Z.-R. ZHOU KODAI MATH. J. 20 (1997), 233-240

EIGENVALUE INEQUALITIES AND MINIMAL SUBMANIFOLDS

ZHEN-RONG ZHOU

Abstract

Let (S^m, g_0) be the unit sphere, (M^n, g) its submanifold, λ_1 the first nonzero eigenvalue of (M^n, g) , H the mean curvature vector field of M^n . By Takahashi theorem, if M^n is minimal, then $\lambda_1 \leq n$. In this paper, we establish some eigenvalue inequalities and use them to prove:

1. If x is mass symmetric and of order $\{k, k+1\}$ for some k such that $\lambda_k \ge n$ or $\lambda_{k+1} \le n$, then φ is minimal and $\lambda_k = n$ or $\lambda_{k+1} = n$.

2. If H is parallel, $\int_{M} H dv_{M} = 0$ and $\sigma^{2} \leq \lambda_{1}$, then H = 0 or $\sigma^{2} = \lambda_{1}$.

3. If H is parallel and $\lambda_k = n$ for some k, then H=0 or $\sigma^2(x) \ge \lambda_{k+1} - \lambda_k$ for some $x \in M^n$.

4.
$$\lambda_1 \leq \frac{nV^2}{V^2 - \left(\int_M H dv_M\right)^2}$$
. Especially, if $\int_M H dv_M = 0$, then $\lambda_1 \leq n$, and that

 $\lambda_1 = n$ implies that φ is minimal.

1. Introduction

Let M^n be a compact *n*-dimensional Riemannian manifold, Δ_M the Laplace-Beltrami operator on M^n . Then $-\Delta_M$ has the discrete spectrum:

$$\operatorname{spec}(\Delta_{\mathcal{M}}) = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots \rightarrow \infty\}$$

Denote the unit hypersphere in the Euclidean space E^{m+1} by S^m . A. Ros in [2] imbedded S^m into the space of real symmetric matrices and obtained some eigenvalue inequalities for minimal submanifolds of S^m . In this paper, we consider more simple and more natural immersion $x: M^n \xrightarrow{\varphi} S^m \xrightarrow{i} E^{m+1}$, where φ is an isometric immersion, not necessarily minimal, *i* is the inclusion, and we also get some similar inequalities. Last, we use them to prove the following results:

Keywords. Immersion of k-type; order of an immersion; mean curvature vector (field); Weingarten transformation

Mathematical Subject Classifications (1991) 58G25

Received January 20, 1997; revised May 8, 1997.

1. If x is mass symmetric and of order $\{k, k+1\}$ for some k such that $\lambda_k \ge n$ or $\lambda_{k+1} \le n$, then φ is minimal and $\lambda_k = n$ or $\lambda_{k+1} = n$.

2. If H is parallel, $\int_{M} H dv_{M} = 0$ and $\sigma^{2} \leq \lambda_{1}$, then H = 0 or $\sigma^{2} = \lambda_{1}$.

3. If H is parallel and $\lambda_k = n$ for some k, then H=0 or $\sigma^2(x) \ge \lambda_{k+1} - \lambda_k$ for some $x \in M^n$.

4.
$$\lambda_1 \leq \frac{nV^2}{V^2 - \left(\int_M H dv_M\right)^2}$$
. Especially, if $\int_M H dv_M = 0$, then $\lambda_1 \leq n$, and that

 $\lambda_1 = n$ implies that φ is minimal.

Here and below, V is the volume of M^n , $H \in E^{m+1}$ the mean curvature vector field of M^n in S^m , λ_1 the first nonzero eigenvalue of Δ_M , σ the length of the second fundamental form of M^n in S^m ; equalities for vectors mean that components of both ends equate, and integrations of vectors stand for those of components.

