Z.-R. ZHOU
KODAI MATH. J.
20 (1997), 233—240

EIGENVALUE INEQUALITIES AND MINIMAL
SUBMANIFOLDS
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Abstract

Let (S™, g,) be the unit sphere, (M™, g) its submanifold, 2, the first non-
zero eigenvalue of (M", g), H the mean curvature vector field of M". By
Takahashi theorem, if M™ is minimal, then 2;=<n. In this paper, we establish
some eigenvalue inequalities and use them to prove:

1. If x is mass symmetric and of order {k, k-+1} for some %k such that
Ap=n Or Ap=n, then ¢ is minimal and 2,=n or A,,,=n.

2. If H is parallel, SMHde:O and ¢?<2;, then H=0 or ¢*=1,.

3. If H is parallel and 1,=n for some k, then H=0. or ¢*(x)2As1—2s
for some x&M™,

nV?
4, Ay ————————. Especially, if S”Hde:O, then 2;<n, and that

oo o)

A1=n implies that ¢ is minimal.

1. Introduction

Let M™ be a compact n-dimensional Riemannian manifold, Ay the Laplace-
Beltrami operator on M". Then —Aj, has the discrete spectrum:

spec(Ay)={0=2,<A; <A< ++ — oo}

Denote the unit hypersphere in the Euclidean space E™*! by S™. A. Ros in [2]
imbedded S™ into the space of real symmetric matrices and obtained some
eigenvalue inequalities for minimal submanifolds of S™. In this paper, we con-

. . . . ¢ 1 .
sider more simple and more natural immersion x: M"—>S™—E™"!, where ¢ is

an isometric immersion, not necessarily minimal, 7 is the inclusion, and we also
get some similar inequalities. Last, we use them to prove the following results:
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1. If x is mass symmetric and of order {k, £+1} for some %k such that
Ax=n or 2;,.,<n, then ¢ is minimal and A,=n or A, ,=n.

2. If H is parallel, SMHde=0 and ¢?<4,, then H=0 or ¢%=A4,.

3. If H is parallel and A,=n for some k, then H=0 or % x)=A4;,,—A: for
some x&M™,
nV?

(T

A=n implies that ¢ is minimal.

Here and below, V is the volume of M*, He&E™*!' the mean curvature
vector field of M™ in S™, A, the first nonzero eigenvalue of Ay, ¢ the length of
the second fundamental form of M™ in S™; equalities for vectors mean that
components of both ends equate, and integrations of vectors stand for those of
components.

4 A< Especially, if SMHdvuzo, then A,<n, and that

2. Lemmas

Let x=i-¢ be as above and <{, > be the Euclidean inner product. From
now on, we use A, denote the Laplacian acting on functions over M™ as well
as on vector fields of E™*! which are restricted to M™. In latter case, it acts
on components. Then x has L? decomposition: x=x,+ >4z X4, Where x, is a
0 wu=v,
au(—>_~0) u=v.
mass center of x. If x, is congrucent with the geometric center of S™, we
say that x is mass-symmetric. If 3 u,>1, 7=1, ..., k, such that .x=xo+2’§,1xui,
then x is called of k-type and {u,, ..., u,} is by definition the order of x. It
is known that if ¢ is minimal, then ¢ is mass symmetric, of 1l-type and its
order is {k} for some %k by Takahashi theorem and Lemma 2.4 below. From
the decomposition of x we have:

Ayx=— 3 Auxy; Ayx= 3 Alx,.
uzo uz0

constant vector, Ayx,=—A,%,; SM<xu, x,,>de={ x, is called

Define :

sz—SM<AMx, x>dvu—1»SM<x, xydv
@k:SM<AMX, AMx>de+'zkg<AMx’ x>dvy

Qk:—SM<A%1x, Aux>dvu—2;,SM<AMx, Ayxddvy

Then, we have
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LEMMA 2.1. For any integer k=1,
(1) 61=24i¥s= 3 Au—2)Au— 2k 4124 20
and the equality holds iff x mass symmetric and is of order {k, k+1};
(ii) Qk—xm@k:ugzu(xu—x.)(xu—zm)auzo
and the equality holds iff x is of order {k, k+1}.
Remark. The two inequalities above holds for 2=0.

