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ON HAUSDORFF DIMENSION OF JULIA SETS OF
HYPERBOLIC RATIONAL SEMIGROUPS

Hirok1 Sumr*

Abstract

We will show that if a semigroup of rational functions on the Riemann sphere is
finitely generated, then the hyperbolicity and the expandingness are equivalent. Also we
consider finitely generated rational semigroups satisfying the strong open set condition.
We show that if a semigroup satisfies the strong open set condition, we can construct a
J-conformal measure on the Julia set. Also the Julia set has no interior points, and
furthurmore, if the semigroup is hyperbolic, the Hausdorff dimension of the Julia set is
strictly lower than 2. The value J of the dimension coincides with the unique value that
allows us to construct a d-conformal measure and the J-Hausdorff measure of the Julia
set is a finite value strictly bigger than zero.

With the method similar to that of the conmstruction of the Patterson-Sullivan
measures we get d-subconformal measures in more general cases and we will show that if
a finitely generated rational semigroup is expanding, then the Hausdorff dimension of
the Julia set is less than the exponent 4.

1. Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. It is a semigroup with the semigroup operation being
composition of functions. A rational semigroup is a subsemigroup of End(C)
without any constant elements. Similarly, an entire semigroup is a subsemigroup
of End(C) without any constant elements. A rational semigroup G is called a
polynomial semigroup if each g € G is a polynomial. When a rational or entire
semigroup G is generated by {fi, f2,...,fs,...}, we denote this situation by

G=<flaf2)"'a/;l7"'>'
A rational or entire semigroup generated by a single function g is denoted by
{g>. We denote the n-th iterate of f by f™.

The studies of dynamics of rational semigroups were introduced by W. Zhou
and F. Ren [ZR], Z. Gong and F. Ren [GR] and Hinkkanen and Martin
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[HM1]. Some properties of dynamics of rational semigroups were studied in
[HM1], [HM2], [S1] and [S2]. In [S3], dynamics of hyperbolic rational semi-
groups are investigated and it is shown that all the limit functions of finitely
generated rational semigroups on the Fatou sets are constant functions that take
their values in the post critical sets. Also with respect to pertubations of
generators of any finitely generated hyperbolic rational semigroup, the hyper-
bolicity is kept and the Julia set moves continuously.

In this paper, we will show that if a finitely generated rational semigroup
contains an element of degree at least two and each Md&bius transformation in it
is neither the identity nor an elliptic element, then the hyperbolicity and ex-
pandingness are equivalent. If the sets of backward images of the Julia set by
generators are almost disjoint, then the Julia set has no interior points. We
construct a generalized J-conformal measure on the Julia set of any rational
semigroup which satisfies the strong open set condition. We show that if the
semigroup is hyperbolic, then the Hausdorff dimension of the Julia set coincides
with the unique value J that allows us to construct a J-conformal measure and it
is strictly less than 2. Also the d-Hausdorff measure of the Julia set is a finite
value strictly bigger than zero. Considering the convergent series of the norm of
the derivative at the backward images, with the method similar to that of the
construction of the Patterson-Sullivan measures on the limit sets of Kleinian
groups we get a d-subconformal measure in more general case and we will show
that if a finitely generated rational semigroup is expanding, then the Hausdorff
dimension of the Julia set is less than the exponent §.

Generalized Brolin-Lyubich’s invariant measures on the Julia set of any
rational semigroup which is hyperbolic or satisfying the strong open set condition
are constructed in [S4] and a lower estimate of the Hausdorff dimension of the
rational semigroups is given.

The author will discuss about the existence and uniqueness of the conformal
measures and self-similar measures of rational semigroups in more general cases
([S5]). In that paper we use the thermodynamic formalism and give an upper
bound of the Hausdorff dimension of the Julia sets of finitely generated hyperbolic
rational semigroups.

In [S8], we will investigate the dynamics of sub-hyperbolic and semi-hyperbolic
rational semigroups. We will show some non-wandering domain theorems.

The summary of [S5] and [S8] is in [S7].

Acknowledgement. The author would like to express his gratitude to Prof.
S. Ushiki, Prof. M. Taniguchi, Prof. J. Kigami, Prof. T. Sugawa and Prof. M.
Kisaka for many valuable discussions and advices. The author especially would
like to express his gratitude to the referee for many valuable and helpful advices.

DerFiNiTION 1.1. Let G be a rational semigroup.

def

F(G) = {z e C|G is normal in a neighborhood of z},

J(G) ¥ C\F(G).
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F(G) is called the Fatou set for G and J(G) is called the Julia set for G.
Similarly, the Fatou set and the Julia set for any entire semigroup are defined.

