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L2 HARMONIC FORMS ON A COMPLETE STABLE HYPERSURFACES

WITH CONSTANT MEAN CURVATURE*

HAIZHONG LI

Abstract

We show that an ^-dimensional (2 < n < 5) complete noncompact strongly stable
hypersurface M with constant mean curvature in an (n + 1)-dimensional manifold M of
nonnegative bi-Ricci curvature admits no nontrivial L2 harmonic 1-forms.

1. Introduction

Let M be an («+ 1) -dimensional orientable Riemannian manifold and
let x: M —• M be an immersion with constant mean curvature H of an n-
dimensional differentiable manifold M into M. We recall that x is strongly
stable if (see [1], [2], [6])

(1.1) /(/)= f {|V/|2-(M|2 + RkW)/2}JM>0
JM

for all / : M —• R with compact support, where V/ is the gradient of / and \A\2

is the squared norm of the second fundamental form of x9 and Ric(«) is the Ricci
curvature of M in the unit normal direction n. We recall x is weakly stable (c.f.
p. 127 of [2]) if (1.1) is true for all / with compact support that satisfies

(1.2) [ fdλf = 0.
JM

In [3], do Carmo and Peng proved that if M is a strongly stable complete
minimal hypersurface of an (n+ 1)-dimensional Euclidean space JRΠ+1 with finite
absolute curvature, then M is a hyperplane. In [1] and [2], Barbosa, do Carmo
and Eschenburg proved that round spheres are the only compact hypersurfaces
with constant mean curvature in Rn+1 that are weakly stable. Mori [8] and da
Silveira [4] considered the complete and noncompact surfaces with constant mean
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curvature in R3. Mori proved that if M is a strongly stable noncompact surface
with constant mean curvature in R3, then M is a plane. Da Silveira proved the
same assertion under the assumption of weakly stable condition. But very little
is known about the stability of complete and noncompact hypersurfaces M with
constant mean curvature H Φ 0 for the higher dimension.

In [11], Tanno proved the following result

THEOREM 1 (see Theorem B of [11]). Let M be a complete noncompact
orientable minimal hypersurface in a Riemannian manifold of nonnegative bi-Ricci
curvature. If M is stable, then there are no nontrivial L2 harmonic l-forms on M.

This is a generalization of Palmer's result (when M = Rn+ι) and Miyaoka's
result [7] (when M is of nonnegative sectional curvature).

When H = 0, we easily see that strongly stable reduces to stable of minimal
hypersurface. In this paper, we generalize Theorem 1 to hypersurfaces with
constant mean curvature, in fact, we obtain

THEOREM 2. Let M be an n-dimensional (2 < n < 5) complete and non-
compact orientable hypersurface with constant mean curvature H in a Riemannian
manifold of nonnegative bi-Ricci curvature. If M is strongly stable, then there are
no nontrivial I? harmonic l-forms on M.

2. Preliminaries

We first recall the following definition

DEFINITION 1 ([10]). Let M be an (n + l)-dimensional Riemannian mani-
fold, and u, v be orthonormal tangent vectors. We set

b-Ric(w, v) = RIC(M) 4- R i φ ) - K(u, v),

and call it the bi-Ricci curvature in the directions u,υ. Here K denotes the
sectional curvature of the plane spanned by u, v.

From Definition 1, it is clear that the nonnegativity of the sectional_ cur-
vature of M implies the nonnegativity of the bi-Ricci curvature of M. If
« f l = 2 o r n + l = 3 , then b-Ric(«, υ) = S/2, where S is the scalar curvature
of M.

Remark 2.1. It is clear that Pi nonnegativity of the sectional curvature of
M in [11] is equivalent to the nonnegativity of the bi-Ricci curvature of M (in
[10]).

Now let ω be an L2 harmonic /?-form on a complete orientable Riemannian
manifold M = (M,g). It is known that ω is closed and coclosed (see [5]). The
Riemannian curvature tensor, the Ricci curvature tensor and the Riemannian
connection are denoted by Rjkl, Rβ and V. The expression of Δω is given by (c.f.
[12])
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p \ p

Δω = Aωiv..lp = Wrωiv..lp -Y^Rls

rωh...r...lp + Y^Rvu

lthωiv..v...u...lp
5=1 t<S

= 0.

