ON HASSE ZETA FUNCTIONS OF ENVELOPING ALGEBRAS OF SOLVABLE LIE ALGEBRAS

Takako Fukaya

1. Introduction

In the paper [F1], we generalized the Hasse zeta functions $\zeta_{A}(s)$ of commutative finitely generated rings A over the ring \boldsymbol{Z} of integers, to noncommutative rings.

The aim of this paper is to prove
Theorem 1.1. Let R be a finitely generated commutative ring over Z, let \mathfrak{g} be a solvable Lie algebra over R which is free of finite rank n as an R-module, and let A be the universal enveloping algebra of \mathfrak{g} over R. Then

$$
\zeta_{A}(s)=\zeta_{R}(s-n)
$$

1.2. We review the definition of the function $\zeta_{A}(s)$. For a (not necessarily commutative) finitely generated ring A over \boldsymbol{Z}, the Hasse zeta function $\zeta_{A}(s)$ of A is defined by

$$
\zeta_{A}(s)=\prod_{r \geq 1} \zeta_{A, r}(s)
$$

where r runs over integers ≥ 1, and

$$
\zeta_{A, r}(s)=\prod_{p} \exp \sum_{n=1}^{\infty} \frac{\sharp \mathfrak{\Im}_{A, r}\left(\boldsymbol{F}_{p^{n}}\right)}{n}\left(p^{-s}\right)^{n}
$$

where $\Theta_{A, r}$ is a certain scheme of finite type over \boldsymbol{Z}, p runs over prime numbers, and $\boldsymbol{F}_{p^{n}}$ is a finite field with p^{n} elements, so the function $\zeta_{A, r}(s)$ coincides with the product of Weil's zeta functions of $\mathfrak{S}_{A, r} \otimes{ }_{Z} \boldsymbol{F}_{p}$ [We] for all prime numbers p. For the algebraic closure K of $\boldsymbol{F}_{p}, \mathbb{S}_{A, r}(K)$ is identified with the set of the isomorphism classes of all r-dimensional irreducible representations of A over K, and $\mathbb{S}_{A, r}\left(\boldsymbol{F}_{p^{n}}\right)$ is identified with the $\operatorname{Gal}\left(K / \boldsymbol{F}_{p^{n}}\right)$-fixed part of $\mathfrak{G}_{A, r}(K)$.

Theorem 1.1 is deduced from the following Theorem 1.3.
Theorem 1.3. Let B be a finitely generated algebra over \boldsymbol{Z}, let δ be a derivation of B, and let A be the ring $\left\{\sum_{t=0}^{N} b_{i} t^{t} ; N \geq 0, b_{i} \in B\right\}$ in which t is an indeterminate and the multiplication is expressed as $t b-b t=\delta(b)(b \in B)$. Then

$$
\zeta_{A}(s)=\zeta_{B}(s-1)
$$

We show that Theorem 1.1 follows from Theorem 1.3.
We may assume that R is a finite field of characteristic $p>0$, for $\zeta_{R}(s), \zeta_{A}(s)$ are products of $\zeta_{R / \mathfrak{m}}(s), \zeta_{A / \mathfrak{m} A}(s)$ over all maximal ideals \mathfrak{m} of R, respectively. So assume R is a finite field k.

Since \mathfrak{g} is a solvable Lie algebra, there exists a sequence of subalgebras of \mathfrak{g}

$$
\mathfrak{g}=\mathfrak{g}_{0} \supset \mathfrak{g}_{1} \supset \cdots \supset \mathfrak{g}_{n}=\{0\}
$$

where \mathfrak{g}_{i} is of dimension $n-i$ as a k-vector space, and $\left[\mathfrak{g}_{i-1}, \mathfrak{g}_{i}\right] \subset \mathfrak{g}_{i}$ for $1 \leq i \leq n$. Take the universal enveloping algebras of \mathfrak{g}_{i-1} and \mathfrak{g}_{i} as A and B, respectively, and apply Theorem 1.3 inductively, then we obtain Theorem 1.1.

In section 2, we prove Theorem 1.3.
A proof of a special case of Theorem 1.1 and a proof of Theorem 1.3 in the case B is commutative are given in our previous papers [F2], [F3], respectively.

I am very grateful to Professor Kazuya Kato who suggested me to study this subject, gave me much essential advice and encouragement.

