ON HASSE ZETA FUNCTIONS OF ENVELOPING ALGEBRAS OF SOLVABLE LIE ALGEBRAS

ΤΑΚΑΚΟ Γυκαγα

1. Introduction

In the paper [F1], we generalized the Hasse zeta functions $\zeta_A(s)$ of commutative finitely generated rings A over the ring Z of integers, to non-commutative rings.

The aim of this paper is to prove

THEOREM 1.1. Let R be a finitely generated commutative ring over Z, let g be a solvable Lie algebra over R which is free of finite rank n as an R-module, and let A be the universal enveloping algebra of g over R. Then

$$\zeta_A(s) = \zeta_R(s-n).$$

1.2. We review the definition of the function $\zeta_A(s)$. For a (not necessarily commutative) finitely generated ring A over Z, the Hasse zeta function $\zeta_A(s)$ of A is defined by

$$\zeta_A(s) = \prod_{r \ge 1} \zeta_{A,r}(s)$$

where r runs over integers ≥ 1 , and

$$\zeta_{A,r}(s) = \prod_{p} \exp \sum_{n=1}^{\infty} \frac{\sharp \mathfrak{S}_{A,r}(\mathbf{F}_{p^n})}{n} (p^{-s})^n$$

where $\mathfrak{S}_{A,r}$ is a certain scheme of finite type over Z, p runs over prime numbers, and F_{p^n} is a finite field with p^n elements, so the function $\zeta_{A,r}(s)$ coincides with the product of Weil's zeta functions of $\mathfrak{S}_{A,r} \otimes {}_Z F_p$ [We] for all prime numbers p. For the algebraic closure K of F_p , $\mathfrak{S}_{A,r}(K)$ is identified with the set of the isomorphism classes of all *r*-dimensional irreducible representations of A over K, and $\mathfrak{S}_{A,r}(F_{p^n})$ is identified with the Gal (K/F_{p^n}) -fixed part of $\mathfrak{S}_{A,r}(K)$.

Theorem 1.1 is deduced from the following Theorem 1.3.

THEOREM 1.3. Let B be a finitely generated algebra over Z, let δ be a derivation of B, and let A be the ring $\{\sum_{i=0}^{N} b_i t^i; N \ge 0, b_i \in B\}$ in which t is an indeterminate and the multiplication is expressed as $tb - bt = \delta(b)$ ($b \in B$). Then

$$\zeta_A(s) = \zeta_B(s-1).$$

We show that Theorem 1.1 follows from Theorem 1.3.

We may assume that R is a finite field of characteristic p > 0, for $\zeta_R(s)$, $\zeta_A(s)$ are products of $\zeta_{R/\mathfrak{m}}(s)$, $\zeta_{A/\mathfrak{m}A}(s)$ over all maximal ideals \mathfrak{m} of R, respectively. So assume R is a finite field k.

Since g is a solvable Lie algebra, there exists a sequence of subalgebras of g

$$\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_n = \{0\}$$

where g_i is of dimension n-i as a k-vector space, and $[g_{i-1}, g_i] \subset g_i$ for $1 \leq i \leq n$. Take the universal enveloping algebras of g_{i-1} and g_i as A and B, respectively, and apply Theorem 1.3 inductively, then we obtain Theorem 1.1.

In section 2, we prove Theorem 1.3.

A proof of a special case of Theorem 1.1 and a proof of Theorem 1.3 in the case B is commutative are given in our previous papers [F2], [F3], respectively.

I am very grateful to Professor Kazuya Kato who suggested me to study this subject, gave me much essential advice and encouragement.

2. Proof of Theorem 1.3

2.1. Let A, B and δ be as in Theorem 1.3. Since $\zeta_A(s) = \prod_p \zeta_{A/pA}(s)$, $\zeta_B(s) = \prod_p \zeta_{B/pB}(s)$ where p ranges over all prime numbers, we may assume that B is an F_p -algebra. Let $k = F_p$, and let K be the algebraic closure of k. Let $\mathfrak{S}_A = \prod_{r\geq 1} \mathfrak{S}_{A,r}$, and for an extension k' of k, let $\mathfrak{S}_A(k')$ be the set of k'-rational points of \mathfrak{S}_A . We define \mathfrak{S}_B and $\mathfrak{S}_B(k')$ as in the case of A. Let $B_K = B \otimes_k K$.