DEFINITION 1.2. Let G be a rational semigroup and z be a point of C. The
backward orbit O~ (z) of z and the set of exceptional points E(G) are defined by:
0~ (2) &f {w e C |there is some g € G such that g(w) = z},

EG) ¥ {zeC|j0-(z) < 2}.
DEeFINITION 1.3. A subsemigroup H of a semigroup G is said to be of finite
index if there is a finite collection of elements {gi,d2,...,9,} of G such that
G= U:'=1 g;H. Similarly we say that a subsemigroup H of G has cofinite index

if there is a finite collection of elements {gi,9>,...,9,} of G such that for every
g € G there is je {1,2,...,n} such that gjge H.

Next lemma was shown in [S3].

LeMMA 1.4. Let G be a rational semigroup.
1. For any f € G,

f(F(G) = F(G), f(J(G)) =J(G),
F(G) = F(Kf?), J(K)<=J(G).
2. If G={f1,...,[n), then
F(G) = = f1(F(G), J(G)=Ur, £,7'(U(G).
If a set K satisfies that K = U;;l f7U(K), we say that K has backward self-
similarity.
Next lemma was shown in [HM1].
LemMMmA 1.5. Let G be a rational semigroup.
1. If a subsemigroup H of G is of finite or cofinite index, then
J(H) = J(G).

In particular, when G is a rational semigroup generated by finite elements
{fi; f2y-.-, fu} and m is an integer, if we set

H, ={g9=f, - fi € G|m devides k},
I, = {g € G|g is a product of some elements of word length m}

then
J(G) = J(Hp) = J(In).

Here we say an element f € G is word length m if m is the minimum integer such that

f =f}l o f]m
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2. If J(G) contains at least three points, then J(G) is a perfect set.
3. If there is some g € G such that deg(g) = 2 or there is some g € G such that
deg(g) =1 and the order of g is infinite, then

HE(G) < 2.

4. If a point z is not in E(G), then for every x € J(G), x belongs to O~(z).

In particular if a point z belongs to J(G)\E(G), then
0-(z) = J(G).

5. If there is some g € G such that deg(g) = 2 or there is some g € G such that
deg(g) =1 and the order of g is infinite and J(G) contains at least three points,
then J(G) is the smallest closed backward invariant set containing at least three
points. Here we say that a set A is backward invariant under G if for each g € G,
g (4) c A.

6. If J(G) contains at least three points, then

J(G) = {z € C|z is a repelling fixed point of some g € G}.

Remark 1. A similar result of 6. for entire semigroup can also be stated.

2. Hyperbolicity and strong open set condition

DerFINITION 2.1. Let G be a rational semigroup. We set
P(G) = | {critical values of g}
geiG

and we say that G is hyperbolic if P(G) = F(G). We call P(G) the post critical
set of G.

DerFINITION 2.2. Let G=<f1,/2,...,f»y be a finitely generated rational
semigroup. We say that G satisfies the strong open set condition if there is an
open neighborhood O of J(G) such that each set j;“(O) is included in O and is
mutually disjoint.

The Julia set of a rational semigroup may have non-empty interior points in
general. For example, the Julia set of (z2,2z) is the closure of the unit disc. In
[HM2], it was shown that if G is a finitely generated rational semigroup, then
each super attracting fixed point of any element of g € G does not belong to the
boundary of the Julia set. So we can construct many examples such that the
Julia set has non-empty interior points. Here we show a sufficient condition that
the Julia set has no interior points.

THEOREM 2.3. Let G={f1,/5,...,fny be a finitely generated rational
semigroup. We assume that the set ) .. £, (J(G) 0 f71(J(G)) does not
contain any continuum. Then the Julia set J(G) has no interior points.
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Proof. Assume J(G) has non-empty interior points and let U be a
component of int(J(G)). Let x be a point of U. From Lemma 1.4.2, there
exists a positive integer iy with ij <n such that x € f;'(J(G)). From Lemma
1.54, we have Unf,"!(intJ(G)) #9. Let ¥ be the connected component of
Un £, (intJ(G)).

We will show that V is dense in U. To show that, we can assume that
V#U. Then VAU #9. If 0V n U contains a continuum K, then from the
assumption of our theorem, there exists a point z € K such that for each j with
J#i, z2¢ fl‘l(J (G)). We denote the open disk centered at z of radius ¢ by
D(z,¢). Hence there is a small positive number ¢ such that D(z,¢) is included
in U and disjoint from (), f,'(J(G)). From Lemma 14.2, D(z¢) <
£;71(int J(G)) and this is a contradiction because ¥ is a connected component of
Un f,l'l(int J(G)). Therefore 0V n U does not contain any continuum and V is
dense in U.

