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EIGENVALUE INEQUALITIES AND MINIMAL

SUBMANIFOLDS

ZHEN-RONG ZHOU

Abstract

Let (Sm,g0) be the unit sphere, (Mn,g) its submanifold, λι the first non-
zero eigenvalue of (Mn,g), H the mean curvature vector field of Mn. By
Takahashi theorem, if Mn is minimal, then λi^n. In this paper, we establish
some eigenvalue inequalities and use them to prove:

1. If x is mass symmetric and of order {k,k+ΐ) for some k such that
λk^n or λk+i^-n, then ψ is minimal and λ^ — n or χk+1=n.

2. If H is parallel, ί HdvM=Q and σ*£λu then # = 0 or σ2=λlt

3. If H is parallel and Xk=n for some k, then //=0 or <72(*)^fc+1—λk

for some

n F 2 f
4. ^ . Especially, if I HdvM—^, then λγ<n, and that

i=n implies that y> is minimal.

1. Introduction

Let Mn be a compact n-dimensional Riemannian manifold, Δ# the Laplace-

Beltrami operator on Mn. Then — ΔM has the discrete spectrum:

Denote the unit hypersphere in the Euclidean space Em+1 by Sm. A. Ros in [2]

imbedded Sm into the space of real symmetric matrices and obtained some

eigenvalue inequalities for minimal submanifolds of Sm. In this paper, we con-

sider more simple and more natural immersion x : Mn-*Sm-*Em+1, where <p is

an isometric immersion, not necessarily minimal, i is the inclusion, and we also

get some similar inequalities. Last, we use them to prove the following results:
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1. If x is mass symmetric and of order {k, k+1} for some k such that
λk^n or λk+ι^=n, then φ is minimal and λk^n or λk+i=n.

2. If H is parallel, \ HdvM=0 and σ 2 ^ , then H=0 or σ 2 = ^ .

3. If H is parallel and λk — n for some &, then H=0 or <72O)ϊ^*+i — Λ* for
some x^Mn.

nV2 C
4. Λi<; -: - j . Especially, if \ HdvM=0, then Λi^n, and thatvHlHdv) iM

λι — n implies that φ is minimal.
Here and below, V is the volume of Mn, H^Em+ι the mean curvature

vector field of Mn in Sm, λι the first nonzero eigenvalue of AM, o the length of
the second fundamental form of Mn in Sm equalities for vectors mean that
components of both ends equate, and integrations of vectors stand for those of
components.

2. Lemmas

Let x~i°φ be as above and < , > be the Euclidean inner product. From
now on, we use AM denote the Laplacian acting on functions over Mn as well
as on vector fields of Em+1 which are restricted to Mn. In latter case, it acts
on components. Then x has L2 decomposition: x = Xo-\-ΈuzιXu, where x0 is a

constant vector, AMxu—— λuxu \ <xw, x^dvM^Λ /->ΛN ' _ χo 1S called
J M v d iι \ ^~ KJ) U — u,

mass center of x. If x0 is congrucent with the geometric center of Sm, we
say that x is mass-symmetric. If 3 ut^l, i=l, ..., k, such that .x=Xo+J}kι=ιXUi,
then x is called of &-type and {uu ..., uk] is by definition the order of x. It
is known that if φ is minimal, then φ is mass symmetric, of 1-type and its
order is {k} for some k by Takahashi theorem and Lemma 2.4 below. From
the decomposition of x we have:

— — Σ λuxu

Define:

y* = - ( <AMx, x>dvu-λk[ <x, x>dvM

J M j M

Θk=\M<AMx, AMx>dvM+λkKAMx, x>dvM

Ωk = — \ <A2

Mx, AMx>dvM—λk\ <AMx, AMx>dvM

Then, we have
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LEMMA 2.1. For any integer k^l,

( i ) θ>-λk+ιΨ>= Σ (λu-h)(λu-λk+ί)au^O

and the equality holds iff x mass symmetric and is of order {k, k+1}

(ii) β*-^+iβ»=ΣίuW«-i»)W»-ί*+i)α«^O

and the equality holds iff x is of order {k, k + 1}.

