HYPERBOLIC HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACES OF LOW DIMENSIONS

Manabu Shirosaki

§1. Introduction

There have been a number of results for hyperbolic hypersurfaces in the complex projective spaces (cf. [AS], [BG], [D], [K], [MN], [N], [S] and [Z]). In particular, J. P. Demailly [D] constructed a remarkable example of hyperbolic hypersurfaces of degree 11 in $P^3(C)$. On the other hand, the author [S] gave hyperbolic hypersurfaces of degree 13^n in $P^n(C)$ whose complements are complete hyperbolic and hyperbolically imbedded in $P^n(C)$. In this paper, we give hyperbolic hypersurfaces in the complex projective spaces of dimension 2, 3 and 4. For example, we construct hyperbolic hypersurfaces in $P^3(C)$ of degree 31 whose complements are complete hyperbolic hypersurface of degree 36 in $P^4(C)$.

Acknowledgment. The author would like to thank the referee for many helpful comments.

§2. A holomorphic mapping into a hypersurface in $P^n(C)$

Let *n*, *q* and *d* be positive integers such that $q \ge n+1$ and $d \ge (q-1)^2$. Let *V* be a set of *q* column vectors in C^{n+1} . We make the following assumptions.

(A1) The vectors in V are in general position.

(A2) Take any k with $0 \le k \le \min\{n, q - n - 2\}$. Then, for any distinct vectors $v_0, \ldots, v_n, u_0, \ldots, u_k$ in V and any d-th roots of $\omega_0, \ldots, \omega_k$ of -1, the n + 1 vectors $v_j - \omega_j u_j$ ($0 \le j \le k$) and v_j ($k + 1 \le j \le n$) are linearly independent.

(A3) Take any k with $1 \le k \le \min\{n, q - n - 1\}$. Then, for any distinct vectors $v_0, \ldots, v_n, u_1, \ldots, u_k$ in V

$$\sum_{j=1}^{k} \left\{ \frac{\det(\boldsymbol{u}_{j}, \boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{n})}{\det(\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{n})} \right\}^{d} + 1 \neq 0.$$

Received April 23, 1999; revised January 28, 2000.

We define a hypersurface S(V) associated with V in $P^n(C)$ by

$$\sum_{\boldsymbol{v}\in V} (\boldsymbol{z}\cdot\boldsymbol{v})^d = 0,$$

where $\boldsymbol{z} \cdot \boldsymbol{v} = v_0 z_0 + \cdots + v_n z_n$ for $\boldsymbol{v} = {}^t(v_0, \ldots, v_n)$.

Now, let f be a holomorphic mapping of C into $P^n(C)$ with a reduced representation $f = (f_0, \ldots, f_n)$ such that $f(C) \subset S(V)$, *i.e.*,

$$\sum_{\boldsymbol{v}\in V} (\boldsymbol{f}\cdot\boldsymbol{v})^d \equiv 0,$$

where $\boldsymbol{f} \cdot \boldsymbol{v} = v_0 f_0 + \cdots + v_n f_n$ for $\boldsymbol{v} = {}^t(v_0, \ldots, v_n)$.

The following generalized Borel's lemma is due to H. Fujimoto and M. Green (cf. [F, Corollary 6.4] and [G, p. 70]):

LEMMA 2.1. Let $f : \mathbb{C} \to S(V)$ be a holomorphic mapping. If $d \ge (q-1)^2$, then there exists a decomposition $V = V_0 \cup V_1 \cup \cdots \cup V_\ell$ of V with $\|V \ge 2 \ (1 \le j \le \ell)$ such that

(i) $\mathbf{v} \in V_0$ if and only if $\mathbf{f} \cdot \mathbf{v} \equiv 0$,

(ii) for $\boldsymbol{u}, \boldsymbol{v} \in V \setminus V_0$, $(\boldsymbol{f} \cdot \boldsymbol{u})/(\boldsymbol{f} \cdot \boldsymbol{v})$ is constant if and only if there exists j with $1 \leq j \leq \ell$ such that $\boldsymbol{u}, \boldsymbol{v} \in V_j$,

(iii)
$$\sum_{\boldsymbol{v} \in V_i} (\boldsymbol{f} \cdot \boldsymbol{v})^a \equiv 0$$
 for each j with $1 \le j \le \ell$.