It follows that f;(U) is included in a component U; of int(J(G)). In this
way, we can take a sequence (ix); such that for each k the number i is in
{1,...,n} and

f;'kO'--O i)(U)CUk7

where Uy is a component of int(J(G)). Now let (g;) be a sequence of elements
of G. If the sequence contains infinite elements of (f;, o---o f;), then (g;) is a
normal family on U. Unless (g;) contains any element of the form f;, o---o f;,
then for each / the set g;(U) is included in F(G) because of the assumption of our
theorem and so (g;) is a normal family on U. It follows that U is included in
F(G) and this is a contradiction. O

Remark 2. X \ ), .., 7 (J(G) n f,“(] (G)) contains a continuum, then
the Julia set may have non-empty interior points. For example, let p; =0,
p2=1,p3=1+iand ps=i For eachj=1,...,4, we set f(z) =2(z—pj) +
pj. Then J({fi,...,fa)) is equal to the closed rectangle pip2p3ps.

DerFINITION 2.4. Let G be a polynomial semigroup. We denote by K(G)
the closure of the set K;(G) consisting of the points, for each z of which, there is
a sequence (gm)m consisting of mutually distinct elements of G such that the
sequence (gm(z))m is bounded. K(G) is called the filled-in Julia set of G.

Remark 3. For each g € G the inverse image g~!(K(G)) is included in K(G)
and J(G) =« K(G). If G={fi,fo,---,fny is a finitely generated polynomial
semigroup, then

K(G) = Ul £UK(G)).

THEOREM 2.5. Let G = {fi,f2,...,[ny be a finitely generated polynomial

semigroup. Assume that the set U(i, ks FUK(G)) N f]“(K(G)) does not
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contain any continuum. Then
(K(G)) = J(G).

Proof. Let z be a point of d(K(G)) and let U be an open neighborhood of
z. For each x € K;(G) n U there is a sequence (g,)m of elements of G such that
(gm(x))m is bounded. But for each y € U\K(G) the sequence (gm(y))m tends to
infinity so G is not normal in U and z € J(G). So 3(K(G)) = J(G) Next let U
be a component of int(K(G)). From the fact K(G) = U] 1 (K(G)) and our
assumption we can show that G is normal in U in the same way as the proof of
Theorem 2.3. O

Now we consider the expandingness of hyperbolic rational semigroups,
which gives us an information about the analytic property of them.

THEOREM 2.6. Let G = {fi,/2,-..,/ny be a finitely generated hyperbolic
rational semigroup. Assume that G contains an element with the degree at least
two and each MOobius transformation in G is neither the identity nor an elliptic
element. Let K be a compact subset of C\P(G). Then there are a positive
number ¢, a number A > 1 and a Riemannian metric p on an open subset V of
C\P(G) which contains K U J(G) and is backward invariant under G such that for
each k

inf{|(fi o o fi) @plze (fio 0 fi) (K, (i, - i) € {1, m}*}

> ci¥, here we denote by ||-|| p the norm of the derivative measured from the metric
p to it.

Proof. We will show the statement in the way similar to that of the proof
of Theorem 3.13 in [M]. We denote by B the union of all components of F(G)
each of which has a non-empty intersection with P(G). Let Bj,...,B; be all
the components of B. For each j=1,...,s we take the hyperbolic metric in
Bj. Let L, be the e-neighborhood of P(G) N B; in B; with respect to the distance
in B; 1nduced by the hyperbolic metric, where ¢ is a positive number which is
sufﬁcwntly small. We set L = U 1Ly and V = C\L. Then V contains K u
J(G) and for each element g of G the inverse image g~!(V) is included in V.

We see that for large positive integer m, every element of G which is a
product of m generators of G is a contraction map from B to B and the
contraction rate is bounded by a constant strictly less than one in each fixed
compact subset of B. For, assume that g € G is of the form f; o---o f;. For
each j there are positive integers u,v with u < v which are smaller than s such
that f; o---of;(Bj) =fi,0- -0 f;(Bj). Hence f, o---of;,,, maps the compo-
nent U of F(G) which contains fiuo---ofi(B;) into it. This map is a con-
traction with respect to the hyperbolic metric on U and the contraction rate is
bounded by a constant strictly less than one in each fixed compact subset of U,
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because of the assumpsion of our theorem. Thus g is-a contraction map from B;
to the component of F(G) which contains g(B;) and the above claim holds.

So there is a positive integer mo such that for each number m > my the
closure of g;!(¥) is included in V for any element g, of G in the form
fi,o---ofiy. Now let m be any positive integer with m >my and g, any
element of G in the form f;,o---of;,. We set U=g;!(V). We take the
hyperbolic metric in each component of V' and denote it by p. Also we take the
hyperbolic metric in each component of U and denote it by =.