Let *M* be a finite dimensional irreducible representation of *A* over *K*, and let *N* be an irreducible representation of *B* over *K* which is a subrepresentation of *M*. Let $\chi_N : B_K \to \operatorname{End}_K(N)$ be the action of B_K on *N*.

DEFINITION 2.2. Let $\{\delta_j; 1 \le j \le m\}$ $(m \in \mathbb{Z}, m \ge 1)$ be a family of k-derivations of B. We say " $\{\chi_N \circ \delta_j; 1 \le j \le m\}$ are linearly independent (resp. dependent) modulo inner derivation" if the canonical images of $\{\chi_N \circ \delta_j; 1 \le j \le m\}$ in the space

 $\{B_K \rightarrow \operatorname{End}_K(N); K\text{-linear}\}/\{B_K \rightarrow \operatorname{End}_K(N); b \mapsto \chi_N([b, b_0]) \text{ for some } b_0 \in B_K\}$

are linearly independent (resp. dependent) over K.

LEMMA 2.3. There exists an integer $l \ge 0$ such that $\{\chi_N \circ \delta^{p'}; 0 \le i \le l-1\}$ are linearly independent modulo inner derivation and $\{\chi_N \circ \delta^{p'}; 0 \le i \le l\}$ are linearly dependent modulo inner derivation.

Proof. Note that $\delta^{p'}(b)$ is a k-derivation for any $i \in \mathbb{Z}, i \ge 0$ ([S-F] Chapter 1, Proposition 2.3.2). In the K-linear space

$$\{B_K \to \operatorname{End}_K(N); K\text{-linear}\}/\{B_K \to \operatorname{End}_K(N); b \mapsto \chi_N([b, b_0]) \text{ for some } b_0 \in B_K\},\$$

TAKAKO FUKAYA

the images of $\{\chi_N \circ \delta^{p^m}; m \in \mathbb{Z}, m \ge 0\}$ are contained in the following K-linear subspace: $\{h: B_K \to \operatorname{End}_K(N); K\text{-linear}, h(ab) = \chi_N(a)h(b) + h(a)\chi_N(b)\}/\{B_K \to \operatorname{End}_K(N); b \mapsto \chi_N([b, b_0]) \text{ for some } b_0 \in B_K\}$, which is finite dimensional over K since the maps h satisfying the condition are determined by the values of h at the generators of B over k.

We use the same notation δ for the K-derivation of B_K which is induced from δ in Theorem 1.3.

We have the following proposition.

PROPOSITION 2.4. Let l be as in Lemma 2.3. Then the map

$$N^{\oplus p^{l}} \to M; \ (x_{i})_{0 \le i \le p^{l}-1} \mapsto \sum_{i=0}^{p^{l}-1} t^{i} x_{i}$$

is bijective.

We prove Proposition 2.4 by using the following Lemmas 2.5, 2.6, and 2.7.

LEMMA 2.5. For $b \in B_K$ and for $m \in \mathbb{Z}, m \ge 0$,

$$bt^{m} = \sum_{j=0}^{m} (-1)^{j} \binom{m}{j} t^{m-j} \delta^{j}(b).$$

Especially, let $f : \{a \in \mathbb{Z}; a > 0\} \rightarrow \{a \in \mathbb{Z}; a > 0\}$ be the function defined by $f(a) = a - p^r$ where $p^r || a$. For an integer m > 0, for any $b \in B_K$, and for $x \in N$, $(t^m b - bt^m)x = \alpha t^{f(m)} \delta^{m-f(m)}(b)x$

+ (a linear combination of the elements $t^i \delta^{m-i}(b) x \ (0 \le i < f(m)))$

where $\alpha \in \mathbf{F}_p$, $\alpha \neq 0$.

Proof. See [S-F] Chapter 1, Proposition 1.3.

LEMMA 2.6. Assume that $\{\chi_N \circ \delta^{p'}; 0 \le i \le l-1\}$ are linearly independent over K modulo inner derivation. Then the map

$$N^{\oplus p'} \to M; \quad (x_i)_{0 \le i \le p'-1} \mapsto \sum_{i=0}^{p'-1} t^i x_i$$

is injective.