Put $k_j := \sharp V_j - 1$ for $1 \le j \le \ell$ and $k_0 = \sharp V_0$. Then, we may assume $k_1 \ge \cdots \ge k_\ell$ by changing indices. In this situation, we call $V = V_0 \cup V_1 \cup \cdots \cup V_\ell$ the first kind of decomposition of V by f, and $(k_0; k_1 + 1, \dots, k_\ell + 1)$ its type. Set

$$V_0 = \{ \boldsymbol{v}_1^{(0)}, \dots, \boldsymbol{v}_{k_0}^{(0)} \}$$

and

$$V_j = \{ v_0^{(j)}, \dots, v_{k_j}^{(j)} \} \quad (1 \le j \le \ell).$$

Then, by Lemma 2.1, there exist nonzero constants $\omega_{\mu}^{(j)}$ such that

(2.1)
$$\boldsymbol{f} \cdot (\boldsymbol{v}_{\mu}^{(j)} - \omega_{\mu}^{(j)} \boldsymbol{v}_{0}^{(j)}) \equiv 0 \quad (1 \le \mu \le k_{j}, 1 \le j \le \ell)$$

and

(2.2)
$$1 + (\omega_1^{(j)})^d + \dots + (\omega_{k_j}^{(j)})^d = 0 \quad (1 \le j \le \ell).$$

For brevity, we write $\mathbf{w}_{\mu}^{(j)}$ for $\mathbf{v}_{\mu}^{(j)} - \omega_{\mu}^{(j)} \mathbf{v}_{\mu}^{(j)}$. The equations of (2.1) and $\mathbf{f} \cdot \mathbf{v}_{\mu}^{(0)} \equiv 0$ ($1 \le \mu \le k_0$) can be represented as

$$f(v_1^{(0)},\ldots,v_{k_0}^{(0)},w_1^{(1)},\ldots,w_{k_1}^{(1)},\ldots,w_1^{(\ell)},\ldots,w_{k_{\ell}}^{(\ell)})\equiv(0,\ldots,0).$$

LEMMA 2.2. If there exists a nonconstant holomorphic mapping $f: \mathbb{C} \to S(V)$, then

(i) $0 \le k_0 \le n - 1$, (ii) $1 \le k_j \le n - 1$ for $1 \le j \le \ell$, (iii) the rank of the matrix

 $(v_1^{(0)}, \ldots, v_{k_0}^{(0)}, w_1^{(1)}, \ldots, w_{k_1}^{(1)}, \ldots, w_1^{(\ell)}, \ldots, w_{k_\ell}^{(\ell)})$

is not greater than n-1.

Proof. The assertions (i) and (ii) follow from the assertion (iii) and the assumptions (A1) and (A2). Hence we prove only (iii).

We assume that the rank of the matrix $(\boldsymbol{v}_1^{(0)}, \ldots, \boldsymbol{v}_{k_0}^{(0)}, \boldsymbol{w}_1^{(1)}, \ldots, \boldsymbol{w}_{k_1}^{(1)}, \ldots, \boldsymbol{w}_{k_1}^{(\ell)}, \ldots, \boldsymbol{w}_{k_\ell}^{(\ell)})$ is greater than n-1. Then there exist a non-singular $(n+1) \times (n+1)$ -matrix P and an entire function h such that $\boldsymbol{f} P = (0, \ldots, 0, h)$. Hence, $\boldsymbol{f} = (c_0 : \cdots : c_n)$, where (c_0, \ldots, c_n) is the (n+1)-th row of P^{-1} . Q.E.D.

In the rest of this section, we assume that there exists a nonconstant holomorphic mapping $f : \mathbf{C} \to S(V)$.

Lemma 2.3. $k_0 + k_1 \le n - 2$.

Proof. Assume the contrary. Then $k_0 + k_1 \ge n - 1$.

(i) The case of $k_0 + k_1 \ge n$. In this case, by Lemma 2.2, there exist not all zero constants $a_1, \ldots, a_{k_1}, b_1, \ldots, b_{n-k_1}$ such that

$$a_1 w_1^{(1)} + \dots + a_{k_1} w_{k_1}^{(1)} + b_1 v_1^{(0)} + \dots + b_{n-k_1} v_{n-k_1}^{(1)}$$

= $a_1 (v_1^{(1)} - \omega_1^{(1)} v_0^{(1)}) + \dots + a_{k_1} (v_{k_1}^{(1)} - \omega_{k_1}^{(1)} v_0^{(1)}) + b_1 v_1^{(0)} + \dots + b_{n-k_1} v_{n-k_1}^{(1)} = \mathbf{0}.$

This contradicts (A1).