Remark. The two inequalities above holds for k^Q.

Let H be the mean curvature vector field of Mn. Then Takahashi theorem
says that AMx = nH—nx. Hence A%x = nAMH— n2H+n2x. Therefore,

I <x, x>dvM-V; \ <AMx, x>dvM--nV
J M J M

=n2[ (H, H>dvM + n2V
J M

[ (.Mx, A31x>dvM=ni[ <AMH, Hydvu-lnA (H, H>dvM-n3V
J M J M j M

Ψ*=(n-λk)V; θu^nλ <H, H>dvM+n(n-λk)V
J M

Ωk = -nA <AMH, H)dvM+n\2n-λk)\ <//,
J M J M

From these formulas, we have:

LEMMA 2.2. For any k>,0,

( i i ) * * + I * (
J M

+ n(n-λk)(n-λk+1)V.

Next, use V1 to denote the normal connection of <p, a the length of the
second fundamental form of φ. We have

LEMMA 2.3.

[ [ H2σ2dvM
(

where the equality holds whenever the codimension is one.
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Proof, Without loss of generality, we let MncSm, and φ—i, the inclusion.
Let V and V be the Riemannian connections of Mn and Sm respectively. On
Mn, we take a local field of orthonormal frame: eu ..., en. Then by Gauss
and Weingarten formulas we get:

\AM<H, H}= 4 Σ VejVej<H, H>= 4 Σ Vej(Vej<H, H»
Z Δ j=ί 3 3 Δ j=i J J

± ijH, H>Σ

Σ

= Σ
l

Define AMv=^%i(DejDe^—DVe.ejv), where £> is the flat connection of £ m + 1 ,

v=υ(x)^Em+1, n<BMn. It is easy to verify that Δ^ defined here is exactly the
Laplacian acting on vectors by on their components which is defined at the
begining of this section. We can choose {elf /=1, 2, ..., n\ such that Veiej=0.
Hence we have

= Σ DejDejH= Σ Dej(VejH+B(eJf H))

= Σ De%eiH because 5fft is totally umbilical

where, B and A are the second fundamental form and Weingarten transforma-
tion of Sm respectively. In the following, we use B and A stand for corre-
sponding quantities of Mn in Sm. Then

Σ vβ/vβ,/y )= Σ ^ ( -

- Σ - (

= - Σ 3 [ V . / ^ w O + ^ v ^ β ί ] + Σ ( -

From the above calculations, we have
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<AKH, H> = - Σ <B(Aae}, «,),
.7 = 1

= - Σ <AHβt, Axe^+^H, H>
7 1.7 =

where Δ1=Σ?=iVί

i,Ve

1,. So <ΔX//, H>=<AMH, H}+<,AH, AH}. Hence we have

•jΔ,r<JΪ, H>=<AKH, H>+WH, V^H}+<AH, A,,} .

Therefore,

- ( (AUH, H>dvM=\ <yiH,ViH>dvM+[ <AH,AH>dvM.
J M j M J M

Take a local unit normal vector field en+ι of Mn in T 5 m such that ^ n + 1 is
parallel with H, i.e. H—\H\en+1. Then

and equality holds if the codimension of Mn in Sm is one. Now, the proof of
Lemma 2.3 is complete.

In next section, when we discuss the upper bound of λlf we need the fol-
lowing two lemmas.

LEMMA 2.4. Mn is mass symmetric iff\ HdvM=0.

Proof. By Takahashi theorem and the L2 decompositions of x and H, we
have

Ax = n(H-x)=n(H0-xQ)+lln(Hu-xu).
SI

Integrating both ends and noting that when w^l, I HudvM—\ xudvM=Q, we
j M J M

can obtain: \ HodvM~\ xodvM, i.e. HQ—χ0. Hence I HdvM—\ HQdvM —
j M J M J M J M

\ x0dvM=XoV. Lemma 2.4 follows.
J M

LEMMA 2.5. (\ HdvMj SίV2, and the equality is true iff x is constant.