2. Proof of Theorem $\mathbf{1 . 3}$

2.1. Let A, B and δ be as in Theorem 1.3. Since $\zeta_{A}(s)=\prod_{p} \zeta_{A / p A}(s)$, $\zeta_{B}(s)=\prod_{p} \zeta_{B / p B}(s)$ where p ranges over all prime numbers, we may assume that B is an \boldsymbol{F}_{p}-algebra. Let $k=\boldsymbol{F}_{p}$, and let K be the algebraic closure of k. Let $\mathfrak{\Im}_{A}=\coprod_{r \geq 1} \mathfrak{G}_{A, r}$, and for an extension k^{\prime} of k, let $\Im_{A}\left(k^{\prime}\right)$ be the set of k^{\prime}-rational points of $\mathfrak{\Im}_{A}$. We define $\mathfrak{\Im}_{B}$ and $\mathfrak{S}_{B}\left(k^{\prime}\right)$ as in the case of A. Let $B_{K}=$ $B \otimes_{k} K$.

Let M be a finite dimensional irreducible representation of A over K, and let N be an irreducible representation of B over K which is a subrepresentation of M. Let $\chi_{N}: B_{K} \rightarrow \operatorname{End}_{K}(N)$ be the action of B_{K} on N.

Definition 2.2. Let $\left\{\delta_{j} ; 1 \leq j \leq m\right\}(m \in \boldsymbol{Z}, m \geq 1)$ be a family of k-derivations of B. We say " $\left\{\chi_{N} \circ \delta_{j} ; 1 \leq j \leq m\right\}$ are linearly independent (resp. dependent) modulo inner derivation" if the canonical images of $\left\{\chi_{N} \circ \delta_{j} ; 1 \leq j \leq m\right\}$ in the space

$$
\left\{B_{K} \rightarrow \operatorname{End}_{K}(N) ; K \text {-linear }\right\} /\left\{B_{K} \rightarrow \operatorname{End}_{K}(N) ; b \mapsto \chi_{N}\left(\left[b, b_{0}\right]\right) \text { for some } b_{0} \in B_{K}\right\}
$$

are linearly independent (resp. dependent) over K.
Lemma 2.3. There exists an integer $l \geq 0$ such that $\left\{\chi_{N} \circ \delta^{p^{2}} ; 0 \leq i \leq l-1\right\}$ are linearly independent modulo inner derivation and $\left\{\chi_{N} \circ \delta^{p^{i}} ; 0 \leq i \leq l\right\}$ are linearly dependent modulo inner derivation.

Proof. Note that $\delta^{p^{\prime}}(b)$ is a k-derivation for any $i \in \boldsymbol{Z}, i \geq 0$ ([S-F] Chapter 1 , Proposition 2.3.2). In the K-linear space

$$
\left\{B_{K} \rightarrow \operatorname{End}_{K}(N) ; K \text {-linear }\right\} /\left\{B_{K} \rightarrow \operatorname{End}_{K}(N) ; b \mapsto \chi_{N}\left(\left[b, b_{0}\right]\right) \text { for some } b_{0} \in B_{K}\right\}
$$

the images of $\left\{\chi_{N} \circ \delta^{p^{m}} ; m \in \boldsymbol{Z}, m \geq 0\right\}$ are contained in the following K-linear subspace: $\left\{h: B_{K} \rightarrow \operatorname{End}_{K}(N) ; K\right.$-linear, $\left.h(a b)=\chi_{N}(a) h(b)+h(a) \chi_{N}(b)\right\} /$ $\left\{B_{K} \rightarrow \operatorname{End}_{K}(N) ; b \mapsto \chi_{N}\left(\left[b, b_{0}\right]\right)\right.$ for some $\left.b_{0} \in B_{K}\right\}$, which is finite dimensional over K since the maps h satisfying the condition are determined by the values of h at the generators of B over k.

We use the same notation δ for the K-derivation of B_{K} which is induced from δ in Theorem 1.3.

