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1. Introduction

In the paper [F1], we generalized the Hasse zeta functions (4(s) of
commutative finitely generated rings A4 over the ring Z of integers, to non-
commutative rings.

The aim of this paper is to prove

THEOREM 1.1. Let R be a finitely generated commutative ring over Z, let g
be a solvable Lie algebra over R which is free of finite rank n as an R-module, and
let A be the universal enveloping algebra of g over R. Then

Ca(s) = {r(s —n).

1.2. We review the definition of the function {4(s). For a (not necessarily
commutative) finitely generated ring 4 over Z, the Hasse zeta function {4(s) of 4
is defined by

CA(S) = HCA,r(s)
rz1

where r runs over integers > 1, and
o0
B4, (Fpr) , _oin
arls) = [T exp S0 F4rEr) o
Y n=1

where S, , is a certain scheme of finite type over Z, p runs over prime numbers,

and F,- is a finite field with p” elements, so the function {4 ,(s) coincides with the

product of Weil’s zeta functions of S, ® zF, [We] for all prime numbers

p. For the algebraic closure K of F,, S,,(K) is identified with the set of the

isomorphism classes of all r-dimensional irreducible representations of 4 over K,

and S,,(F,») is identified with the Gal(K/F,)-fixed part of S,(K).
Theorem 1.1 is deduced from the following Theorem 1.3.

THEOREM 1.3. Let B be a finitely generated algebra over Z, let 6 be a
derivation of B, and let A be the ring {3~ bit';N > 0,b; € B} in which t is an
indeterminate and the multiplication is expressed as tb — bt = 0(b) (b€ B). Then

Cals) ={p(s—1).
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We show that Theorem 1.1 follows from Theorem 1.3.

We may assume that R is a finite field of characteristic p > 0, for {z(s), {4(s)
are products of (g/m(s),{4/ma(s) over all maximal ideals m of R, re-
spectively. So assume R is a finite field k.

Since g is a solvable Lie algebra, there exists a sequence of subalgebras of g

=gy2¢ > - 2g,={0}
where g; is of dimension n—i as a k-vector space, and [g,_;,g,] = g; for
1 <i<n Take the universal enveloping algebras of g;_; and g; as 4 and B,
respectively, and apply Theorem 1.3 inductively, then we obtain Theorem 1.1.
In section 2, we prove Theorem 1.3.
A proof of a special case of Theorem 1.1 and a proof of Theorem 1.3 in the
case B is commutative are given in our previous papers [F2], [F3], respectively.

I am very grateful to Professor Kazuya Kato who suggested me to study this
subject, gave me much essential advice and encouragement.

2. Proof of Theorem 1.3

2.1. Let 4, B and 6 be as in Theorem 1.3. Since {,(s) =T, Lu/pa(s),
Ca(s) =11, ¢s/ps(s) where p ranges over all prime numbers, we may assume that
B is an F-algebra. Let k = F),, and let K be the algebraic closure of k. Let
S4 =11,51 S4,, and for an extension k' of k, let S,4(k’) be the set of k’-rational
points of S4. We define Sz and Sp(k’) as in the case of 4. Let Bx =
B®, K.

Let M be a finite dimensional irreducible representation of 4 over K, and let
N be an irreducible representation of B over K which is a subrepresentation of
M. Let yy: Bx — Endg(N) be the action of By on N.

DERNITION 2.2. Let {051 <j<m} (meZ,m=>=1) be a family of k-deri-
vations of B. We say “{xyo9;;1 < j<m} are linearly independent (resp. de-
pendent) modulo inner derivation” if the canonical images of {xy 09d;;1 < j < m}
in the space

{Bx — Endg(N); K-linear}/{Bx — Endg(N); b — xn([b,bo]) for some by € Bk}
are linearly independent (resp. dependent) over K.

LeEMMA 2.3. There exists an integer | > 0 such that {yx 06’3';0 <i<gi-1}
are linearly independent modulo inner derivation and {yyod® ;0 <i<I} are
linearly dependent modulo inner derivation.

Proof. Note that 67 (b) is a k-derivation for any i € Z,i > 0 ([S-F] Chapter
1, Proposition 2.3.2). In the K-linear space

{Bx — Endg(N); K-linear}/{Bx — Endk(N);b — xx([b, bo]) for some by € Bk},
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the images of {yy 00" ;me Z,m >0} are contained in the following K-linear
subspace: {h: Bx — Endg(N);K-linear, h(ab) = yy(a)h(b) + h(a)xy(d)}/
{Bx — Endg(N);b — xn([b,bo]) for some by € B}, which is finite dimensional
over K since the maps A satisfying the condition are determined by the values of A
at the generators of B over k. Od

We use the same notation J for the K-derivation of Bx which is induced
from 6 in Theorem 1.3.

We have the following proposition.