(ii) The case of $k_0 + k_1 = n - 1$. In this case, $\ell \ge 2$. It follows from Lemma 2.2 that there exist constants $a_{j1}, \ldots, a_{jk_1}, b_{j1}, \ldots, b_{jk_0}$ such that

$$\begin{aligned} \mathbf{v}_{j}^{(2)} &- \omega_{j}^{(2)} \mathbf{v}_{0}^{(2)} \\ &= a_{j1} \mathbf{w}_{1}^{(1)} + \dots + a_{jk_{1}} \mathbf{w}_{k_{1}}^{(1)} + b_{j1} \mathbf{v}_{1}^{(0)} + \dots + b_{jk_{0}} \mathbf{v}_{k_{0}}^{(1)} \\ &= a_{j1} (\mathbf{v}_{1}^{(1)} - \omega_{1}^{(1)} \mathbf{v}_{0}^{(1)}) + \dots + a_{jk_{1}} (\mathbf{v}_{k_{1}}^{(1)} - \omega_{k_{1}}^{(1)} \mathbf{v}_{0}^{(1)}) + b_{j1} \mathbf{v}_{1}^{(0)} + \dots + b_{jk_{0}} \mathbf{v}_{k_{0}}^{(1)} \end{aligned}$$

for $1 \le j \le k_2$. By Cramer's formula we have

$$\omega_j^{(2)} = \frac{\det(\boldsymbol{v}_j^{(2)}, \boldsymbol{v}_0^{(1)}, \dots, \boldsymbol{v}_{k_1}^{(1)}, \boldsymbol{v}_1^{(0)}, \dots, \boldsymbol{v}_{k_0}^{(0)})}{\det(\boldsymbol{v}_0^{(2)}, \boldsymbol{v}_0^{(1)}, \dots, \boldsymbol{v}_{k_1}^{(1)}, \boldsymbol{v}_1^{(0)}, \dots, \boldsymbol{v}_{k_0}^{(0)})},$$

which contradicts (2.2) and (A3).

Lemma 2.4. $k_0 + \sharp \{j; 2 \le j \le \ell \text{ and } k_j = 1\} \le n-2.$

226

Q.E.D.

Proof. Assume $k_0 + \#\{j; 2 \le j \le \ell \text{ and } k_j = 1\} \ge n-1$. Take *m* such that $2 \le m \le \ell$, $\ell - m + 1 + k_0 = n - 1$ and $k_m = \cdots = k_\ell = 1$. Then, by Lemma 2.2, $\mathbf{v}_1^{(1)} - \omega_1^{(1)} \mathbf{v}_0^{(1)}, \mathbf{v}_1^{(0)}, \ldots, \mathbf{v}_{k_0}^{(m)}, \mathbf{v}_0^{(m)}, \ldots, \mathbf{v}_1^{(\ell)} - \omega_1^{(\ell)} \mathbf{v}_0^{(\ell)}$ are linearly dependent, which contradicts (A2). Q.E.D.

Lemma 2.5. $k_0 + k_1 + \#\{j; 2 \le j \le \ell \text{ and } k_j = 1\} \le n - 1.$

Proof. By Lemma 2.3, it is enough to consider the case where $\ell \ge 2$. Assume $k_0 + k_1 + \sharp\{j; 2 \le j \le \ell \text{ and } k_j = 1\} \ge n$. Take *m* such that $2 \le m \le \ell$, $\ell - m + 1 + k_0 + k_1 = n$ and $k_m = \cdots = k_\ell = 1$. Then, by Lemma 2.2, $v_1^{(0)}, \ldots, v_{k_0}^{(0)}, v_1^{(1)} - \omega_1^{(1)}v_0^{(1)}, \ldots, v_{k_1}^{(1)} - \omega_{k_1}^{(1)}v_0^{(m)}, \ldots, v_1^{(\ell)} - \omega_1^{(\ell)}v_0^{(\ell)}$ are linearly dependent. This contradicts (A2). Q.E.D.

§3. Hyperbolicity of hypersurfaces in $P^n(C)$ (n = 2, 3 and 4)

In this section, we prove the hyperbolicity of S(V) in the case where n = 2, 3 and 4. By Brody's criterion for hyperbolicity ([B]), it suffices to show that there exists no nonconstant holomorphic mapping $f : \mathbf{C} \to S(V)$.

THEOREM 3.1. If n = 2, then S(V) is hyperbolic.

Proof. Suppose that S(V) is not hyperbolic. Then there exists a nonconstant holomorphic mapping $f: \mathbb{C} \to S(V)$. By Lemma 2.3, we see $k_0 + k_1 \leq 0$. This contradicts $k_1 \geq 1$. Q.E.D.

The least degree of the hyperbolic hypersurfaces in Theorem 3.1 is 4.

THEOREM 3.2. If n = 3 and $q \ge 5$, then S(V) is hyperbolic.

Proof. Suppose that S(V) is not hyperbolic. By Lemma 2.3, we see $k_0 + k_1 \le 1$. This implies that $k_0 = 0$ and $k_1 = 1$. Since $k_1 \ge \cdots \ge k_{\ell} \ge 1$, we have that $k_1 = \cdots = k_{\ell} = 1$ and hence $q = 2\ell$. If $q \ge 5$ is odd, then no such decomposition occurs. If $q \ge 5$ is even, we get

$$k_0 + \#\{j; 1 \le j \le \ell \text{ and } k_j = 1\} \ge 3,$$

which contradicts Lemma 2.4.

The least degree of the hyperbolic hypersurfaces in Theorem 3.2 is 16.