We have the following proposition.
Proposition 2.4. Let l be as in Lemma 2.3. Then the map

$$
N^{\oplus p^{l}} \rightarrow M ;\left(x_{l}\right)_{0 \leq ı \leq p^{l}-1} \mapsto \sum_{t=0}^{p^{l}-1} t^{l} x_{t}
$$

is bijective.
We prove Proposition 2.4 by using the following Lemmas 2.5, 2.6, and 2.7.
Lemma 2.5. For $b \in B_{K}$ and for $m \in \boldsymbol{Z}, m \geq 0$,

$$
b t^{m}=\sum_{j=0}^{m}(-1)^{J}\binom{m}{j} t^{m-\jmath} \delta^{J}(b) .
$$

Especially, let $f:\{a \in \boldsymbol{Z} ; a>0\} \rightarrow\{a \in \boldsymbol{Z} ; a>0\}$ be the function defined by $f(a)=a-p^{r}$ where $p^{r} \| a$. For an integer $m>0$, for any $b \in B_{K}$, and for $x \in N$,

$$
\left(t^{m} b-b t^{m}\right) x=\alpha t^{f(m)} \delta^{m-f(m)}(b) x
$$

$+\left(a\right.$ linear combination of the elements $\left.t^{t} \delta^{m-l}(b) x(0 \leq i<f(m))\right)$
where $\alpha \in \boldsymbol{F}_{p}, \alpha \neq 0$.
Proof. See [S-F] Chapter 1, Proposition 1.3.
Lemma 2.6. Assume that $\left\{\chi_{N} \circ \delta^{p^{t}} ; 0 \leq i \leq l-1\right\}$ are linearly independent over K modulo inner derivation. Then the map

$$
N^{\oplus p^{\prime}} \rightarrow M ; \quad\left(x_{t}\right)_{0 \leq t \leq p^{\prime}-1} \mapsto \sum_{t=0}^{p^{\prime}-1} t^{l} x_{t}
$$

is injective.
Proof. We prove this by induction. Let i be an integer such that $1 \leq i \leq$ $p^{l}-1$, and assume that

$$
N+t N+\cdots+t^{t-1} N \cong N^{\oplus} \imath
$$

as K-linear spaces by the map defined above. We show that

$$
\begin{equation*}
N+t N+\cdots+t^{l-1} N+t^{l} N \cong N^{\oplus(i+1)} \tag{i}
\end{equation*}
$$

This (i) is equivalent to the fact that the map

$$
t^{l}: N \rightarrow M /\left(N+t N+\cdots+t^{t-1} N\right) ; x \mapsto t^{l} x \bmod N+t N+\cdots+t^{t-1} N
$$

is injective.
Now we have a lemma.
Lemma 2.6.1. The above map t^{t} is a B-homomorphism.
Proof. This follows from Lemma 2.5 .
By Lemma 2.6.1, if the map t^{l} is not injective, it is the 0 -map (since N is irreducible). We assume that t^{l} is the 0 -map, and will get a contradiction.

The fact that t^{l} is the $0-\mathrm{map}$ is equivalent to

$$
t^{l} N \subset N+t N+\cdots+t^{t-1} N
$$

Then for $x \in N$, it can be expressed as

$$
t^{l} x=g_{0}(x)+\cdots+t^{l-1} g_{i-1}(x)
$$

where $g_{j}: N \rightarrow N$ is a K-linear map for $0 \leq j \leq i-1$. For $b \in B_{K}$, by Lemma 2.5,
(ii) $\quad b t^{l} x=\sum_{J=0}^{i}(-1)^{J}\binom{i}{j} t^{l-J} \delta^{J}(b) x=t^{l} b x+\sum_{J=1}^{i}(-1)^{J}\binom{i}{j} t^{i-\jmath} \delta^{J}(b) x$ $=g_{0}(b x)+\cdots+t^{l-1} g_{i-1}(b x)+\sum_{j=1}^{i}(-1)^{J}\binom{i}{j} t^{t-J} \delta^{J}(b) x$.

Moreover,

$$
\begin{equation*}
b t^{l} x=b g_{0}(x)+\cdots+b t^{t-1} g_{i-1}(x) \tag{iii}
\end{equation*}
$$

We compare the two equations (ii) and (iii). The most important parts in (ii) and (iii) are the $t^{f(i)} N$-components where f is as in Lemma 2.5.

To prepare to compare the equations, we have some lemmas.
Lemma 2.6.2. We have the following equation. For $b \in B_{K}$ and for $m \in \boldsymbol{Z}$, $0 \leq m \leq i-1$,
(iv) $g_{m}(b x)+(-1)^{t-m}\binom{i}{m} \delta^{t-m}(b) x=b g_{m}(x)+\sum_{J=1}^{t-1-m}(-1)^{J}\binom{m+j}{m} \delta^{J}(b) g_{m+j}(x)$.