2. Lemmas

Let $x=i \circ \varphi$ be as above and \langle , \rangle be the Euclidean inner product. From now on, we use Δ_M denote the Laplacian acting on functions over M^n as well as on vector fields of E^{m+1} which are restricted to M^n . In latter case, it acts on components. Then x has L^2 decomposition: $x=x_0+\sum_{u\geq 1}x_u$, where x_0 is a constant vector, $\Delta_M x_u = -\lambda_u x_u$; $\int_M \langle x_u, x_v \rangle dv_M = \begin{cases} 0 & u \neq v, \\ a_u (\geq 0) & u = v \end{cases}$ x_0 is called mass center of x. If x_0 is congrucent with the geometric center of S^m , we say that x is mass-symmetric. If $\exists u_i \geq 1, i=1, \ldots, k$, such that $x=x_0+\sum_{i=1}^k x_{u_i}$, then x is called of k-type and $\{u_1, \ldots, u_k\}$ is by definition the order of x. It is known that if φ is minimal, then φ is mass symmetric, of 1-type and its order is $\{k\}$ for some k by Takahashi theorem and Lemma 2.4 below. From the decomposition of x we have:

$$\Delta_{M} x = -\sum_{u \ge 0} \lambda_{u} x_{u} ; \ \Delta_{M}^{2} x = \sum_{u \ge 0} \lambda_{u}^{2} x_{u}.$$

Define :

$$\Psi_{k} = -\int_{M} \langle \Delta_{M} x, x \rangle dv_{M} - \lambda_{k} \int_{M} \langle x, x \rangle dv_{M}$$
$$\Theta_{k} = \int_{M} \langle \Delta_{M} x, \Delta_{M} x \rangle dv_{M} + \lambda_{k} \int \langle \Delta_{M} x, x \rangle dv_{M}$$
$$\Omega_{k} = -\int_{M} \langle \Delta_{M}^{2} x, \Delta_{M} x \rangle dv_{M} - \lambda_{k} \int_{M} \langle \Delta_{M} x, \Delta_{M} x \rangle dv_{M}$$

Then, we have

LEMMA 2.1. For any integer $k \ge 1$,

(i)
$$\Theta_k - \lambda_{k+1} \Psi_k = \sum_{u \ge 0} (\lambda_u - \lambda_k) (\lambda_u - \lambda_{k+1}) a_u \ge 0$$

and the equality holds iff x mass symmetric and is of order $\{k, k+1\}$;

(ii) $\mathcal{Q}_k - \lambda_{k+1} \Theta_k = \sum_{u \ge 0} \lambda_u (\lambda_u - \lambda_k) (\lambda_u - \lambda_{k+1}) a_u \ge 0$

and the equality holds iff x is of order $\{k, k+1\}$.

Remark. The two inequalities above holds for $k \ge 0$.

Let *H* be the mean curvature vector field of M^n . Then Takahashi theorem says that $\Delta_M x = nH - nx$. Hence $\Delta_M^2 x = n\Delta_M H - n^2 H + n^2 x$. Therefore,

$$\begin{split} \int_{M} \langle x, x \rangle dv_{M} = V ; & \int_{M} \langle \Delta_{M} x, x \rangle dv_{M} = -nV ; \\ & \int_{M} \langle \Delta_{M} x, \Delta_{M} x \rangle dv_{M} = n^{2} \int_{M} \langle H, H \rangle dv_{M} + n^{2}V ; \\ & \int_{M} \langle \Delta_{M}^{2} x, \Delta_{M} x \rangle dv_{M} = n^{2} \int_{M} \langle \Delta_{M} H, H \rangle dv_{M} - 2n^{3} \int_{M} \langle H, H \rangle dv_{M} - n^{3}V ; \\ & \Psi_{k} = (n - \lambda_{k})V ; \; \Theta_{k} = n^{2} \int_{M} \langle H, H \rangle dv_{M} + n(n - \lambda_{k})V ; \\ & \Omega_{k} = -n^{2} \int_{M} \langle \Delta_{M} H, H \rangle dv_{M} + n^{2}(2n - \lambda_{k}) \int_{M} \langle H, H \rangle dv_{M} + n^{2}(n - \lambda_{k})V . \end{split}$$

From these formulas, we have:

LEMMA 2.2. For any $k \ge 0$,

(i)
$$\Theta_k - \lambda_{k+1} \Psi_k = n^2 \int_M H^2 dv_M + (n - \lambda_k)(n - \lambda_{k+1}) V$$
,
(ii) $\Omega_k - \lambda_{k+1} \Theta_k = -n^2 \int_M \langle \Delta_M H, H \rangle dv_M + n^2 (2n - \lambda_k - \lambda_{k+1}) \int_M H^2 dv_M$

$$-n(n-\lambda_k)(n-\lambda_{k+1})V$$
.