THEOREM 3.3. If n = 4 and q = 7, then S(V) is hyperbolic.

Proof. Suppose that S(V) is not hyperbolic. By Lemma 2.3, we see $k_0 + k_1 \le 2$. Since q = 7, it is easy to see that the only possible types of decomposition of the first type are of types (0; 3, 2, 2) and (1; 2, 2, 2). For these two

Q.E.D.

types, we have

$$k_0 + k_1 + \#\{j; 2 \le j \le 3 \text{ and } k_j = 1\} \ge 4.$$

Q.E.D.

This contradicts Lemma 2.5.

K. Masuda and J. Noguchi [MN] gave an example of hyperbolic hypersurface of degree 196 in $P^4(C)$. The least degree of hyperbolic hypersurfaces in Theorem 3.3 is 36.

§4. A holomorphic mapping omitting a hypersurface

Let *n*, *q* and *d* be positive integers such that $q \ge n+1$ and $d \ge (q-1)q+1$. Let *V* be as in §2. Assume that (A1), (A2) and (A3). Let $f: \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ with a reduced representation $f = (f_0, \ldots, f_n)$ such that $f(\mathbf{C}) \cap S(V) = \emptyset$, *i.e.*,

$$\sum_{\boldsymbol{v}\in V} (\boldsymbol{f}\cdot\boldsymbol{v})^d \equiv \alpha^d$$

for an entire function α without zeros. The following Lemma due to M. Green plays an essential role (cf. [G, p. 73]):

LEMMA 4.1. Let $f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \setminus S(V)$ be a holomorphic mapping. If $d \ge (q-1)q+1$, then there exists a decomposition $V = V_0 \cup V_1 \cup \cdots \cup V_{\ell} \cup V_{\ell+1}$ of V with $V_{\ell+1} \neq \emptyset$ such that

(i) $\sharp V_j \ge 2$ $(1 \le j \le \ell)$, (ii) $v \in V_0$ if and only if $f \cdot v \equiv 0$, (iii) for $u, v \in V \setminus V_0$, $(f \cdot u)/(f \cdot v)$ is constant if and only if there exists j with $1 \le j \le \ell + 1$ such that $u, v \in V_j$, (iv) $\sum_{v \in V_j} (f \cdot v)^d \equiv 0$ for each $1 \le j \le \ell$, (v) $v \in V_{\ell+1}$ if and only if $(f \cdot v)/\alpha$ is constant, (vi) $\sum_{v \in V_{\ell+1}} (f \cdot v)^d = \alpha^d$.

Put $k_j := \sharp V_j - 1$ for $1 \le j \le \ell + 1$ and $k_0 := \sharp V_0$. We may assume that $k_1 \ge \cdots \ge k_\ell$. We call $V = V_0 \cup V_1 \cup \cdots \cup V_\ell \cup V_{\ell+1}$ the second kind of decomposition of V by f, and $(k_0; k_1 + 1, \dots, k_\ell + 1; k_{\ell+1} + 1)$ its type.

Set

$$V_0 = \{ \boldsymbol{v}_1^{(0)}, \dots, \boldsymbol{v}_{k_0}^{(0)} \}$$

and

$$V_j = \{ v_0^{(j)}, \dots, v_{k_j}^{(j)} \} \quad (1 \le j \le \ell + 1).$$

Then, by Lemma 4.1, there exist nonzero constants $\omega_{\mu}^{(j)}$ such that

(4.1)
$$\boldsymbol{f} \cdot (\boldsymbol{v}_{\mu}^{(j)} - \omega_{\mu}^{(j)} \boldsymbol{v}_{0}^{(j)}) \equiv 0 \quad (1 \le \mu \le k_{j}, 1 \le j \le \ell)$$

228

and

(4.2)
$$1 + (\omega_1^{(j)})^d + \dots + (\omega_{k_j}^{(j)})^d = 0 \quad (1 \le j \le \ell).$$

If $k_{\ell+1} \ge 1$, then there exist nonzero constants $\omega_{\mu}^{(\ell+1)}$ such that

(4.3)
$$\boldsymbol{f} \cdot (\boldsymbol{v}_{\mu}^{(\ell+1)} - \omega_{\mu}^{(\ell+1)} \boldsymbol{v}_{0}^{(\ell+1)}) \equiv 0 \quad (1 \le \mu \le k_{\ell+1})$$