Proof. We prove this by induction. Let *i* be an integer such that $1 \le i \le p^l - 1$, and assume that

$$N + tN + \dots + t^{i-1}N \cong N^{\oplus i}$$

as K-linear spaces by the map defined above. We show that

(i)
$$N + tN + \dots + t^{i-1}N + t^{i}N \cong N^{\bigoplus (i+1)}$$

This (i) is equivalent to the fact that the map

$$t^i: N \to M/(N+tN+\cdots+t^{i-1}N); x \mapsto t^i x \mod N+tN+\cdots+t^{i-1}N$$

is injective.

Now we have a lemma.

LEMMA 2.6.1. The above map t^{i} is a B-homomorphism.

Proof. This follows from Lemma 2.5.

By Lemma 2.6.1, if the map t^i is not injective, it is the 0-map (since N is irreducible). We assume that t^i is the 0-map, and will get a contradiction.

The fact that t^i is the 0-map is equivalent to

$$t^{i}N \subset N + tN + \dots + t^{i-1}N.$$

Then for $x \in N$, it can be expressed as

$$t^{i}x = g_{0}(x) + \dots + t^{i-1}g_{i-1}(x)$$

where $g_j : N \to N$ is a K-linear map for $0 \le j \le i - 1$. For $b \in B_K$, by Lemma 2.5,

(ii)
$$bt^{i}x = \sum_{j=0}^{i} (-1)^{j} {i \choose j} t^{i-j} \delta^{j}(b)x = t^{i}bx + \sum_{j=1}^{i} (-1)^{j} {i \choose j} t^{i-j} \delta^{j}(b)x$$
$$= g_{0}(bx) + \dots + t^{i-1}g_{i-1}(bx) + \sum_{j=1}^{i} (-1)^{j} {i \choose j} t^{i-j} \delta^{j}(b)x.$$

Moreover,

(iii)
$$bt'x = bg_0(x) + \dots + bt^{i-1}g_{i-1}(x).$$

We compare the two equations (ii) and (iii). The most important parts in (ii) and (iii) are the $t^{f(i)}N$ -components where f is as in Lemma 2.5.

To prepare to compare the equations, we have some lemmas.

LEMMA 2.6.2. We have the following equation. For $b \in B_K$ and for $m \in \mathbb{Z}$, $0 \le m \le i - 1$,

(iv)
$$g_m(bx) + (-1)^{i-m} {i \choose m} \delta^{i-m}(b)x = bg_m(x) + \sum_{j=1}^{i-1-m} (-1)^j {m+j \choose m} \delta^j(b)g_{m+j}(x).$$

Proof. The left hand side is the $t^m N$ -component in bt'x in the equation (ii), and the right hand side is that in (iii).

155

TAKAKO FUKAYA

LEMMA 2.6.3. (1) For j $(0 \le j \le i - 1)$ such that $f(j) \ge f(i)$, g_j is a scalar map. That is, $g_j(x) = C_j x$ $(x \in N)$ for some $C_j \in K$. (2) For j $(0 \le j \le i - 1)$ such that f(j) > f(i), g_j is the 0-map.

Proof. We fix an integer m such that $f(i) < m \le i - 1$. Assume that for $j (0 \le j \le i - 1)$ such that j > m, g_j is a scalar map $C_j (C_j \in K)$, and for $j (0 \le j \le i - 1)$ such that f(j) > m, g_j is the 0-map.

We show that g_m is a scalar map C_m $(C_m \in K)$, and for j $(0 \le j \le i-1)$ such that f(j) = m, g_j is the 0-map.

Remark that j > f(j), so Lemma 2.6.3 follows from this by downward induction on m.

We consider Lemma 2.6.2. Since m > f(i), from the computation of the coefficient, the part $(-1)^{i-m} {i \choose m} \delta^{i-m}(b)x$ in the left hand side of the equation (iv) is 0. So the equation (iv) is

(v)
$$g_m(bx) = bg_m(x) + \sum_{j=1}^{i-1-m} (-1)^j \binom{m+j}{m} \delta^j(b)g_{m+j}(x).$$