Next, use ∇^{\perp} to denote the normal connection of φ , σ the length of the second fundamental form of φ . We have

Lemma 2.3.

$$-\int_{\mathcal{M}} \langle \Delta_{\mathcal{M}} H, H \rangle dv_{\mathcal{M}} \leq \int_{\mathcal{M}} \langle \nabla^{\perp} H, \nabla^{\perp} H \rangle dv_{\mathcal{M}} + \int_{\mathcal{M}} H^2 \sigma^2 dv_{\mathcal{M}}$$

where the equality holds whenever the codimension is one.

Proof. Without loss of generality, we let $M^n \subset S^m$, and $\varphi = i$, the inclusion. Let ∇ and $\overline{\nabla}$ be the Riemannian connections of M^n and S^m respectively. On M^n , we take a local field of orthonormal frame: e_1, \ldots, e_n . Then by Gauss and Weingarten formulas we get:

$$\frac{1}{2}\Delta_{\mathcal{M}}\langle H, H\rangle = \frac{1}{2}\sum_{j=1}^{n} \nabla_{e_j} \nabla_{e_j} \langle H, H\rangle = \frac{1}{2}\sum_{j=1}^{n} \nabla_{e_j} \langle \overline{\nabla}_{e_j} \langle H, H\rangle\rangle$$

$$= \sum_{j=1}^{n} \nabla_{e_j} \langle \overline{\nabla}_{e_j} H, H\rangle = \sum_{j=1}^{n} \nabla_{e_j} \langle \nabla_{e_j}^{\perp} H, H\rangle$$

$$= \sum_{j=1}^{n} \overline{\nabla}_{e_j} \langle \nabla_{e_j}^{\perp} H, H\rangle$$

$$= \sum_{j=1}^{n} \langle \overline{\nabla}_{e_j} (\nabla_{e_j}^{\perp} H), H\rangle + \langle \overline{\nabla}_{e_j}^{\perp} H, \overline{\nabla}_{e_j} H\rangle\rangle$$

$$= \sum_{j=1}^{n} \langle \nabla_{e_j}^{\perp} \nabla_{e_j}^{\perp} H, H\rangle + \sum_{j=1}^{n} \langle \nabla_{e_j}^{\perp} H, \nabla_{e_j}^{\perp} H\rangle$$

$$\triangleq \langle \Delta^{\perp} H, H\rangle + \langle \nabla^{\perp} H, \nabla^{\perp} H\rangle$$

Define $\Delta_M v = \sum_{j=1}^n (D_{e_j} D_{e_j} v - D_{\nabla_{e_j} e_j} v)$, where *D* is the flat connection of E^{m+1} , $v = v(x) \in E^{m+1}$, $n \in M^n$. It is easy to verify that Δ_M defined here is exactly the Laplacian acting on vectors by on their components which is defined at the begining of this section. We can choose $\{e_i, i=1, 2, ..., n\}$ such that $\nabla_{e_i} e_j = 0$. Hence we have

$$\begin{split} \Delta_{\mathcal{M}} H &= \sum_{j=1}^{n} D_{e_j} D_{e_j} H = \sum_{j=1}^{n} D_{e_j} (\overline{\nabla}_{e_j} H + \overline{B}(e_j, H)) \\ &= \sum_{j=1}^{n} D_{e_j} \overline{\nabla}_{e_j} H \quad \text{because } S^m \text{ is totally umbilical} \\ &= \sum_{j=1}^{n} \left[\overline{\nabla}_{e_j} \overline{\nabla}_{e_j} H + \overline{B}(e_j, \overline{\nabla}_{e_j} H) \right] \end{split}$$