However, there is no relation corresponding to (4.2) for $\omega_{\mu}^{(\ell+1)}$. By (4.1), (4.3) and $f \cdot v_{\mu}^{(0)} \equiv 0$, we have the following: If $k_{\ell+1} = 0$, then

$$f(v_1^{(0)},\ldots,v_{k_0}^{(0)},w_1^{(1)},\ldots,w_{k_1}^{(1)},\ldots,w_1^{(\ell)},\ldots,w_{k_\ell}^{(\ell)})\equiv(0,\ldots,0),$$

and if $k_{\ell+1} \ge 1$, then

$$f(\boldsymbol{v}_1^{(0)},\ldots,\boldsymbol{v}_{k_0}^{(0)},\boldsymbol{w}_1^{(1)},\ldots,\boldsymbol{w}_{k_1}^{(1)},\ldots,\boldsymbol{w}_1^{(\ell+1)},\ldots,\boldsymbol{w}_{k_{\ell+1}}^{(\ell+1)}) \equiv (0,\ldots,0).$$

LEMMA 4.2. If there exists a nonconstant holomorphic mapping $f: \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \setminus S(V)$, then

(i) $0 \le k_0 \le n - 1$, (ii) $1 \le k_j \le n - 1$ $(1 \le j \le \ell)$, (iii) if $k_{\ell+1} = 0$, the rank of the matrix $(\mathbf{v}_1^{(0)}, \dots, \mathbf{v}_{k_0}^{(0)}, \mathbf{w}_1^{(1)}, \dots, \mathbf{w}_{k_1}^{(1)}, \dots, \mathbf{w}_1^{(\ell)}, \dots, \mathbf{w}_{k_\ell}^{(\ell)})$

is not greater than n-1, and if $k_{\ell+1} \ge 1$, the rank of the matrix

$$(\boldsymbol{v}_1^{(0)},\ldots,\boldsymbol{v}_{k_0}^{(0)},\boldsymbol{w}_1^{(1)},\ldots,\boldsymbol{w}_{k_1}^{(1)},\ldots,\boldsymbol{w}_1^{(\ell+1)},\ldots,\boldsymbol{w}_{k_{\ell+1}}^{(\ell+1)})$$

is not greater than n-1, (iv) $0 \le k_{\ell+1} \le n-1$.

In the rest of this section, we assume that there exists a nonconstant holomorphic mapping $f: \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \setminus S(V)$. By the same way as in the proof of Lemma 2.3, we have the following lemma:

LEMMA 4.3. (i) $k_0 + k_1 \le n - 1$. (ii) If $\ell \ge 2$, then $k_0 + k_1 \le n - 2$. (iii) $k_0 + k_{\ell+1} \le n - 1$. (iv) If $\ell \ge 1$, then $k_0 + k_{\ell+1} \le n - 2$.

By the same argument as in the proof of Lemma 2.4, we also get the following lemma:

Lemma 4.4.
$$k_0 + \#\{j; 2 \le j \le \ell \text{ and } k_j = 1\} \le n-2.$$

Furthermore, we can show the following lemma by the same method as in the proof of Lemma 2.5:

MANABU SHIROSAKI

LEMMA 4.5. (i) $k_0 + k_1 + \#\{j; 2 \le j \le \ell \text{ and } k_j = 1\} \le n - 1.$ (ii) $k_0 + k_{\ell+1} + \#\{j; 1 \le j \le \ell \text{ and } k_j = 1\} \le n - 1.$

§5. Hyperbolicity of complements of hypersurfaces

In this section, we prove that $P^n(C) \setminus S(V)$ is complete hyperbolic and hyperbolically imbedded in $P^n(C)$ in the case where n = 2, 3 and 4. We first recall the following criterion for hyperbolicity of complements of hypersurfaces (cf. [L, Theorem 3.3]):

LEMMA 5.1. Let S be a hyperbolic hypersurface in $\mathbf{P}^n(\mathbf{C})$. Then $\mathbf{P}^n(\mathbf{C}) \setminus S$ is complete hyperbolic and hyperbolically imbedded in $\mathbf{P}^n(\mathbf{C})$ if and only if there exists no nonconstant holomorphic mapping $f: \mathbf{C} \to \mathbf{P}^n(\mathbf{C}) \setminus S$.

THEOREM 5.2. If n = 2 and $q \ge 4$, then $P^2(C) \setminus S(V)$ is complete hyperbolic and hyperbolically imbedded in $P^2(C)$.

Proof. By Theorem 3.1, S(V) is hyperbolic. Suppose that there exists a nonconstant holomorphic mapping $f: \mathbb{C} \to \mathbb{P}^2(\mathbb{C}) \setminus S(V)$. If $\ell = 0$, then $k_0 + k_{\ell+1} \leq 1$ by Lemma 4.3. Since $q \geq 4$, this is absurd. Hence $\ell \geq 1$. By Lemma 4.3, we see $k_0 + k_1 \leq 1$. We also have $k_{\ell+1} = 0$ by Lemma 4.3. Thus we conclude that the only possible type of decomposition of the second kind is of type $(0; 2, 2, \dots, 2; 1)$. This contradicts Lemma 4.5. Q.E.D.