Putting \\co\\2 = J2ωh-ιP

ωh'"lp and ||Vω||2 = Σ Vrωh...lpVωlv"ιp, we obtain

(2.1) iΔ | |ω | | 2 = ||Vω||2

= \\Vωf

= HVω||2

On the other hand, we have

where

(2.3) F(ω) = | |Vω | |2-| |V| |ω| | | |2,

and Kato's inequality implies

(2.4) F(ω) > 0.

By (2.1) and (2.2), we get

(2.5) | |ω| |Δ| |ω | | = J

3. Hypersurfaces with constant mean curvature H

Let M be an ^-dimensional orientable hypersurface with constant mean
curvature H in an (n + 1)-dimensional Riemannian manifold M. Let n be a unit
normal vector field on M and let A be the shape operator with respect to n. We
assume that M admits a nontrivial L? harmonic /?-form ω. After Palmer [9] we
use the following cut off function h. Let p be a point of M. By -BΓ(/?) we
denote the geodesic r-ball centered at p (r-neighborhood of p in M). h is a
smooth function such that 0 < h < 1 and

(i) h = 1 on Br/2(p) and Λ = 0 outside 5r(/?)5

(ii) ||VA||2 < c/r% where c is a constant.
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Let f = h\\ω\\ in (1.1), we have

(3.1) /(*).= - f A2(||ω||Δ||ω|| + Mil | |ω| | 2 + Rfc(ιι)|M|2) + f ||Vλ||2||ω||2.
JM JM

By (2.5), we get

(3.2)

f ||VA||2N|2.
JM

Now let {e\,...,en,en+\ = n} be a local orthonormal frame along Λf. Then
we have the following Gauss equations

(3.3) Ryki = AfcAji - AuAjk +

(3.4) Rβ = nHAβ -
n

= nHAβ - 22 AjkAki + Rβ - K{en+\, /̂? ^«+i, ^/),
k

where i/ = (tr^4)/« is the mean curvature of M in M.
Putting (3.3) and (3.4) into (3.2), we obtain

(3.5) I{h) = - [ h2inpHΣAijω'i^ω*2'1* -pΣAikAkjω
ι

lr..lpω
jh~ιp

[ l|VA||2||
JM

= - ί h2 \npHΣ Aijω'^ω*-1' - p
J M L

ft>||2

||VA||2HI2,
M
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where

(3.6) Q(ω) = p Σ Rkikjωι

l2

+ Riφ)| |ω| | 2.

4. I? harmonic 1-forms

Let M be a complete orientable hypersurface in M. We assume that M
admits a non-trivial I? harmonic 1-form ω and let ω* denote the vector field dual
to ω with respect to the Riemannian metric. Choosing p = 1, in (3.5), we have

Z,2ΓΓ»/,.Λ*\ i EV,.Λ I ntr.Λλ i I llY7J.I|2|i,.j|2(4.1) I{h) = - h2[D(ω*) + F(ω) + Q(ω)] + || VA||2 ||ω|Γ,
JM JM

where

(4.2) D(ω*) = nHA(ω*,ω*) - (Aω*,Aω*} 4- M|| 2 | |ω| | 2,

(4.3) Q{ω) = ΣkR(ek,ω*,ekiω*) + RiE(^+ 1,^+ 1) | |ω*| | 2

= Ric(ω*,ω*) + Ric(en+ι,en+ι)\\ω*\\2 -K(en+ι,ω*,en+uω*),

where ei,...,en are local orthonormal basis and en+\ —n. Let Aei = λieh i.e.,
A(ei,ej) = A Ay, ω* = Y^aiβi, then

nH = λ\ H h/Lw, ^4(ω*,ω*) =

We first prove the following lemma

LEMMA 4.1. For any tangent vector field v = Σfiiei on M, we have

(4.4)

> 0, when 2<n<,5.