ProrosITION 2.4. Let | be as in Lemma 2.3. Then the map

1]
p'—-1
®p' . 1
N®P' = M; (x)oc,<pr1 — E t'x,
1=0

is bijective.
We prove Proposition 2.4 by using the following Lemmas 2.5, 2.6, and 2.7.

LEMMA 2.5. For be Bk and for me Z,m > 0,
7 m
bt" = 2(4)’( , )t'”"féf(b).
=0 J
Especially, let f:{aeZ;a>0}— {aeZ;a>0} be the function defined by
f(a) =a— p" where p"|la. For an integer m > 0, for any b € By, and for x € N,
(t"b — bt™)x = at/Me™=T") (b)x
+ (a linear combination of the elements t'6™ ' (b)x (0 < i < f(m)))
where o€ Fp, o #0.
Proof. See [S-F] Chapter 1, Proposition 1.3. O
LEMMA 2.6. Assume that {yy o007 ;0 <i<I—1} are linearly independent

over K modulo inner derivation. Then the map

p'-1

1
N®P — M, (x’)OSISpl—l — Z th,
1=0
is injective.
Proof. We prove this by induction. Let i be an integer such that 1 <i <
p' — 1, and assume that
N+iN+---+17'N=N®
as K-linear spaces by the map defined above. We show that
(1) NA+IN+ -+ IN N = NOUHD,



HASSE ZETA FUNCTIONS OF SOLVABLE LIE ALGEBRAS 155
This (i) is equivalent to the fact that the map
' N—->M/(N+tN+ -+t N)jx — t'xmod N+tN+---+ 7N
is injective. O
Now we have a lemma.

LEMMA 2.6.1. The above map t' is a B-homomorphism.

Proof. This follows from Lemma 2.5. O

By Lemma 2.6.1, if the map ¢’ is not injective, it is the 0-map (since N
is irreducible). We assume that ¢' is the 0-map, and will get a contradiction.
The fact that ¢ is the 0-map is equivalent to

t!NcN+IN+---+17'N.
Then for x € N, it can be expressed as
rx=go(x) + - +17gia (%)

where g;: N — N is a K-linear map for 0 < j <i—1. For be Bk, by Lemma
2.5,

(i) bt'x = i:(—1)f <;) 1798 (b)x = t'bx + i(—l)’ ( ’) 1798 (b)x

J=0 J=1 J

= o)+ + g (e) + 31 () 0 o
J=1 J

Moreover,
(iii) bt'x = bgo(x) + - - + bt 1gi_1(x).

We compare the two equations (ii) and (iii). The most important parts in (ii)
and (iii) are the #/() N-components where f is as in Lemma 2.5.
To prepare to compare the equations, we have some lemmas.

LemMMA 2.6.2. We have the following equation. For b e Bx and for me Z,
O<m<i-1,

. 1—1—-m .
i) an(®)+ 172 )o 0= ban) + Y 17 (" )0 Blams 9
J=1

m

Proof. The left hand side is the ™ N-component in bt'x in the equation (ii),
and the right hand side is that in (iii). O
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LemMMa 2.6.3. (1) For j (0 <j<i—1) such that f(j) = f(i), g; is a scalar
map. That is, gi(x) = C;x (xe N) for some C, € K.
(2) For j (0 <j<i—1) such that f(j) > f(i), g; is the 0-map.

Proof. We fix an integer m such that f(i) <m <i—1. Assume that for
j(O0<j<i-—1) such that j>m, g; is a scalar map C, (C,e€K), and for
Jj(0<j<i—1) such that f(j) >m, g; is the 0-map.

We show that g,, is a scalar map C, (C,, € K), and for j (0<j<i—1)
such that f(j) =m, g; is the O-map.

Remark that j > f(j), so Lemma 2.6.3 follows from this by downward
induction on m.

We consider Lemma 2.6.2. Since m > f(i), from the computation of the
coefficient, the part (—1)'_m(,:,)5’_’"(b)x in the left hand side of the equation
(iv) is 0. So the equation (iv) is

1—1-m

™) g(bx) = bgn(0) + 3 (= (’"“) (6) g ().

J=1

By the theorem of Burnside ([F-D] Corollary 1.16), any K-linear map: N — N
is obtained as an action of an element of Bx. So we write g;(x) = byx for
bje By (0 <j<i—1). By the hypothesis of this induction, the equation (v)
is equivalent to the equation

[bm,Blx = Y @G/ (b)x

Jef ™ (m)

0<y<i—-1
where o; € F,, a; # 0 (We denote m+j in (v) by j here). For je f~Y(m) such
that 0<j<i—1,j—m=p" for some reZ,0<r</—1. From the linear
1ndependence of {y 06?';0 <i<I—1} modulo inner derivation, C, = g; = 0 for
jef (m) such that 0<]<l—1 So xy(bmb) — xn(bby) =0. Hence g, =
xn(bm) is B-linear. Since N is irreducible, g, is a scalar map. O

Now we accomplish the proof of Lemma 2.6.
We compare the /() N-components in (i) and (iii). We put m = f(i) in