By the theorem of Burnside ([F-D] Corollary 1.16), any K-linear map: $N \to N$ is obtained as an action of an element of B_K . So we write $g_j(x) = b_j x$ for $b_j \in B_K$ $(0 \le j \le i - 1)$. By the hypothesis of this induction, the equation (v) is equivalent to the equation

$$[b_m, b]x = \sum_{\substack{J \in f^{-1}(m)\\0 \le J \le \iota - 1}} \alpha_j C_j \delta^{J-m}(b)x$$

where $\alpha_j \in \mathbf{F}_p$, $\alpha_j \neq 0$ (We denote m + j in (v) by j here). For $j \in f^{-1}(m)$ such that $0 \leq j \leq i - 1, j - m = p^r$ for some $r \in \mathbb{Z}, 0 \leq r \leq l - 1$. From the linear independence of $\{\chi_N \circ \delta^{p'}; 0 \leq i \leq l - 1\}$ modulo inner derivation, $C_j = g_j = 0$ for $j \in f^{-1}(m)$ such that $0 \leq j \leq i - 1$. So $\chi_N(b_m b) - \chi_N(bb_m) = 0$. Hence $g_m = \chi_N(b_m)$ is *B*-linear. Since *N* is irreducible, g_m is a scalar map.

Now we accomplish the proof of Lemma 2.6.

We compare the $t^{f(i)}N$ -components in (ii) and (iii). We put m = f(i) in (iv). The coefficient

$$(-1)^{i-f(i)}\binom{i}{f(i)}$$

which is on the left hand side of (iv) is not zero. By Lemma 2.6.3 and the argument in its proof,

$$\chi_N(b_{f(i)}b) - \chi_N(bb_{f(i)}) = \alpha_i \chi_N \circ \delta^{i - f(i)}(b) + \sum_{\substack{J \in f^{-1}(f(i))\\ 0 \le J \le i - 1}} \alpha_j C_J \chi_N \circ \delta^{J - f(i)}(b)$$

156

where $\alpha_j \in \mathbf{F}_p$, $\alpha_j \neq 0$ $(j \in f^{-1}(f(i)), 0 \le j \le i)$. For each $j \in f^{-1}(f(i))$ such that $0 \le j \le i$, there exists $r \in \mathbf{Z}, 0 \le r \le l-1$ such that $j - f(i) = p^r$. This contradicts the assumption that $\{\chi_N \circ \delta^{p'}; 0 \le i \le l-1\}$ are linearly independent modulo inner derivation.

LEMMA 2.7. Assume that $\{\chi_N \circ \delta^{p'}; 0 \le i \le l-1\}$ are linearly independent and $\{\chi_N \circ \delta^{p'}; 0 \le i \le l\}$ are linearly dependent modulo inner derivation. Then there exists an irreducible representation N' of B over K which is a subrepresentation of M such that N' \cong N as a B_K-module and

$$\sum_{i=0}^{p^i-1} t^i N' = M.$$

Proof. Assume that

$$\chi_N \circ \delta^{p^l} = \sum_{i=0}^{l-1} \gamma_i \chi_N \circ \delta^{p^i} + \chi_N \circ [b_0,]$$

where $\gamma_i \in K$, $b_0 \in B_K$. Put

$$t' = t^{p'} - \sum_{i=0}^{l-1} \gamma_i t^{p'} - b_0$$

Since $[t^{p'},] = \delta^{p'}, \chi_N(bt' - t'b) = 0$ for all $b \in B_K$. Let $W = \{x \in M; bx = 0$ for any $b \in Ann(N)\}$, where $Ann(N) = \{b \in B_K; bN = 0\}$. Then W is stable under the actions of B_K and t'. Let N' be the irreducible representation of B[t'] over K which is contained in W. In N', the action of t' commutes with the actions of B_K . Since Ann(N) kills N', N' is isomorphic to N over B_K . The subrepresentation $\sum_{i=0}^{p'-1} t^i N'$ of M is stable under the actions of the elements of B_K and t. So it coincides with M. Hence we obtain the result.

LEMMA 2.8. Let N'' be an irreducible representation of B over K which is contained in M. Then N'' = N.

Proof. As a B_K -module, M has a composition series whose all quotients are isomorphic to N. Hence $N'' \cong N$ over B_K .