We will show that the inclusion map i : U — V satisfies that ||i’(z)|| < 1 for
each z € U where we denote by ||-|| the norm of the derivative measured from the
Riemannian metric 7 on U to the Riemannian metric p on V. Assume that there
is a point zg € U such that [|i’(z9)|| = 1. Let W; be the connected component of
U containing zo and W, the connected component of V' containing zo. For each
i = 1,2 the universal cover of W, is D(0,1). Leti:D(0,1) — D(0,1) be the lift
of i: Wy — W,. Since ||i'(z)|| =1, i(D(0,1)) = D(0,1) from Schwartz lemma.
It follows that W; = W, but this is a contradiction because the closure of g,! (V)
is included in V. Hence |i’(z)|| <1 for each ze U.

The map g, is a covering map from U to V and is a local isometry between
the Riemannian metric 7 on U and p on V. Hence |gm(2)|, > 1 for each
z € U, where we denote by ||-||, the norm of the derivative measured from the
Riemannian metric p on V to it.

It is eacy to see that there exists a compact subset C of V which contains
K and is backward invariant under G, hence the statement of our theorem
holds. O

COROLLARY 2.7. Under the same assumpsion of Theorem 2.6, if W is a
simply connected domain which is a relatively compact subdomain of C\P(G) and
o is a family of maps on W such that each element h of o/ is a well defined
branch of g~! where g is an element of G, then each limit function of o/ on W is a
constant function such that the constant value is in J(G).

Proof. By Theorem 2.6, each limit function of &/ on W is constant. And
by [S3], for each point z of F(G), the G-orbit of z can accumulate only to
P(G). Since W < C\P(G), the constant values belong to J(G). O

Now we will show the converse of Theorem 2.6.

THEOREM 2.8. Let G =<{f1,f3,...,fny be a finitely generated rational
semigroup. If there are a positive number ¢, a number A > 1 and a Riemannian
metric p on an open subset U containing J(G) such that for each k

nf{[|(fii o ---0 i) @)llplz € (fic 00 i)' (I(G)), (ks - - i) € {1,...,n}¥}

>cA¥, where we denote by |- || , the norm of the derivative measured from the
metric p on V to it, then G is hyperbolic and each Mobius transformation in G is
loxodromic.



HAUSDORFF DIMENSION OF JULIA SETS 17

Remark 4. Because of the compactness of J(G), we can show, with an easy
argument, which is familiar to us in the iteration theory of rational functions, that
even if we exchange the metric p to another Riemannian metric p;, the inequality
of the assumption holds with the same number A and a different constant c;.

Proof Take a positive integer k such that cA* > 1 and fix it. We take the
compact e-neighborhood K of J(G) in U with respect to the distance p. If ¢ is
sufficiently small, then

lnf{”(f;k 0---0 il)’(Z)”,,lZG (ﬁk ©---0 il)_l(K)a (ikv""il) € {l" . "n}k}

> 1 and for each ge G which is of the form fj, o---of;, the set g7!(K) is
included in K. Moreover if we take ¢ smaller, then in K there is no critical value
of any element of G with the word length less than £ hence there is no critical
value of any element of G in K.

Now let # be any Mobius transformation in G. We will show that 4 is
loxodromic. Assume that 4 is parabolic. Then the fixed point x of 4 sat-
isfies that (h")'(x) =1 for each positive integer n and x e J(G) but this is a
contradiction. Assume that 4 is elliptic. We can assume that A(z) = e?z for
some 6 € R and CnJ(G) # 0. There is a sequence (n;) of positive integers such
that for ye CnJ(G), h(y) —»y and (h”)(y) —» 1 as j—oo but this is a
contradiction. a

DeFNITION 2.9. Let G = {(f1,/2,.-.,fay be a finitely generated rational
semigroup. We say that G is expanding if the assumption of Theorem 2.8 holds.

THEOREM 2.10. Let G =<{f1,/2,...,fny be a finitely generated hyperbolic
rational semigroup satisfying the strong open set condition. Then m(J(G)) =0,
where we denote by m the Lebesgue measure on C.

Proof. We can assume that oo belongs to F(G). From Theorem 2.6,
Lemma 1.5.1 and the remark stated after Theorem 2.8, we can also assume that
there is a number A > 1 such that for each k

inf{|(2)| |z € (J(@)} > 4.

From Theorem 2.3, J(G) has no interior points. We fix a small positive number
e. Then there is a number 1 > > 0 such that for each { € J(G)

m(D({,&) 0 F(G))
m(D((,¢))

where we denote by D({,¢) the ¢ disc about {. We fix any point zy in J(G).
From Lemma 1.4.2, for each integer j there is a unique element g; € G of word
length j such that g;(zo) belongs to J(G). We denote by D; the component of
gj‘l(D(gj(zo),s)) containing zy. From the Koebe theorem, there are positive

>,
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numbers ¢y, c1, ¢ such that for every j
(1) D(zo, colgj(20)| ") = Dj = D(z0, c1lgj(z0)| ")
2) inf{|(g;")'(2)| |z € D(gj(20),2)}

sup{I(g; ) 1z € D(g;(z0),0)} ~

where we take a branch of gj so that it maps D(gj(z0),&) onto D;. Now for
each j,

9;(D; nJ(G)) = D(g;(z0),8) nJ(G),
g;(D; 0 F(G)) = D(g;(z0),€) N F(G),
from Lemma 1.4.2 and because of the strong open set condition. So for each j
m(Dj r\F(G)) _ J‘D(gl(zo ),e)nF(G) ’(gj 1) (Z)lzd"l
m(D;) Do 167 @Fdm
So from (1) for each j
m(D(zo, c1]g}(20)| ") N F(G))
m(D(zo, colg}(20)|"))

> 2.