(iv). The coefficient
_1 t—f(i)< i )
=D s

which is on the left hand side of (iv) is not zero. By Lemma 2.6.3 and the
argument in its proof,

an(brb) — xn(Bb ) = dixy 06"/ D () + Z % Cyxy 08~/ (b)
7 f7HIG)

0<y<i—-1



HASSE ZETA FUNCTIONS OF SOLVABLE LIE ALGEBRAS 157

where ;€ Fp, o0; # 0 (j e £ (f(i)), 0 <j<i). Foreach je f'(f(i) such that
0<j<i, there exists re Z,0 <r</—1 such that j— f(i)=p". This con-
tradicts the assumption that {xyo0d”;0<i<I—1} are lmearly independent
modulo inner derivation. O

LemMA 2.7. Assume that {xy 00?0 <i<I—1} are linearly independent
and {yyod?;0<i<lI} are linearly dependent modulo inner derivation. Then
there exists an irreducible representation N' of B over K which is a sub-
representation of M such that N' = N as a Bg-module and

p'-1
Z I'N'=M
1=0

Proof. Assume that

-1

1 1
xn 00" =ZJ’iXN°5P + v o [bo, ]
1=0

where y; € K, bp € Bxk. Put

1 1
=1 =)yt —bo.

1=l

Since [t?', =07, yn(bt' —t'b) =0 for all be Bx. Let W ={xe M;bx=0
for any b € Ann(N)}, where Ann(N) = {be Bk;bN =0}. Then W is stable
under the actions of Bx and ¢. Let N’ be the irreducible representation of Blt']
over K which is contained in W. In N’, the action of # commutes with the
actions of B[t'], and hence is a scalar map. So N’ is an irreducible repre-
sentation also of Bg. Smce Ann(N) kills N', N’ is isomorphic to N over Bg.
The subrepresentation Z" o t'N' of Mis stable under the actions of the elements
of By and ¢. So it coincides with M. Hence we obtain the result. O

LEMMA 2.8. Let N” be an irreducible representation of B over K which is
contained in M. Then N" = N.

Proof. As a Bg-module, M has a composition series whose all quotients are
isomorphic to N. Hence N” = N over Bg.

To prove N” =N, it is sufficient to prove that the image of any Bg-
homomorphism

p'-1

h:N— M=) N,
=0
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is contained in N. Write h(x) = f’;o_l t'hi(x) (x e N) where h; (0 <i < p'—1)
are K-linear maps N — N. For any xe N and b € Bk,

h(bx) = ho(bx) + thy (bx) + - - + 7" b,y (bx),
and

h(bx) = bho(x) + bthy (x) + - - + bt " hyu_y (x).

We compare the ¢”N-components (0 < m < p’ — 1) of the above two equations,
then we have

pl=1-m

m+j
hw(bx) = bh, -1y & (b)hmri(x).
9 = o)+ 32 (1 (7, )/ Ok
This equation has the same form as (v). So from the argument in the proof of
Lemma 2.6.3, h; =0 for 1 <i<p'—1. So h(N)<N. O

From Lemma 2.8, we obtain

CoROLLARY 2.8.1. There exists a surjective map
n: S4(K) — Sp(K); the class of M — the class of N.
This map ©n commutes with the action of the Galois group Gal(K/k).

By Lemmas 2.6, 2.7, and 2.8, we obtain Proposition 2.4.

2.9. Let / be as in Lemma 2.3.
From the above argument, we have that the irrequcible representation M of
A over K is determined by y, and the action of #. Write

-1
v o0 =3 payod” +[bo, |
1=0

where y; € K and by € Bx. Put
. -1
=1 =Ny — by,
=0

By Proposition 2.4, the action of ¢ on M is completely determined by its action
on N, and from the argument of the proof of Lemma 2.7, ¢’ acts on N as a
scalar. Then we have for xe N,

t'x =cx

for some ce K. Hence
-1
#'x = Z 7P x — (bo + ¢)x.
1=0
We can take ¢ e K arbitrarily.
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From this and Corollary 2.8.1, for each finite extension F, of k which has ¢
elements and x € Sg(F,), the Gal(K/F,)-set n~!(x) is a K-principal homogeneous
space. Since H!(Gal(K/F,),K) = {0},n7!(x) is isomorphic to K as a Gal
(K/F,)-set. Hence we have

1S4(F,) = §CSp(Fy) - q-

This proves Theorem 1.3.

3. Remark

For a solvable Lie algebra g over R where R is a finitely generated
commutative ring over Z, we have Theorem 1.1 which says that the Hasse zeta
function of the universal enveloping algebra of g over R is determined only by its
rank over R.

But when Lie algebra g is not solvable, we cannot say such things. For
example, if 4 is the universal enveloping algebra of sh(Z), we have

L) =ts=3) [ a-p e T (q-p o2

p:odd prime p:odd prime

(see [F1]).
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