THEOREM 5.3. If n = 3 and $q \ge 6$, then $P^3(C) \setminus S(V)$ is complete hyperbolic and hyperbolically imbedded in $P^3(C)$.

Proof. By Theorem 3.2, S(V) is hyperbolic. Suppose that there exists a nonconstant holomorphic mapping $f: \mathbb{C} \to \mathbb{P}^3(\mathbb{C}) \setminus S(V)$. As in the proof of Theorem 5.2, we have $\ell \ge 1$. If $\ell = 1$, then $k_0 + k_1 \le 2$ by Lemma 4.3. In this case, it is clear that

$$k_0 + (k_1 + 1) + (k_2 + 1) = q \ge 6.$$

Thus we see $k_2 \ge 2$, which contradicts Lemma 4.3. If $\ell \ge 2$, then $k_0 + k_1 \le 1$ by Lemma 4.3, (ii). This gives that $k_0 = 0$ and $k_1 = 1$. Thus the only possible type of decomposition of the second kind is of $(0; 2, 2, \dots, 2; k_{\ell+1} + 1)$. Hence $2\ell + k_{\ell+1} + 1 = q \ge 6$. On the other hand, by Lemma 4.5, we get $k_{\ell+1} + \ell \le 2$, and hence $k_{\ell+1} \le -1$. This is absurd. Q.E.D.

The least degree of the hypersurfaces in Theorem 5.3 is 31.

We next consider the case where n = 4 and q = 9. We first notice the following: Suppose that there exists a decomposition of the first kind is of (0; 3, 3, 3) of V by f. Then there exist nonzero polynomials F_1, \ldots, F_s of the determinants of column vectors such that F_1 are independent of f and

 $F_j(v_1,\ldots,v_9) = 0$ for some j, where $V = \{v_1,\ldots,v_9\}$. Indeed, by Lemma 2.2, we have

$$\mathbf{v}_{2}^{(j)} - \omega_{2}^{(j)}\mathbf{v}_{0}^{(j)} = a_{j0}(\mathbf{v}_{1}^{(j)} - \omega_{1}^{(j)}\mathbf{v}_{0}^{(j)}) + a_{j1}(\mathbf{v}_{1}^{(1)} - \omega_{1}^{(1)}\mathbf{v}_{0}^{(1)}) + a_{j2}(\mathbf{v}_{2}^{(1)} - \omega_{2}^{(1)}\mathbf{v}_{0}^{(1)})$$

for j = 2, 3. By applying Cramer's formula to

$$\boldsymbol{v}_{2}^{(j)} = -(a_{j1}\omega_{1}^{(1)} + a_{j2}\omega_{2}^{(1)})\boldsymbol{v}_{0}^{(1)} + a_{j1}\boldsymbol{v}_{1}^{(1)} + a_{j2}\boldsymbol{v}_{2}^{(1)} + (\omega_{2}^{(j)} - a_{j0}\omega_{1}^{(j)})\boldsymbol{v}_{0}^{(j)} + a_{j0}\boldsymbol{v}_{1}^{(j)},$$

we have

$$a_{j1} = \frac{\det(\boldsymbol{v}_0^{(1)}, \boldsymbol{v}_2^{(j)}, \boldsymbol{v}_2^{(1)}, \boldsymbol{v}_0^{(j)}, \boldsymbol{v}_1^{(j)})}{\det(\boldsymbol{v}_0^{(1)}, \boldsymbol{v}_1^{(1)}, \boldsymbol{v}_2^{(1)}, \boldsymbol{v}_0^{(j)}, \boldsymbol{v}_1^{(j)})}, \quad a_{j2} = \frac{\det(\boldsymbol{v}_0^{(1)}, \boldsymbol{v}_1^{(1)}, \boldsymbol{v}_2^{(j)}, \boldsymbol{v}_0^{(j)}, \boldsymbol{v}_1^{(j)})}{\det(\boldsymbol{v}_0^{(1)}, \boldsymbol{v}_1^{(1)}, \boldsymbol{v}_2^{(1)}, \boldsymbol{v}_0^{(j)}, \boldsymbol{v}_1^{(j)})}$$

and

$$-(a_{j1}\omega_1^{(1)} + a_{j2}\omega_2^{(1)}) = \frac{\det(\boldsymbol{v}_2^{(j)}, \boldsymbol{v}_1^{(1)}, \boldsymbol{v}_2^{(1)}, \boldsymbol{v}_0^{(j)}, \boldsymbol{v}_1^{(j)})}{\det(\boldsymbol{v}_0^{(1)}, \boldsymbol{v}_1^{(1)}, \boldsymbol{v}_2^{(1)}, \boldsymbol{v}_0^{(j)}, \boldsymbol{v}_1^{(j)})}$$