where, \overline{B} and \overline{A} are the second fundamental form and Weingarten transformation of S^m respectively. In the following, we use B and A stand for corresponding quantities of M^n in S^m . Then

$$\begin{split} &\sum_{j=1}^{n} \overline{\nabla}_{e_j} (\overline{\nabla}_{e_j} H) = \sum_{j=1}^{n} \overline{\nabla}_{e_j} (-A_H e_j + \nabla_{e_j}^{\perp} H) \\ &= \sum_{j=1}^{n} - (\nabla_{e_j} (A_H e_j) + B(A_H e_j, e_j)) + \sum_{j=1}^{n} (-A_{\overline{\nabla}_{e_j}^{\perp} H} e_j + \nabla_{e_j}^{\perp} \overline{\nabla}_{e_j}^{\perp} H) \\ &= -\sum_{j=1}^{n} \left[\nabla_{e_j} (A_H e_j) + A_{\overline{\nabla}_{e_j}^{\perp} H} e_j \right] + \sum_{j=1}^{n} (-B(A_H e_j, e_j) + \nabla_{e_j}^{\perp} \overline{\nabla}_{e_j}^{\perp} H) \,. \end{split}$$

From the above calculations, we have

EIGENVALUE INEQUALITIES

$$\langle \Delta_{M}H, H \rangle = -\sum_{j=1}^{n} \langle B(A_{H}e_{j}, e_{j}), H \rangle + \langle \Delta^{\perp}H, H \rangle$$
$$= -\sum_{j=1}^{n} \langle A_{H}e_{j}, A_{H}e_{j} \rangle + \langle \Delta^{\perp}H, H \rangle$$
$$\triangleq -\langle A_{H}, A_{H} \rangle + \langle \Delta^{\perp}H, H \rangle$$

where $\Delta^{\perp} = \sum_{j=1}^{n} \nabla_{e_j}^{\perp} \nabla_{e_j}^{\perp}$. So $\langle \Delta^{\perp} H, H \rangle = \langle \Delta_M H, H \rangle + \langle A_H, A_H \rangle$. Hence we have $\frac{1}{2} \Delta_H \langle H, H \rangle = \langle \Delta_M H, H \rangle + \langle \nabla^{\perp} H, \nabla^{\perp} H \rangle + \langle A_H, A_H \rangle$.

Therefore,

$$-\int_{M} \langle \Delta_{M} H, H \rangle dv_{M} = \int_{M} \langle \nabla^{\perp} H, \nabla^{\perp} H \rangle dv_{M} + \int_{M} \langle A_{H}, A_{H} \rangle dv_{M} .$$

Take a local unit normal vector field e_{n+1} of M^n in TS^m such that e_{n+1} is parallel with H, i.e. $H = |H|e_{n+1}$. Then

$$\langle A_H, A_H \rangle = \sum_{j=1}^n \langle A_H e_j, A_H e_j \rangle = H^2 \sum_{j=1}^n \langle A_{n+1} e_j, A_{n+1} e_j \rangle$$
$$= H^2 ||A_{n+1}||^2 \leq H^2 \sigma^2$$

and equality holds if the codimension of M^n in S^m is one. Now, the proof of Lemma 2.3 is complete.

In next section, when we discuss the upper bound of λ_1 , we need the following two lemmas.

LEMMA 2.4.
$$M^n$$
 is mass symmetric iff $\int_M Hdv_M = 0$.

Proof. By Takahashi theorem and the L^2 decompositions of x and H, we have

$$\Delta x = n(H - x) = n(H_0 - x_0) + \sum_{u \ge 1} n(H_u - x_u).$$

Integrating both ends and noting that when $u \ge 1$, $\int_{M} H_u dv_M = \int_{M} x_u dv_M = 0$, we can obtain: $\int_{M} H_0 dv_M = \int_{M} x_0 dv_M$, i.e. $H_0 = x_0$. Hence $\int_{M} H dv_M = \int_{M} H_0 dv_M = \int_{M} x_0 dv_M = x_0 dv_M = x_0 dv_M$. Lemma 2.4 follows.