> 2.

Also we have
m(D(z0, c1]g}(20)| ") " F(G)) _m(D(zo,c1|gj(z0)|™") 0 F(G)) (61)2
m(D(zo, colgj(z0)| ")) m(D(zo, c1|g}(z0)|™")) co
Now |g}(z0)| — o0 as j tends to infinity and so zo is not the Lebesgue point of

J(G). So each point z € J(G) is not the Lebesgue point of J(G) and m(J(G)) is
equal to zero. O

3. oJ-conformal measure

We construct J-conformal measures on Julia sets of rational semigroups.
J-conformal measures on Julia sets of rational functions were introduced in
[Sul]. See also [MTU].

DermiTioN 3.1, Let G= {fi,/2,.-.,f»» be a finitely generated rational
semigroup satisfying the strong open set condition and let § be a non-negative
number. We say that a probability measure x on C is 5-conforma1 if for each
j=1,...,n and for each measurable set 4 included in f~ 1(J(G)) where f; is
mjectxve on A,

u(fj(4)) = L 1@ d,

where ||-|| denotes the norm of the derivative with respect to the spherical
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metric. And we set

6(G) = inf{J | there is a J-conformal measure on J(G)}.

THEOREM 3.2. Let G ={fi,/2,...,[ny be a finitely generated rational semi-
group satisfying the strong open set condition. We assume that when n is equal to
one the degree of fi is at least two. Then there are a number 0 <3 <2 and a
probability measure u whose support is equal to J(G) such that u is d-conformal.
Also 6(G) > 0.

We will show the statement in the same way as [Sul] or [MTU]. We need
the following lemma.

LeEMMA 3.3.  Under the same assumption in Theorem 3.2, let O be an open set
in Definition 2.2. Then there exists an open set .U whose closure is included in
O N F(G) such that for each open neighborhood W of J(G) there is a positive
integer m satisfying

(3) U g (U)cw.

g€ G:word length >m

Proof. Let V be an open set whose closure is included in O N F(G). First
we consider the case such that for each z e F(G), the G-orbit of z does not
accumulate at any point of . If there are a sequence (x) converging to a point
y € F(G) and a sequence (gx) of G such that for each k, gx(xx) € V and the word
length of g, tends to infinity as m — oo, then the sequence (gi(y)) accumulates in
V because (gx) is normal in a neighborhood of y. This is a contradiction.
Putting U =V, we have (3).

Now let V1,..., Vi be all connected components of F(G) each of which has
a non-empty intersection with O°. For each j we take the hyperbolic metric in
V.. We set

H={geG|lg('in0)n ("1 nO)#0p}.

If H is empty, take U in 73 n O so small that whose closure is included in
Vi n 0. For each z € F(G), the G-orbit of z does not accumulate at any point
of U, so by the previous argument, (3) holds. Hence we can assume that H
is non-empty. We have for each j, fj(O°) = O°. Therefore for each he H,
h(V1n0°) =« V1 nO°. If 1 is included in a Siegel disc or a Hermann ring of an
element of g € G, then g(V1n 0) = V1 n 0. We can assume the word length of
g is less than that of any other element of G which has a Siegel disc or a
Hermann ring containing V;. We represent g as

) =ﬁk o ﬂl
Take small open set U in B =g~!(Vi n 0)\(V1 n 0). Note that because of the

backward self-similarity of J(G) and the strong open set condition, for each open
set D in O N F(G) and each element he G, h™!(D) =« On F(G) and so B On



20 HIROKI SUMI

F(G). We have for each z € B,
G(z)nO={f, - fig'(2)|0 < s < k,t > 0}\{z}.

Hence G(z) n O does not accumulate at any point of U and it follows that for
each y € F(G), G(y) does not accumulate at any point of U. Therefore (3) holds.

So we can assume that each 4 € H has a (super)attracting basin containing
V1, here note that A(¥; 1 O°) = V1 n O°. Let K be the compact e-neighborhood
of O¢ in UJ";1 ¥, with respect to the hyperbolic metric. Foreachj=1,...,n and
i=1,...,m we set

@i = sup{|| [/ (2)ll1ze Kn V},

where ||-|| is the norm of the derivative measured from the hyperbolic metric on
¥, to that on some ¥, which contains f;(¥;). We denote by dy(-,-) the distance
on ¥ induced by the hyperbolic metric. Then for each e H and for each
zeKnVin O, dg(h(z), Vi n 0% /du(z, Vi n O°) is less than

sup{a;i|j=1,...,n, i=1,...,m, a; #1} < 1.