Proof. For 1 < i < n, we let

F, = (λι + - + λn)b% -b2λ2 + (λ2 + • • • + λ2

n)b2

When n = 2, Ft = l/2[(Jli + λ2f + λ\ + λ2

2]b2 > 0.
When ιι = 3, F, = 1 /2[(A, + λ2)

2 + (λi + λ3)
2 + λ\ + λ\]b\ > 0, similarly,

Fi >: 0, i = 2,3.
When n = 4, Fx - P i / 2 + λ2)

2 + (λi/2 + A3)
2 + (Ai/2 + hf + λ\/4]b\ > 0,

similarly, Fι > 0, i = 2,3,4.



6 HAIZHONG LI

When n = 5, Fι = [(Ai/2 + A2)
2 + (Ai/2 + A3)2 + {1^2 +λ4)

2 + {λx/2 +λ5f]b\
> 0, similarly, Ft > 0, 1 > 2. Thus, the left hand side of (4.4) = Σi Fi ^ ° •

Remark 4.1. Note that, if n — 6, for example, Λi = — 1,Λ2 = = >U = 1/2,
Z>! φ 0,62 = = b6 = 0. In this case, F\ = -ftf/4 < 0,F2 = = F6 = 0, thus
the left hand side of (4.4) is negative. We see that the condition n < 5 in Lemma
4.1 is essential.

5. The proof of Theorem 2

Let M be an (w-f 1)-dimensional Riemannian manifold of nonnegative bi-
Ricci curvature. Then by (4.3)

(5.1) Q(ω) =Rk(ω*,ω*) +Rύ(en+uen+ι)\\ω*\\2 - K(en+hω*,en+uω*)

= [Ric(e,e) + Ric(en+uen+ι) - K(en+ue,en+he)]\\ω*\\2

where e = ω*/||ω*|| is the unit tangent vector field on M. Now we assume that
M is an n-dimensional noncompact complete strongly stable hypersurface with
constant mean curvature H in M, and that there is a nontrivial L2 harmonic 1-
form ω on M. So we have by (4.1), (1.1) and the definition of function h

(5.2) 0 </(/>) = - [ h2[D(ω*) + F(ω) + Q(ω)}+\ \\Vh\\2\\ω\\2

JM JM

< - f [D(ωη + F(ω) + Q(ω)} + ± f ||ω*||2.
JBr/2(P) r ) M

Letting r—> 00, in view of (2.4), Lemma 4.1 and (5.1), we have Q(co) =
F(ω)=D(ω*) = 0. The equality F(ω) = 0 implies 2|jω||2V, ω7 = (V/||ω||2)ωy.
So δω = 0 implies ω'V/HωH2 = 0. Furthermore, dω = 0 implies ||ω|| is constant
and ω* is parallel. Thus Ric(ω*,ω*) = 0, and we have by (3.4)

(5.3) nHA(ω\ω*) - (Aω*,Aω*y + Έe(ω*,ω*)-K(en+uω*,en+uω*) = 0.

By (4.2), D(ω*) = 0 reduces to

(5.4) nHA(ω\ω*) - <Aω*,Aω*} + | |Λ||2 | |ω||2 = 0.

By (4.3), Q(ω) = 0 becomes

(5.5) R ί φ Λ ω * ) + Rϊφ n + 1 ,e π + i ) | |ω* | | 2 - K(en+Uω\en+Uω*) = 0.

Combining (5.3), (5.4) with (5.5), we have

(5.6) M I l W + Ri3(C n + 1,en + 1)| |ω||2 = 0.
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Let u be an arbitrary unit_tangent vector field to M. From the nonnegativity
of the bi-Ricci curvature of M, for an orthonormal pair {w,ew+i}, we have

(5.7) Ric(w, u) + Ric(eΛ+i, en+\) - K(u, en+ί, w, en+λ) > 0.