Proof. The left hand side is the $t^{m} N$-component in $b t^{l} x$ in the equation (ii), and the right hand side is that in (iii).

Lemma 2.6.3. (1) For $j(0 \leq j \leq i-1)$ such that $f(j) \geq f(i), g_{j}$ is a scalar map. That is, $g_{j}(x)=C_{J} x(x \in N)$ for some $C_{J} \in K$.
(2) For $j(0 \leq j \leq i-1)$ such that $f(j)>f(i), g_{j}$ is the $0-m a p$.

Proof. We fix an integer m such that $f(i)<m \leq i-1$. Assume that for $j(0 \leq j \leq i-1)$ such that $j>m, g_{j}$ is a scalar map $C_{j}\left(C_{j} \in K\right)$, and for $j(0 \leq j \leq i-1)$ such that $f(j)>m, g_{j}$ is the 0-map.

We show that g_{m} is a scalar map $C_{m}\left(C_{m} \in K\right)$, and for $j(0 \leq j \leq i-1)$ such that $f(j)=m, g_{j}$ is the 0 -map.

Remark that $j>f(j)$, so Lemma 2.6 .3 follows from this by downward induction on m.

We consider Lemma 2.6.2. Since $m>f(i)$, from the computation of the coefficient, the part $(-1)^{l-m}\binom{a}{m} \delta^{i-m}(b) x$ in the left hand side of the equation (iv) is 0 . So the equation (iv) is

$$
\begin{equation*}
g_{m}(b x)=b g_{m}(x)+\sum_{j=1}^{t-1-m}(-1)^{J}\binom{m+j}{m} \delta^{\prime}(b) g_{m+j}(x) . \tag{v}
\end{equation*}
$$

By the theorem of Burnside ([F-D] Corollary 1.16), any K-linear map: $N \rightarrow N$ is obtained as an action of an element of B_{K}. So we write $g_{j}(x)=b_{j} x$ for $b_{j} \in B_{K}(0 \leq j \leq i-1)$. By the hypothesis of this induction, the equation (v) is equivalent to the equation

$$
\left[b_{m}, b\right] x=\sum_{\substack{j \in f^{-1}(m) \\ 0 \leq J \leq \iota-1}} \alpha_{j} C_{j} \delta^{J-m}(b) x
$$

where $\alpha_{j} \in \boldsymbol{F}_{p}, \alpha_{j} \neq 0$ (We denote $m+j$ in (v) by j here). For $j \in f^{-1}(m)$ such that $0 \leq j \leq i-1, j-m=p^{r}$ for some $r \in Z, 0 \leq r \leq l-1$. From the linear independence of $\left\{\chi_{N} \circ \delta^{p^{i}} ; 0 \leq i \leq l-1\right\}$ modulo inner derivation, $C_{J}=g_{j}=0$ for $j \in f^{-1}(m)$ such that $0 \leq j \leq i-1$. So $\chi_{N}\left(b_{m} b\right)-\chi_{N}\left(b b_{m}\right)=0$. Hence $g_{m}=$ $\chi_{N}\left(b_{m}\right)$ is B-linear. Since N is irreducible, g_{m} is a scalar map.

Now we accomplish the proof of Lemma 2.6.
We compare the $t^{f(i)} N$-components in (ii) and (iii). We put $m=f(i)$ in (iv). The coefficient

$$
(-1)^{t-f(i)}\binom{i}{f(i)}
$$

which is on the left hand side of (iv) is not zero. By Lemma 2.6.3 and the argument in its proof,

$$
\chi_{N}\left(b_{f(i)} b\right)-\chi_{N}\left(b b_{f(i)}\right)=\alpha_{i} \chi_{N} \circ \delta^{I-f(i)}(b)+\sum_{\substack{j \in f^{-1}(f(i)) \\ 0 \leq J \leq t-1}} \alpha_{j} C_{J} \chi_{N} \circ \delta^{\prime-f(i)}(b)
$$

where $\alpha_{j} \in \boldsymbol{F}_{p}, \alpha_{j} \neq 0\left(j \in f^{-1}(f(i)), 0 \leq j \leq i\right)$. For each $j \in f^{-1}(f(i))$ such that $0 \leq j \leq i$, there exists $r \in \boldsymbol{Z}, 0 \leq r \leq l-1$ such that $j-f(i)=p^{r}$. This contradicts the assumption that $\left\{\chi_{N} \circ \delta^{p^{i}} ; 0 \leq i \leq l-1\right\}$ are linearly independent modulo inner derivation.