Since h(O°) = O° for each he H, if we take U small enough in Knno,
then for each y € F(G), G(y) does not accumulate at any point of U and so (3)
holds. O

Proof of Theorem 3.2. Let O be the open set in Definition 2.2. Let U be
the open set in Lemma 3.3. We can assume that U is a simply connected
domain in O\(P(G)uJ(G)). Now we have

4) ) jU IS'(2)|[2dm < <o,

S

where S is taken over all holomorphic inverse branches of all elements of G
defined on U, ||| denotes the norm of the derivative with respect to the spherical
metric and m is the Lebesgue measure. For, assume that there are sequences
(mi)r and (I)x of integers with my — co such that for each k there is an element
gme+1, € G of word length my + [, and g, € G of word length /; so that

I, (U) 0 G (U) # 0.

Then because of the strong open set condition for each k there is an element
hy, € G of word length my such that

Unhy(U) #0.

But this is a contradiction by (3) and so (4) holds.
Now for each xe U we set

Ix)=U U g~ (x)

m geG: word length m
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and
d(y) =g,
for yeg~!(x). By (4) for almost everywhere x € U
(5) > d(y)? <o
yel(x)

We fix a point x € U such that (5) holds. And we set

5= inf{s > dyy <oo}.

yel(x)
For each j there is a positive number C; such that | f/(z)|| < G in a neigh-
borhood of £;7!(J(G)) and the set

U '

g€ G: word length m
has (37 deg(f;))™ points so ¢ > 0.
Now we consider the case ¢ d( y)? =o0. For each number s >3 we

denote by u, the probability measure on C such that for each y e I(x)

___aur
ﬂs({y}) - Zwel(x) d(W)"' .

Let u be a weak limit of u, when s\, Jd. Then the support of x is included in
J(G) because Y, ) d(y)° =co. Let { be a point of £,~'(J(G)). Also let V' be
a neighborhood of { in f~!(0) and assume that f; is injective on V. Then f; is

a bijection from I(x) N V to I(x)nfi(V). Weset A=|f/({)]. Lete>0bea
small number. We take V smaller such that for each ze V

M1 =) < I @) < A1 +e).

Then
Fu(V)(1 = &) < pu(f(V)) < Xug(V)(1 +¢)°.
Let s \,J and we get

Puv)(1 —ef < u(f(V) < Pu(V)(1+ ).

If f/({) =0, we can show that u(f;({)) =0. It follows that x is a d-conformal
measure on J(G).

Next we consider the case 3_, ¢y, d( y)? <oo. We take Patterson’s function
hie. his a continuous and non-decreasing function from R* to R* and satisfies
that

LY erx h(d(y)~")d(y)* converges for each s >J and does not converge
for each s < 6>
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2. for each ¢ there is a number ry such that h(rt) < #h(r) for each r > ry and
t>1.
For more detail about Patterson’s function, see [P]. We set

= 1 » )
& Zyel(x) h(d(y)_l) d(y)sy;(x) h(d(y) ) d(y) 5y7

where we denote by J, the dirac measure which is concentrated on {y}. Letting
s\,0 we get a J-conformal measure on J(G) in the same way as the case
Eyel(x) d(y)é = o0.

We will show that support of u is equal to J(G). By the construction, the
support of u is included in J(G). Now assume that there are a point { € J(G)
and a positive number a such that y(D({,a)) =0. By Lemma 1.5, there exists
an element g € G such that g(D({,a)) o J(G). Since u is a conformal measure, it
follows that u(J(G)) = 0 and this is a contradiction. Therefore the support of u
is equal to J(G).

We now consider 6(G). There is a J(G) conformal measure u on J(G).
Assume that 6(G) is equal to zero. If there exists a point x € f~!(J(G)) such
that u({x}) > 0, then u({fj(x)}) = u({x}). Since backward orbit of any point of
J(G) has infinitely many points and u is a probability measure, it is a contradic-
tion. Hence u is non-atomic. For each measurable set 4 included in J(G) we
set

(4) = u( U f,“(A)>-

Then 7 is a probability measure on J(G). But if 4 is a measurable set in J(G)
such that for each j all branches of j;‘l are well defined on A then

o(4) = (ideg(f;))uux
=1

and this is a contradiction, since J(G) is a disjoint union of some finitely many
points and some sets on each of which for each j all branches of j;“‘ are well
defined. . Od

THeOREM 3.4. Let G={fi,f2,--.,/ny be a finitely generated hyperbolic
rational semigroup satisfying the strong open set condition. We assume that when
n is equal to one the degree of fi is at least two. Let 6 be a number satisfying
that 0 < J < 2 and assume that there is a 5-conformal measure u on J(G). Then
0 =0(G) and

dimp (J(G)) =d(G), 0 < Hyg)(/(G)) <o,

where dimpy is the Hausdorff dimension and H, is the o-Hausdorff measure.