Proof. (^MHdvMy={\jiίH,dv)iy={^)ίX<)dv}iy=<x0, xo >V*

<o, o > M ^ \ (x, x
M J M

and the equality holds iff x—x^
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3. Eigenvalue inequalities and their corollaries

By Takahashi theorem, if φ is minimal, then φ is mass symmetric and of
order {k} for some k, and λk — n. The following theorem shows that the in-
verse is true.

THEOREM 3.1. // i°φ is mass symmetric and of order {k, k-\-l) for some k
such that λk^n or λk+i^=n, then φ is minimal (hence is of 1-type by Takahashi
theorem) and λk~n or λk+i^n.

Proof. By Lemmas 2.1-(i) and 2.2-(i) we have

H2dvM+(n-λk)(n-λk+ι)V=O\
J M

from which the result follows.

THEOREM 3.2. For any k^O

n[ (V"H,V"HydvM+n[ H%σ2+2n-λk-λk+1)dvM

where the equality for k^l implies that φ is of order {ky k+1}.

Proof. From Lemmas 2.1-(ii), 2.2-(ii) and 2.3 we can reach the inequality
we need. The equality shows that i°φ is of order {k, k-\-l) by Lemma 2.1-(ii).

COROLLARY 3.1. Let φ have parallel mean curvature normal and λk — n for
some k. Then Mn is minimal or σ\x)^λk+ι—λk for some I G M " .

THEOREM 3.3. Let x0 be the mass center of x=i°φ, then for any real number
t} we have

{n-λι){n-t)zV+2n\n-t)[ H2dvM+n2\ <yj-H,

+ n2ί H2(σ2-λί)dvM+λA <x0,
J M j M

Proof. Set Ft=— AMx—t(x—x0). Then \ FtdvM=0. By the minimal prin-

ciple for λi we have

< M u d M ^ λ \ <Ft,Ft>dvM.

On the other hand,
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Ft = -nH+nx-t(x-x0), AMFt = -nAMH-\-n(n-tχH-x),

I <X xoydvM=\ <Xo, Xo>dvM, 1 <AMx, xoydvM=0,

[ <AMH, xo)dvM=O, [ <//, xo>dvM=[ <*0, xo>dvM.
j M j M J M

Therefore, we reach

( <ΔjfFt, Ft>dυM=n*[ <AMHf H>dvM-2n\n-t) [ H*dvM-n(n-t)W,

[ <Ft, Ft}dvM = ni\ H*dvM+(n-tYV-A <%„, xo>dvM.

Substituting the last two equalities into (*) and using Lemma 2.3, the theorem
follows.

For minimal submanifolds of a unit sphere, if σ2<n, then σ2=0 or n. For
non-minimal ones, we also have a similar result (see (ii) below).

COROLLARY 3.2. Suppose that χ—i°φ is mass symmetric or equivalently that

M
M

( i ) If λi—Uy then φ is minimal.
(ii) // V±/^=0, σ2^λu then σ2=λί unless H=0.

Proof. Under the assumption of ( i ) , using Theorem 3.3 (taking t>n), we

have

) M ~ —"= 2(n-t)

Let t^oo we have H=0.
For the proof of (ii), we use Theorem 3.3 (take f=n) and Lemma 2.4. We

get H2\ (σ2-λ1)dvM^0. Then the (ii) follows.
J M

nV2

COROLLARY 3.3. λ^ -z —2.

Especially, if \ HdvM=0, then λι<n. Furthermore, λι — n implies H=0.

Proof. Let the both ends of the inequality in Theorem 3.3 be divided by
(n—t)2, then let t go to infinity. The inequality is obtained. The rest follows
from Corollary 3.2-(i).

Remark. Let M be an n-dimensional compact submanifold of the unit hy-
persphere Sm of an Euclidean m-fl-space with lower order p and upper order
q. B. Y. Chen proved the following two statements (see [1] p. 144 Corollary 6.13):
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(1) If M is mass symmetric, then λ^λ^n. In particular, λp — n iff M is

of 1-type and of order {/>}.

(2) If M is of finite type, then λq^n. In particular, λ^—n iff M is of 1-

type and of order {g}.

Because 1-type is 2-type, by Theorem 3.1 we know that M in (1) and (2)

above is in fact minimal (if M is also of mass symmetric in (2)).
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