Hence, $\omega_1^{(1)}$ and $\omega_2^{(1)}$ can be written as rational functions of the above determinants. Then, we have by (2.2)

$$\{ \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(2)}, \boldsymbol{v}_{0}^{(2)}, \boldsymbol{v}_{1}^{(2)}) \det(\boldsymbol{v}_{2}^{(3)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(1)}, \boldsymbol{v}_{0}^{(3)}, \boldsymbol{v}_{1}^{(1)}) - \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(3)}, \boldsymbol{v}_{0}^{(3)}, \boldsymbol{v}_{1}^{(3)}) \det(\boldsymbol{v}_{2}^{(2)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(1)}, \boldsymbol{v}_{0}^{(2)}, \boldsymbol{v}_{1}^{(2)}) \}^{d} + \{ \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{2}^{(3)}, \boldsymbol{v}_{2}^{(1)}, \boldsymbol{v}_{0}^{(3)}, \boldsymbol{v}_{1}^{(3)}) \det(\boldsymbol{v}_{2}^{(2)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(1)}, \boldsymbol{v}_{0}^{(2)}, \boldsymbol{v}_{1}^{(2)}) - \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{2}^{(2)}, \boldsymbol{v}_{2}^{(1)}, \boldsymbol{v}_{0}^{(2)}, \boldsymbol{v}_{1}^{(2)}) \det(\boldsymbol{v}_{2}^{(3)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(1)}, \boldsymbol{v}_{0}^{(3)}, \boldsymbol{v}_{1}^{(3)}) \}^{d} + \{ \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{2}^{(2)}, \boldsymbol{v}_{2}^{(1)}, \boldsymbol{v}_{0}^{(2)}, \boldsymbol{v}_{1}^{(2)}) \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(3)}, \boldsymbol{v}_{0}^{(3)}, \boldsymbol{v}_{1}^{(3)}) - \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{1}^{(1)}, \boldsymbol{v}_{2}^{(2)}, \boldsymbol{v}_{0}^{(2)}, \boldsymbol{v}_{1}^{(2)}) \det(\boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{2}^{(3)}, \boldsymbol{v}_{0}^{(1)}, \boldsymbol{v}_{1}^{(3)}, \boldsymbol{v}_{0}^{(3)}) \}^{d} = 0.$$

Hence, by permutations, we get polynomials F_j with the above property, and the number of polynomials s is 9!. Also, if there exists a decomposition of the second kind of (0; 3, 3; 3) of V by f, then $F_j(v_1, \ldots, v_9) = 0$ for some j. By the same way, if there exists a decomposition of the second kind of (0; 3, 3, 2; 1) of V by f, then we have nonzero polynomials G_1, \ldots, G_t such that G_k are independent of f and $G_k(v_1, \ldots, v_9) = 0$ for some k. Indeed, by Lemma 4.2, we have

$$\boldsymbol{v}_{j}^{(2)} - \omega_{j}^{(2)}\boldsymbol{v}_{0}^{(2)} = a_{j1}(\boldsymbol{v}_{1}^{(1)} - \omega_{1}^{(1)}\boldsymbol{v}_{0}^{(1)}) + a_{j2}(\boldsymbol{v}_{2}^{(1)} - \omega_{2}^{(1)}\boldsymbol{v}_{0}^{(1)}) + a_{j3}(\boldsymbol{v}_{1}^{(3)} - \omega_{1}^{(3)}\boldsymbol{v}_{0}^{(3)})$$

for j = 1, 2. By Cramer's formula, we get

$$\omega_j^{(2)} = \frac{\det(\boldsymbol{v}_j^{(2)}, \boldsymbol{v}_0^{(1)}, \boldsymbol{v}_1^{(1)}, \boldsymbol{v}_2^{(1)}, \boldsymbol{v}_1^{(3)} - \omega_1^{(3)} \boldsymbol{v}_0^{(3)})}{\det(\boldsymbol{v}_0^{(2)}, \boldsymbol{v}_0^{(1)}, \boldsymbol{v}_1^{(1)}, \boldsymbol{v}_2^{(1)}, \boldsymbol{v}_1^{(3)} - \omega_1^{(3)} \boldsymbol{v}_0^{(3)})}.$$

MANABU SHIROSAKI

Note that $\omega_1^{(3)}$ is a *d*-th root of -1. By (2.2) we get polynomials G_k , and the number of polynomials *t* is $9! \times d$. Let \mathscr{V} be a proper algebraic subset of \mathbb{C}^{45} defind by

$$\mathscr{V} = \left(\bigcup_{j=1}^{s} \{F_j(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_9)=0\}\right) \cup \left(\bigcup_{j=1}^{t} \{G_j(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_9)=0\}\right).$$

THEOREM 5.4. If q = 9 and $V \notin \mathcal{V}$, then $P^4(C) \setminus S(V)$ is complete hyperbolic and hyperbolically imbedded in $P^4(C)$.