By Theorem 2.10, Theorem 3.2 and Theorem 3.4, we get the next result.
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COROLLARY 3.5. Let G={f1,/2,...,/n) be a finitely generated hyperbolic
rational semigroup satisfying the strong open set condition. We assume that when
n is equal to one the degree of f; is at least two. Then

0 < dimg (J(G)) < 2.
And if we set a = dim(J(G)), then
0 < H,(J(G)) < co.

COROLLARY 3.6. Let G={fi,/s,--.,[ny be a finitely generated hyperbolic
rational semigroup. We assume that when n is equal to one the degree of fi is at

.....

0 < dimg(J(G)) < 2.
And if we set o = dim(J(G)), then
0 < H,(J(G)) < o0.
Proof of Corollary 3.6. By Lemma 1.5.1 and Theorem 2.6, we can assume
that

inf  inf '(2)|| > 1,
af it 5@
where we denote by ||| the norm of the derivative with respect to the spherical

metric. Then it is easy to see that G satisfies the strong open set condition.
Now the statement follows from Corollary 3.5. O

Proof of Theorem 3.4. To prove our theorem it is sufficient to show that if
for a number J satisfying 0 < J < 2 there is a d-conformal measure z on J(G),
then 0 < Hs5(J(G)) <o. We set
A=inf inf "(2)]-
N AC]
By Lemma 1.5.1 and Theorem 2.6 we can assume that A > 1 by replacing G by a
subsemigroup I, of G. As G is hyperbolic, there is a number r > 0 such that for
each { € J(G) and for each g € G we can take well defined branches of g~! on
D(¢,r) where D({,r) is the r disc about {. Also we can assume that for each j
and for each { € J(G) the map f; is injective on D({,r). We set

% = {S|a branch of g~! on D({,7),g € G}.

By the Koebe theorem, there is a positive number ¢y such that for each { € J(G)
and for each Se ¥,

sup{[IS'@)ll1z€ D(¢,3)} < o inf{ ISz D(,7)}-

We fix a point zp € J(G). For each positive integer n there is a unique element
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gn € G of word length n such that g,(zo) € J(G) because of Lemma 1.4.2 and the
strong open set condition. We take a branch S, of g,! such that S,(ga(z0)) =
z9p. By the Koebe theorem there are a positive constant «, f such that if we set

ry = IS Gl

o
for each n where z, = gn(20), then

D(Zo,r,,) < S,,(D(z,,,r)),

D(zg,ry) 2 S, (D (z,,,/%)).

Also we have r, — 0 as n — oo. Since the support of u is equal to J(G), for
each small number a > 0 there is a number M(a) > 0 such that for each { € J(G)

u(D(¢,a)) > M(a).
From above and since u is § conformal we get

(Do) > 7S @I (D (2 7)

g
= () ()

#(D(z0,2)) < €§1(Sn) (zn) P(D(zn, 7))

-5
r
< Cg (&) r,‘f.

So there is a number ¢; > 1 such that for each »

H(D(z0,1n))

Cl_l < 75 <.
n

We can take c¢; independent of zp € J(G). We set

max, max,  .-1y.)) [l £/ (2)|l
> i

=
There is a number » such that

¢l < ¥ < corm,
for all ' with # <r;. Then for each r’ such that ' < r;

#(D(z0,1n)) = €718 = (1)) ('),

w(D(z0,1m)) < €178 < c1c§(r')°.
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So if we set ¢ = ci¢d, for any small r/
Y'Y < w(D(z0,7")) < c(r')’.
Now the statement of our theorem follows immediately. O
In [DU], M. Denker and M. Urbanski gave a conjecture that for any

rational map f, dimyg(J({f))) =d6({f>). Similary we give the following
conjecture.

CoNJECTURE 3.7. Let G={fi,/2,-..,/ny be a finitely generated rational
semigroup satisfying the strong open set condition. We assume that when n is
equal to one the degree of f is at least two. Then

dimg (J(G)) = 4(G).
4. o-subconformal measure

DerFINITION 4.1. Let G be a rational semigroup and 6 be a non-negative
number. We say that a probability measure u on C is 5-subconformal if for each
g € G and for each measurable set A,

uo) < [ 1)1 du
For each x € C and each real number s we set
SEx) =Y Y gy
geGg(y)=x
counting multiplicities and
S(x) = inf{s| S(s, x) < o0}.
If there is not s such that S(s,x) < oo, then we set S(x) =o0. Also we set
50(G) = inf{S(x)}, s(G)=inf{d|3u : o-subconformal measure}.
By using the same method of the proof of Theorem 3.2, we can show the

following result.