Lemma 2.7. Assume that $\left\{\chi_{N} \circ \delta^{p^{i}} ; 0 \leq i \leq l-1\right\}$ are linearly independent and $\left\{\chi_{N} \circ \delta^{p^{i}} ; 0 \leq i \leq l\right\}$ are linearly dependent modulo inner derivation. Then there exists an irreducible representation N^{\prime} of B over K which is a subrepresentation of M such that $N^{\prime} \cong N$ as a B_{K}-module and

$$
\sum_{i=0}^{p^{\prime}-1} t^{l} N^{\prime}=M
$$

Proof. Assume that

$$
\chi_{N} \circ \delta^{p^{\prime}}=\sum_{i=0}^{l-1} \gamma_{i} \chi_{N} \circ \delta^{p^{\prime}}+\chi_{N} \circ\left[b_{0}, \quad\right]
$$

where $\gamma_{i} \in K, b_{0} \in B_{K}$. Put

$$
t^{\prime}=t^{p^{\prime}}-\sum_{l=0}^{l-1} \gamma_{i} t^{p^{\prime}}-b_{0}
$$

Since $\left[t^{p^{t}}, \quad\right]=\delta^{p^{t}}, \chi_{N}\left(b t^{\prime}-t^{\prime} b\right)=0$ for all $b \in B_{K}$. Let $W=\{x \in M ; b x=0$ for any $b \in \operatorname{Ann}(N)\}$, where $\operatorname{Ann}(N)=\left\{b \in B_{K} ; b N=0\right\}$. Then W is stable under the actions of B_{K} and t^{\prime}. Let N^{\prime} be the irreducible representation of $B\left[t^{\prime}\right]$ over K which is contained in W. In N^{\prime}, the action of t^{\prime} commutes with the actions of $B\left[t^{\prime}\right]$, and hence is a scalar map. So N^{\prime} is an irreducible representation also of B_{K}. Since $\operatorname{Ann}(N)$ kills N^{\prime}, N^{\prime} is isomorphic to N over B_{K}. The subrepresentation $\sum_{l=0}^{p^{l}-1} t^{l} N^{\prime}$ of M is stable under the actions of the elements of B_{K} and t. So it coincides with M. Hence we obtain the result.

Lemma 2.8. Let $N^{\prime \prime}$ be an irreducible representation of B over K which is contained in M. Then $N^{\prime \prime}=N$.

Proof. As a B_{K}-module, M has a composition series whose all quotients are isomorphic to N. Hence $N^{\prime \prime} \cong N$ over B_{K}.

To prove $N^{\prime \prime}=N$, it is sufficient to prove that the image of any $B_{K^{-}}$ homomorphism

$$
h: N \rightarrow M=\sum_{l=0}^{p^{l}-1} t^{l} N
$$

is contained in N. Write $h(x)=\sum_{l=0}^{p^{l}-1} t^{l} h_{i}(x)(x \in N)$ where $h_{i}\left(0 \leq i \leq p^{l}-1\right)$ are K-linear maps $N \rightarrow N$. For any $x \in N$ and $b \in B_{K}$,

$$
h(b x)=h_{0}(b x)+t h_{1}(b x)+\cdots+t^{p^{\prime}-1} h_{p^{\prime}-1}(b x),
$$

and

$$
h(b x)=b h_{0}(x)+b t h_{1}(x)+\cdots+b t^{p^{\prime}-1} h_{p^{\prime}-1}(x)
$$

We compare the $t^{m} N$-components $\left(0 \leq m \leq p^{l}-1\right)$ of the above two equations, then we have

$$
h_{m}(b x)=b h_{m}(x)+\sum_{j=1}^{p^{\prime}-1-m}(-1)^{J}\binom{m+j}{m} \delta^{J}(b) h_{m+j}(x) .
$$

This equation has the same form as (v). So from the argument in the proof of Lemma 2.6.3, $h_{i}=0$ for $1 \leq i \leq p^{l}-1$. So $h(N) \subset N$.