To prove N'' = N, it is sufficient to prove that the image of any B_K -homomorphism

$$h: N \to M = \sum_{i=0}^{p^l - 1} t^i N,$$

TAKAKO FUKAYA

is contained in N. Write $h(x) = \sum_{i=0}^{p^l-1} t^i h_i(x)$ $(x \in N)$ where h_i $(0 \le i \le p^l - 1)$ are K-linear maps $N \to N$. For any $x \in N$ and $b \in B_K$,

$$h(bx) = h_0(bx) + th_1(bx) + \dots + t^{p^l-1}h_{p^l-1}(bx),$$

and

$$h(bx) = bh_0(x) + bth_1(x) + \dots + bt^{p^l-1}h_{p^l-1}(x)$$

We compare the $t^m N$ -components $(0 \le m \le p^l - 1)$ of the above two equations, then we have

$$h_m(bx) = bh_m(x) + \sum_{j=1}^{p^j - 1 - m} (-1)^j \binom{m+j}{m} \delta^j(b) h_{m+j}(x).$$

This equation has the same form as (v). So from the argument in the proof of Lemma 2.6.3, $h_i = 0$ for $1 \le i \le p^l - 1$. So $h(N) \subset N$.

From Lemma 2.8, we obtain

COROLLARY 2.8.1. There exists a surjective map

$$\pi:\mathfrak{S}_A(K)\to\mathfrak{S}_B(K)$$
; the class of $M\mapsto$ the class of N .

This map π commutes with the action of the Galois group $\operatorname{Gal}(K/k)$.

By Lemmas 2.6, 2.7, and 2.8, we obtain Proposition 2.4.

2.9. Let l be as in Lemma 2.3.

From the above argument, we have that the irreducible representation M of A over K is determined by χ_N and the action of $t^{p'}$. Write

$$\chi_N \circ \delta^{p'} = \sum_{i=0}^{l-1} \gamma_i \chi_N \circ \delta^{p'} + [b_0,]$$

where $\gamma_i \in K$ and $b_0 \in B_K$. Put

$$t' = t^{p'} - \sum_{i=0}^{l-1} \gamma_i t^{p'} - b_0.$$

By Proposition 2.4, the action of t' on M is completely determined by its action on N, and from the argument of the proof of Lemma 2.7, t' acts on N as a scalar. Then we have for $x \in N$,

$$t'x = cx$$

for some $c \in K$. Hence

$$t^{p'}x = \sum_{i=0}^{l-1} \gamma_i t^{p'}x - (b_0 + c)x.$$

We can take $c \in K$ arbitrarily.

158

From this and Corollary 2.8.1, for each finite extension F_q of k which has q elements and $x \in \mathfrak{S}_B(F_q)$, the $\operatorname{Gal}(K/F_q)$ -set $\pi^{-1}(x)$ is a K-principal homogeneous space. Since $H^1(\operatorname{Gal}(K/F_q), K) = \{0\}, \pi^{-1}(x)$ is isomorphic to K as a Gal (K/F_q) -set. Hence we have

$$\sharp \mathfrak{S}_A(\boldsymbol{F}_q) = \sharp \mathfrak{S}_B(\boldsymbol{F}_q) \cdot q.$$

This proves Theorem 1.3.

3. Remark

For a solvable Lie algebra g over R where R is a finitely generated commutative ring over Z, we have Theorem 1.1 which says that the Hasse zeta function of the universal enveloping algebra of g over R is determined only by its rank over R.

But when Lie algebra g is not solvable, we cannot say such things. For example, if A is the universal enveloping algebra of $sl_2(Z)$, we have

$$\zeta_A(s) = \zeta(s-3) \prod_{p:\text{odd prime}} (1-p^{-(s-1)})^{(p-1)/2} \prod_{p:\text{odd prime}} (1-p^{-s})^{-(p-1)/2}$$

(see [F1]).

References

- [F-D] B. FARB AND R. K. DENNIS, Noncommutative Algebra, Grad. Texts in Math., 144, Springer-Verlag, 1993.
- [S-F] H. STRADE AND R. FARNSTEINER, Modular Lie Algebras and their Representations, Monogr. Textbooks Pure Appl. Math., 116, Marcel Dekker, New York, 1988.
- [We] A. WEIL, Numbers of solutions of equations over finite fields, Bull. Amer. Math. Soc., 55 (1949), pp. 497–508.
- [F1] T. FUKAYA, Hasse zeta functions of non-commutative rings, J. Algebra, 208 (1998), pp. 304– 342.
- [F2] T. FUKAYA, On Hasse zeta functions of enveloping algebras of solvable Lie algebras, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), pp. 187–188.
- [F3] T. FUKAYA, On Hasse zeta functions of enveloping algebras of solvable Lie algebras 2, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), pp. 199–201.

Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo, 153-8914 Japan