Proof. Suppose that there exists a nonconstant holomorphic mapping $f: \mathbb{C} \to S(V)$. Then by Lemmas 2.3 and 2.5, it is easy that the only possible type of decomposition of the first kind by f is of type (0; 3, 3, 3). If $\mathbb{P}^4(\mathbb{C}) \setminus S(V)$ is not Brody hyperbolic, then we also see that the only possible types of decomposition of the second kind are of types (0; 3, 3; 3) and (0; 3, 3; 2; 1) by Lemmas 4.3 and 4.4. Hence $V \notin \mathscr{V}$ yields our assertion. Q.E.D.

By Theorem 5.4, we obtain hyperbolic hypersurfaces of degree $d \ge 73$ in $P^4(C)$ whose complements are complete hyperbolic and hyperbolically imbedded in $P^4(C)$.

Example 5.5. Let $\mathbf{v}_1 = {}^t(1,0,0)$, $\mathbf{v}_2 = {}^t(0,1,0)$, $\mathbf{v}_3 = {}^t(0,0,1)$, $\mathbf{v}_4 = {}^t(a,b,c)$ and $V = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. The condition (A1) is equivalent to $abc \neq 0$, (A2) to $a^d \neq -1$, $b^d \neq -1$, $c^d \neq -1$, and (A3) to $a^d + (-b)^d \neq 0$, $b^d + (-c)^d \neq 0$, $c^d + (-a)^d \neq 0$. Hence, if a, b, c satisfy the above conditions and $d \ge 13$, then the hypersurface in $\mathbf{P}^2(\mathbf{C})$ defined by

$$z_0^d + z_1^d + z_2^d + (az_0 + bz_1 + cz_2)^d = 0$$

is hyperbolic and its complement is complete hyperbolic and hyperbolically imbedded in $P^2(C)$. Suppose that this hypersurface has a singular point $(p_0: p_1: p_2)$. Then $p_0^{d-1} + a(ap_0 + bp_1 + cp_2)^{d-1} = 0$, $p_1^{d-1} + b(ap_0 + bp_1 + cp_2)^{d-1} = 0$ and $p_2^{d-1} + c(ap_0 + bp_1 + cp_2)^{d-1} = 0$. It is trivial that $P := ap_0 + bp_1 + cp_2 \neq 0$. Hence we have $p_0 = \omega P$, $p_1 = \eta P$ and $p_2 = \xi P$ for some (d-1)-th roots ω, η, ξ of -a, -b, -c, respectively. Hence we get $\omega a + \eta b + \xi c \neq 1$ for any (d-1)-th roots ω, η, ξ of -a, -b, -c, respectively. For example, if a = 1/2, b = 1/4, c = 1/8, these four conditions are satisfied.

M. B. Zaindenberg showed in [Z] that the existence of a smooth hyperbolic hypersurface of degree 5 in $P^2(C)$ whose complement is complete hyperbolic and hyperbolically imbedded in $P^2(C)$. On the other hand, K. Azukawa and M. Suzuki [AS] gave an explicit equation defining such a hypersurface of degree 14. The degree 13 of our example is lower than it.

232

HYPERBOLIC HYPERSURFACES

References

- [AS] K. AZUKAWA AND M. SUZUKI, Some examples of algebraic degeneracy and hyperbolic manifolds, Rocky Mountain J. Math., 10 (1980), 655–659.
- [B] R. BRODY, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc., 235 (1978), 213-219.
- [BG] R. BRODY AND M. GREEN, A family of smooth hyperbolic hypersurfaces in P₃, Duke Math. J., 44 (1975), 873–874.
- [D] J.-P. DEMAILLY, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic Geometry held at Santa Cruz, July 1995 (J. Kollár et al. eds.), Proc. Sympos. Pure Math., 62-2, Amer. Math. Soc., Providence, 1997, 285–360.
- [F] H. FUJIMOTO, On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272-288.
- [G] M. L. GREEN, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 43–75.
- [K] H. H. KHOAI, Hyperbolic surfaces in P³(C), Proc. Amer. Math. Soc., 125 (1997), 3527– 3532.
- [L] S. LANG, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York, 1987
- [MN] K. MASUDA AND J. NOGUCHI, A construction of hyperbolic hypersurface of $P^n(C)$, Math. Ann., 304 (1996), 339-362.
- [N] A. NADEL, Hyperbolic surfaces in P^3 , Duke Math. J., 58 (1989), 749–771.
- [S] M. SHIROSAKI, On some hypersurfaces and holomorphic mappings, Kodai Math. J., 21 (1998), 29–34.
- [Z] M. G. ZAIDENBERG, Stability of hyperbolic imbeddedness and construction of examples, Math. USSR-Sb., 63 (1989), 351-361.

DEPARTMENT OF MATHEMATICAL SCIENCES College of Engineering Osaka Prefecture University Sakai, 599-8531, Japan