\lambda x y+\mu x z$
(λ, μ are complex numbers)。
$x(y z)=(x y) 2$
(\%) h has right unit oloment 0 $x e x$
moreover HeVx* 0
(8) Operation of Multiplication ma continuous. 1.e日

$$
\begin{aligned}
& x_{x} x \quad x \quad \text { implies } y x_{x} \rightarrow y x \\
& \text { and } \quad x_{n} y \rightarrow x y .
\end{aligned}
$$

Let Q be Banach space of all 11 near operators on R into R itself. And let R^{\prime} be the totality of Ax in Q such that

$$
A_{x} y=x y,
$$

1.0.* $R^{\prime}\left(A_{x} ; x \in R\right)$

Then, for the mapping $\boldsymbol{y}^{8} x \longleftrightarrow$ Ax between R and R^{\prime}, we can easily show that
(1) $x \neq x$ implies $A x \neq A x^{\prime}$. which evidentiy asserts ane-tom one mapoing of P between R and R^{0}.
(2) 9 is aigobraic isomarphism.
(3) P is continuous from R^{\prime} onto .
(4) R^{\prime} is closed in as thus R^{\prime} is complete.
Therefore by the known theorem of Banach,
(5) $R_{R^{\prime}}$ is contimuous from R onto

We can then conclude that
R and R^{\prime} are seonopphse and bemeomorphic, and mopeorer h^{1} antintien En Arconger conditions
(\boldsymbol{r}^{\prime})
(8)
Proof (1)
If $x=x^{\prime}$, then

$$
A_{x} e=x e=x+x^{\prime}=x t=A_{x} e
$$

Hence $A_{x} \neq A_{x}$
In the case of Gelfand, (1) Is not astiaried, and we ahail give its counter example at the end of thia note (4. (b)).
(2) Obvious.
(3) By the inequality $M A_{x} N \geq \frac{1}{T} M E M$.
(s) If Aram $\rightarrow A \in Q$ then $\left\{x x_{1}\right\}$ is a Cauchy sequence, for

$$
\begin{array}{r}
u x_{n}-x_{m} s \min A_{n}-A_{n} y \rightarrow 0 \\
\left(x_{4} m \rightarrow \infty\right)
\end{array}
$$

R being complete, there exists an element $x \in R$, such that

$$
2 x \rightarrow 2(x \rightarrow \infty)
$$

For any element $y \in R$

$x_{n} y \rightarrow x y$ (by $\left.(\delta)\right)$

and $A_{\text {any }} \rightarrow A_{y}$ (by assumption),
1.e.., $x_{n y} \rightarrow$ Ay

Hence it must be

$$
A_{x}=x y
$$

Thus

$$
A=A_{x} \in R^{\prime}
$$

This asserts the closedness of R^{\prime} in Q.
(5) By (1), (3) and (4).
3. Let

$$
\begin{aligned}
& M=(x ; e x=x) \\
& N=(x ; \text { ex }=0)
\end{aligned}
$$

Then M is a right ideal with e as a unit element, and N is an ideal. To be explicit

$$
M^{2}=M, N M=N, R N=(0),
$$

and

$$
R=M+N \quad \text { (direct sum). }
$$

According as the direct decomposition of R, R^{\prime} can be expressed in a matrix form such that

$$
A_{z}=\left(\begin{array}{ll}
B_{x} & 0 \\
C_{y} & 0
\end{array}\right)
$$

where

$$
z=x+y, x \in M, y \in N,
$$

and for any $w \in M, B_{x} w=x w, C y w=y w$.
4. Examples.
$R=((\lambda, \mu) ; \lambda, \mu$ any complex numbers $)$
and $\|(\lambda, \mu)\|=|\lambda|+|\mu|$

Then R is a Banach space with respect to this norm.

By the operation of multiplication $(\lambda, \mu) \cdot\left(\lambda^{\prime}, \mu^{\prime}\right)=\left(\lambda \lambda^{\prime}, \mu^{\prime} \lambda^{\prime}\right), R$ forms a normed ring.

In this case $(1,0)$ is a right unit element, but not a left unit element, for $(1,0)\left(\lambda^{\prime}, \mu^{\prime}\right)=\left(\lambda^{\prime}, 0\right)$

And

$$
A_{(\lambda, \mu)}=\left(\begin{array}{ll}
\lambda, & 0 \\
\mu, & 0
\end{array}\right)
$$

(b) In place of the multiplication in (a), a littie change of multiplication such that

$$
(\lambda, \mu)\left(\lambda^{\prime}, \mu^{\prime}\right)=\left(\lambda \lambda^{\prime}, \lambda \mu^{\prime}\right)
$$

Yields a counter example of Gelfand s case。
(*) Received July 12, 1949.
Tokyo Institute of Technoiogy.