THEOREM 4.2. Let G be a rational semigroup which has at most countably
many elements. If there exists a point x € C such that S(x) < co then there is a
S(x)-subconformal measure.

PrOPOSITION 4.3. Let G be a rational semigroup and t a J-subconformal
measure for G where 0 is a real number. Assume that §J(G) > 3 and for each
x € E(G) there exists an element g € G such that g(x) = x and |¢'(x)| < 1. Then
the support of t contains J(G).
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Proof. Assume that there are a point { € J(G) and a positive number a such
that 7(D({,a)) =0. By Lemma 1.5, for each neighborhood U of E(G) there
exists an element 4 € G such that A(D({,a)) > C\U. Since 7 is a subconformal
measure, it follows that 7(C\E(G)) =0. From the assumption of our theorem,
we have 7(E(G)) =0 and so 7(C) =0 but this is a contradiction. O

THEOREM 4.4. Let G=<{f1,f2,...,/n) be a finitely generated rational
semigroup. Assume that G is expanding. Then so(G) < oo and

dimy(J(G)) < s(G) < 50(G)-

Proof. Because G is expanding, it is easy to see that so(G) <oco. We will
show the statement in the same way as the proof of Theorem 3.4. Since we have
only to consider the case that §J(G) > 3, we assume that. We set 6 = s(G). Let
1 be a J-subconformal measure.

First we will show that the support of x contains J(G). To show that, from
Proposition 4.3, we have only to show that for each x € E(G) there exists an
element g € G such that g(x) = x and |¢'(x)| < 1. If there exists an element of G
with the degree at least two, then it is easy to show that. Now consider the case
such that each element of G is of degree one. Since G is expanding, the order of
each element of G is infinite. From Lemma 1.5, §£(G) < 2.. Let x be any point
of E(G). Let gi,...,9,» be all elements of G each of which is in the form
faof,. Then for each j=1,...,n% gj(x)=x. Assume that for each j=
1,...,n% |gj(x)| = 1. Since G is expanding, for each j=1,...,n?, |gj(x)| > L.
With this fact, from Lemma 1.5.5, x is an isolated point of J(G). On the other
hand, from Lemma 1.5.2, J(G) is a perfect set and this is a contradiction. So
there is a number j such that |gi(x)| < 1. Hence the support of u contains J(G).

Next let zp € J(G) be any point. Because of the backward self-similarity of
J(G), we have for each positive integer m, there is an element g,, € G which is a
product of m generators such that g,(zo) € J(G). As in the proof of Theorem
3.4, with the fact that the support of u contains J(G), we can show that there is a
sequence (r,) of positive numbers converging to zero as m — oo such that for
each m,

/‘(D(ZO, rm))

c<
= 5
rm

b

where ¢ is a positive constant independent of zp € J(G) and m. Hence the
statement of our theorem follows. 0O

THEOREM 4.5. Let G=<{fi,f2,.-.,/fny be a finitely generated rational
semigroup which is expanding. Let A be the number in the assumption of Theorem
2.8. Then

log (%, deg(1))



HAUSDORFF DIMENSION OF JULIA SETS 27

Proof. By replacing G by a subsemigroup I, of G, we can assume that for
each j and z e f7'(J(G))

15 @Il = 4,
where ||| denotes the norm of the derivative with respect to the spherical
metric. We take a point x € J(G). Now for each m the set

U  g'{x

g€ G: word length m

has at most (3_;(deg(f;)))™ points. Also for each z € J(G) and for each m, if
g€ G is word length m and ¢(z) € J(G), then

lg' @)l = 4™
So for each number s such that s > log(}, deg(f;))/log4 we have

Z Z “gl(y)ll_s < i(z deg(f]‘.)) Ams

geGg(y)=x m=0

-\ (o logd
_.r;)exp{mlog(z]:deg(f])) (1 slog(zj deg(f,-)))} < 00.

From the way of construction of d-subconformal measure and Theorem 4.4, the
statement of Theorem 4.5 follows. O

Remark 5. In the sequel [SS], we will show (6) by using a method of the
thermodynamic formalism.

EXAMPLE 4.6. Let n be a positive integer such that n>4. We set G=
(z"n(z—4)+4). Then G is a finitely generated hyperbolic rational semigroup
satisfying the strong open set condition. For, let f(z) =z", g(z) =n(z—4)+4
and U = {|z| < 5}. Then the closures of f~'(U) and g~'(U) are included in
U and mutually disjoint. Hence J(G) c U and G satisfies the strong open set
condition. Since |g(0)| > 5, G is hyperbolic. By Theorem 4.5, we get

log(n+ 1)

< dimy J(6) < = s
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