From Lemma 2.8, we obtain
Corollary 2.8.1. There exists a surjective map $\pi: \Im_{A}(K) \rightarrow \Im_{B}(K)$; the class of $M \mapsto$ the class of N.
This map π commutes with the action of the Galois group $\operatorname{Gal}(K / k)$.
By Lemmas 2.6, 2.7, and 2.8, we obtain Proposition 2.4.
2.9. Let l be as in Lemma 2.3.

From the above argument, we have that the irreducible representation M of A over K is determined by χ_{N} and the action of $t^{p^{\prime}}$. Write

$$
\chi_{N} \circ \delta^{p^{\prime}}=\sum_{i=0}^{l-1} \gamma_{i} \chi_{N} \circ \delta^{p^{\prime}}+\left[b_{0}, \quad\right]
$$

where $\gamma_{i} \in K$ and $b_{0} \in B_{K}$. Put

$$
t^{\prime}=t^{p^{l}}-\sum_{i=0}^{l-1} \gamma_{i} t^{p^{\prime}}-b_{0}
$$

By Proposition 2.4, the action of t^{\prime} on M is completely determined by its action on N, and from the argument of the proof of Lemma 2.7, t^{\prime} acts on N as a scalar. Then we have for $x \in N$,

$$
t^{\prime} x=c x
$$

for some $c \in K$. Hence

$$
t^{p^{\prime}} x=\sum_{l=0}^{l-1} \gamma_{i} t^{p^{i}} x-\left(b_{0}+c\right) x
$$

We can take $c \in K$ arbitrarily.

From this and Corollary 2.8.1, for each finite extension \boldsymbol{F}_{q} of k which has q elements and $x \in \mathfrak{S}_{B}\left(\boldsymbol{F}_{q}\right)$, the $\operatorname{Gal}\left(K / \boldsymbol{F}_{q}\right)$-set $\pi^{-1}(x)$ is a K-principal homogeneous space. Since $H^{1}\left(\operatorname{Gal}\left(K / \boldsymbol{F}_{q}\right), K\right)=\{0\}, \pi^{-1}(x)$ is isomorphic to K as a Gal $\left(K / \boldsymbol{F}_{q}\right)$-set. Hence we have

$$
\sharp \mathfrak{S}_{A}\left(\boldsymbol{F}_{q}\right)=\sharp \mathfrak{S}_{B}\left(\boldsymbol{F}_{q}\right) \cdot q .
$$

This proves Theorem 1.3.

3. Remark

For a solvable Lie algebra \mathfrak{g} over R where R is a finitely generated commutative ring over \boldsymbol{Z}, we have Theorem 1.1 which says that the Hasse zeta function of the universal enveloping algebra of g over R is determined only by its rank over R.

But when Lie algebra \mathfrak{g} is not solvable, we cannot say such things. For example, if A is the universal enveloping algebra of $s l_{2}(\boldsymbol{Z})$, we have

$$
\zeta_{A}(s)=\zeta(s-3) \prod_{p: \text { odd prime }}\left(1-p^{-(s-1)}\right)^{(p-1) / 2} \prod_{p: \text { odd prime }}\left(1-p^{-s}\right)^{-(p-1) / 2}
$$

(see [F1]).

References

[F-D] B. Farb and R. K. Denns, Noncommutative Algebra, Grad. Texts in Math., 144, Sprınger-Verlag, 1993.
[S-F] H. Strade and R. Farnsteiner, Modular Lie Algebras and their Representations, Monogr. Textbooks Pure Appl. Math., 116, Marcel Dekker, New York, 1988.
[We] A. Weil, Numbers of solutions of equations over finte fields, Bull. Amer. Math. Soc., 55 (1949), pp. 497-508.
[F1] T. FUKAYA, Hasse zeta functions of non-commutative rıngs, J. Algebra, 208 (1998), pp. 304342.
[F2] T. Fukaya, On Hasse zeta functions of enveloping algebras of solvable Lie algebras, Proc. Japan Acad. Ser. A Math. Scı., 72 (1996), pp. 187-188.
[F3] T. Fukaya, On Hasse zeta functions of enveloping algebras of solvable Lie algebras 2, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), pp. 199-201.

Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro-ku
Toкyo, 153-8914
JAPAN