LEMMA 2.5.
$$\left(\int_{M} H dv_{M}\right)^{2} \leq V^{2}$$
, and the equality is true iff x is constant.
Proof. $\left(\int_{M} H dv_{M}\right)^{2} = \left(\int_{M} H_{0} dv_{M}\right)^{2} = \left(\int_{M} x_{0} dv_{M}\right)^{2} = \langle x_{0}, x_{0} \rangle V^{2}$
 $= \int_{M} \langle x_{0}, x_{0} \rangle dv_{M} \cdot V \leq \int_{M} \langle x, x \rangle dv_{M} \cdot V = V^{2}$,

and the equality holds iff $x = x_0$.

3. Eigenvalue inequalities and their corollaries

By Takahashi theorem, if φ is minimal, then φ is mass symmetric and of order $\{k\}$ for some k, and $\lambda_k = n$. The following theorem shows that the inverse is true.

THEOREM 3.1. If $i \circ \varphi$ is mass symmetric and of order $\{k, k+1\}$ for some k such that $\lambda_k \ge n$ or $\lambda_{k+1} \le n$, then φ is minimal (hence is of 1-type by Takahashi theorem) and $\lambda_k = n$ or $\lambda_{k+1} = n$.

Proof. By Lemmas 2.1-(i) and 2.2-(i) we have

$$n^{2} \int_{M} H^{2} dv_{M} + (n - \lambda_{k})(n - \lambda_{k+1}) V = 0$$

from which the result follows.

THEOREM 3.2. For any $k \ge 0$

$$n \int_{M} \langle \nabla^{\perp} H, \nabla^{\perp} H \rangle dv_{M} + n \int_{M} H^{2} (\sigma^{2} + 2n - \lambda_{k} - \lambda_{k+1}) dv_{M} + (n - \lambda_{k}) (n - \lambda_{k+1}) V \ge 0$$

where the equality for $k \ge 1$ implies that φ is of order $\{k, k+1\}$.

Proof. From Lemmas 2.1-(ii), 2.2-(ii) and 2.3 we can reach the inequality we need. The equality shows that $i \circ \varphi$ is of order $\{k, k+1\}$ by Lemma 2.1-(ii).

COROLLARY 3.1. Let φ have parallel mean curvature normal and $\lambda_k = n$ for some k. Then M^n is minimal or $\sigma^2(x) \ge \lambda_{k+1} - \lambda_k$ for some $x \in M^n$.

THEOREM 3.3. Let x_0 be the mass center of $x=i\circ\varphi$, then for any real number t, we have

$$(n-\lambda_1)(n-t)^2 V + 2n^2(n-t) \int_M H^2 dv_M + n^2 \int_M \langle \nabla^\perp H, \nabla^\perp H \rangle dv_M$$
$$+ n^2 \int_M H^2(\sigma^2 - \lambda_1) dv_M + \lambda_1 t^2 \int_M \langle x_0, x_0 \rangle dv_M \ge 0$$

Proof. Set $F_t = -\Delta_M x - t(x - x_0)$. Then $\int_M F_t dv_M = 0$. By the minimal principle for λ_1 we have

(*)
$$-\int_{\mathcal{M}} \langle \Delta_{\mathcal{M}} F_{\iota}, F_{\iota} \rangle dv_{\mathcal{M}} \geq \lambda_{1} \int_{\mathcal{M}} \langle F_{\iota}, F_{\iota} \rangle dv_{\mathcal{M}}.$$

On the other hand,

EIGENVALUE INEQUALITIES

$$F_{t} = -nH + nx - t(x - x_{0}), \qquad \Delta_{M}F_{t} = -n\Delta_{M}H + n(n-t)(H-x)$$
$$\int_{M} \langle x, x_{0} \rangle dv_{M} = \int_{M} \langle x_{0}, x_{0} \rangle dv_{M}, \int_{M} \langle \Delta_{M}x, x_{0} \rangle dv_{M} = 0,$$
$$\int_{M} \langle \Delta_{M}H, x_{0} \rangle dv_{M} = 0, \int_{M} \langle H, x_{0} \rangle dv_{M} = \int_{M} \langle x_{0}, x_{0} \rangle dv_{M}.$$