By Gauss equation (3.4), we get from (5.6) and (5.7)

(5.8) Ric(w,w) = Rίc(w,w) - K(u,en+\,u,en+x) + nHA(u,u) - {Au.Au}

> - Ric(ew+i, en+\) + nHA(u, ύ) - (Au, Au)

= \\A | | 2 + nHA(u,u)-(Au,Au}.

By use of Lemma 4.1, we can conclude that

(5.9) Ric(M,w)>0.

Thus the Ricci curvature of M is nonnegative. Because M is complete and
noncompact, the volume of M is infinite ([13]). This contradicts that ω is an L2

harmonic 1-form and ||ω|| is constant. •

Remark 5.1. By Dodziuk's result [5] the existence of a nontrivial I?
harmonic 1 form follows from a topological condition that there exists a cycle of
codimension one in M which does not disconnect M (c.f. Palmer [9] or Tanno
[H])

6. I? harmonic 2-forms

In this section, we will prove the following result

THEOREM 6.1. Let M be an n-dimensional (2 < n < 4) complete noncompact
orientable hypersurface with constant mean curvature H in an («+ \)-dimensional
Euclidean space Rn+ι. If M is strongly stable and M admits a nontrivial L1

harmonic 2-form ω, then ω is parallel on M.

We first prove the following Lemma

LEMMA 6.1. Let A, B be nx n real matrices such that
(i) A is symmetric
(ii) B is skew-symmetric.
If2<n<4, then

μ | | 2 | | £ | | 2 + 2tτ(AB)2 + 2tτ{A2B2) - 2trA tτ(AB2) > 0.

Proof of Lemma 6.1. First we diagonalize A to the form (αAy) by an
orthonormal transformation. Let B = (by), then we have the following
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Miι2ιι*ιι2 = (Σ <t) f Σ *&)>
tτ(A2B2) = - Σ «?*&, -2tr(^) tr(Λ2?2) = 2

Therefore, we obtain

+ 2tr(AB)2 + 2tτ(A2B2) - 2\xA - tv(AB2)

= 2b\2[a\ + a\ + + a2

n- 2axa2 + (a{ + + an)(a{ + a2)}

When n = 2, (αi + α 2) 2 - 2αiα2 > 0. When n = 3,

4- (a\ +a2

= (α3/2 + «i)2 + (α3/2 + α2)
2 + «2/2 > 0.

When n = 4,

03+04 — 2ai«2 + (ΛI + #2 + 03 + «4)(^i + ^2)

( + ) 2 + ^ + ) 2 + ( + )2 + ( + ) 2 -°* D

Remark 6.1. When tr̂ 4 = 0, Lemma 6.1 reduces to Lemma 1 of Tanno
[11]. Just as in Tanno [11], the condition n < 4 in Lemma 6.1 is essential.

Proof of Theorem 6.1. We assume that a complete orientable hypersurface
M with constant mean curvature H in Rn+ι is strongly stable and M admits a
nontrivial L2 harmonic 2-form ω. Let p = 2 in (3.5), we have

(6.1) /(A) = - J h2

||VA||2H|2

M

[ f ||VA||2H|2,
JM JM

where
(6.2) Dι{ω) = -

where A = (>4f/) and B =
Lemma 6.1 implies that D\(ω)>0 holds on M. Then (6.1) and the

definition of function h imply the following

(6.3) 0 < I(h) < - \ [Dx(ω) + F(ω)} + (c/r2) [
JBr/2(p) J

[ ) ()} ( / ) [
Br/2(p) JM
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Letting r -> oo, F(ω) = Dχ(ώ) = 0. The equality F(ω) = 0 implies (c.f. [11])

(6.4) 2\\ω\\2Vkωij = (V*||ω||2)ω//

We consider (6.4) on an open set where ω φ 0. δω = 0 implies that
ω*yVjfc||ω||2 = 0 holds. Furthermore, dω = 0 is equivalent to

+ V/Ctyfc + V/Cΰfc = 0.

By (6.4) and the last equality multiplied by ω#, we get Vfc||ω||2 = 0, and hence
||ω| | is constant. By (6.4), we conclude that ω is parallel. •
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