Therefore, we reach

$$\int_{M} \langle \Delta_{M} F_{t}, F_{t} \rangle dv_{M} = n^{2} \int_{M} \langle \Delta_{M} H, H \rangle dv_{M} - 2n^{2}(n-t) \int_{M} H^{2} dv_{M} - n(n-t)^{2} V dv_{M}$$
$$\int_{M} \langle F_{t}, F_{t} \rangle dv_{M} = n^{2} \int_{M} H^{2} dv_{M} + (n-t)^{2} V - t^{2} \int_{M} \langle x_{0}, x_{0} \rangle dv_{M} dv_{M} dv_{M} + (n-t)^{2} V dv_{M} dv_{M} dv_{M} + (n-t)^{2} V dv_{M} dv_{M}$$

Substituting the last two equalities into (*) and using Lemma 2.3, the theorem follows.

For minimal submanifolds of a unit sphere, if $\sigma^2 \leq n$, then $\sigma^2 = 0$ or *n*. For non-minimal ones, we also have a similar result (see (ii) below).

COROLLARY 3.2. Suppose that $x=i\circ\varphi$ is mass symmetric or equivalently that $\int_{M} Hdv_{M}=0.$

(i) If $\lambda_1 = n$, then φ is minimal.

(ii) If $\nabla^{\perp}H=0$, $\sigma^{2} \leq \lambda_{1}$, then $\sigma^{2}=\lambda_{1}$ unless H=0.

Proof. Under the assumption of (i), using Theorem 3.3 (taking t > n), we have

$$\int_{\mathcal{M}} H^2 dv_{\mathcal{M}} \leq \frac{1}{2(n-t)} \left\{ -\int_{\mathcal{M}} \langle \nabla^{\perp} H, \nabla^{\perp} H \rangle dv_{\mathcal{M}} - \int_{\mathcal{M}} H^2(\sigma^2 - \lambda_1) dv_{\mathcal{M}} \right\}.$$

Let $t \rightarrow \infty$ we have H=0.

For the proof of (ii), we use Theorem 3.3 (take t=n) and Lemma 2.4. We get $H^2 \int_{M} (\sigma^2 - \lambda_1) dv_M \ge 0$. Then the (ii) follows.

COROLLARY 3.3.
$$\lambda_1 \leq \frac{nV^2}{V^2 - \left(\int_M H dv_M\right)^2}$$

Especially, if $\int_{M} Hdv_{M} = 0$, then $\lambda_{1} \leq n$. Furthermore, $\lambda_{1} = n$ implies H = 0.

Proof. Let the both ends of the inequality in Theorem 3.3 be divided by $(n-t)^2$, then let t go to infinity. The inequality is obtained. The rest follows from Corollary 3.2-(i).

Remark. Let M be an *n*-dimensional compact submanifold of the unit hypersphere S^m of an Euclidean m+1-space with lower order p and upper order q. B. Y. Chen proved the following two statements (see [1] p. 144 Corollary 6.13):

(1) If M is mass symmetric, then $\lambda_1 \leq \lambda_p \leq n$. In particular, $\lambda_p = n$ iff M is of 1-type and of order $\{p\}$.

(2) If M is of finite type, then $\lambda_q \ge n$. In particular, $\lambda_q = n$ iff M is of 1-type and of order $\{q\}$.

Because 1-type is 2-type, by Theorem 3.1 we know that M in (1) and (2) above is in fact minimal (if M is also of mass symmetric in (2)).

References

- [1] B.Y. CHEN, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117-337.
- [2] A. Ros, Eigenvalue inequalities for minimal submanifolds and P-manifolds, Math. Z., 187 (1984), 393-404.
- [3] Y.B. SHEN, On eigenvalue inequalities of minimal and Kaehlerian submanifolds, Acta Math. Sinica A, 34 (1991), 551-560 (in Chinese).
- [4] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.

Wuhan University 430072, Wuhan P.R. China