Let H be the mean curvature vector field of M. Then Takahashi theorem
says that Ayx=nH—nx. Hence Ayx=nAyH—n>H+n%x. Therefore,

SM<x, x>dvy=V; SM<AMx, x>dvy=—nV;
S (Dyx, AMx>de=n2§ CH, Hydvg+n?V ;
M M
S (AL x, A,,x>du,,:nzg (AyH, H>de—2n3S CH, Hydvy—n®V ;
M M M
To=(n—a)V ; @,.:nZSM<H, H>dvy+n(n—an)V;

Q,,:—nZSM<AMH, H>de+n2(2n—/'l,,)SM<H, Hydvy+n*n—2A)V.
From these formulas, we have:
LEMMA 2.2. For any k=0,

(i) @k—z.“wk:nzgﬂwvﬁm—zkxn—zhl)v,

(ii) Q,,—X,,+16,.=—n2SM<AMH, H>dv,.,+n2(2n—2,.—2,,+1)SMH2de
+n(n—A)n—A, )V .

Next, use V* to denote the normal connection of ¢, ¢ the length of the
second fundamental form of ¢. We have

LEMMA 2.3.
—g (AyH, H>de§S (VAH, V*H>de+g H*e*dva
M M M

where the equality holds whenever the codimension is one.
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Proof. Without loss of generality, we let M"CS™, and p=4, the ‘inclusion.
Let V and V be the Riemannian connections of M™ and S™ respectively. On

M™, we take a local field of orthonormal frame: e, ..., e,. Then by Gauss
and Weingarten formulas we get:
%AM<H, Hy= évejvejw, Hy= 7 ; V. (V.,<H, HY)
= BV.KVH, Hy= 5 V.(VEH, H>
= g V.<VLH, H>
= ,sé«v (Ve,H), Hy+Vi,H, Vo, 1)

SICVEVEH, Hy+ 3 <VEH, ViH)

£(A*H, HY+<V*H, V*H>

Define Ayv=3"_,(D,,D.v—Dy, ,,v), where D is the flat connection of E™*,
J i ef Vejei

v=v(x)€E™*" neM™ It is easy to verify that Ay defined here is exactly the
Laplacian acting on vectors by on their components which is defined at the
begining of this section. We can choose {e,, i=1, 2, ..., n} such that V,e,=0.
Hence we have

AyH= 3 D,,D,,H= 3 D.((Ve,H+ Ble,, H))
r=1 =1

= iDe,VejH because S™ is totally umbilical
=

i

Py [(V.,V.,H+Ble,, Ve,H)]
where, B and A are the second fundamental form and Weingarten transforma-
tion of S™ respectively. In the following, we use B and A stand for corre-

sponding quantities of M" in S™. Then

DV, Ve, H)= 3V, (— Aye,+VE,H)
7=1 7=1
= 5 ~(Ve/(Aue)+ B(Ane,, e))+ 3} (— Avy e, +VEVEH)

*f? [(Vej(Ane))+Avg ne, ]+ 2( B(Aue,, ¢,)+ViVEH).

From the above calculations, we have
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AuH, Hy=— 3 <B(Age,, ¢)), Hy+<AH, H)

= ng (Age,, Ane,>+<A*H, H>
& —{ Ay, Au>+<A*H, H)
where At= 7=1V:jVéj. So <A*H, HY>=<AyH, H>+<{Ax, Axy. Hence we have
1
EAM<H, H>=<AMH, H>+<VJ'H, VJ‘H>+<AH, AH> .

Therefore,
—S (AyH, H>de=S VA, V*H>de+S CAn, Ag>dvy .
M M M

Take a local unit normal vector field e,,, of M™ in TS™ such that e,,, is
parallel with H, i.e. H=|Hl|e,,,. Then

(An, Agy= ; (Aye,, Agey=H* 2 (Ansiey, Anie)
=H| Ay, |’ < H?*

and equality holds if the codimension of M™ in S™ is one. Now, the proof of
Lemma 2.3 is complete.

In next section, when we discuss the upper bound of A;,, we need the fol-
lowing two lemmas.

LEMMA 2.4, M™ is mass symmetric iff SMHdezo.

Proof. By Takahashi theorem and the L% decompositions of x and H, we
have

Ax::n(H—x):n(Ho—xo)—i-Eln(Hu——xu) .

Integrating both ends and noting that when u=1, SMHude:Squde:O, we
can obtain : S Hodvyzg %odvu, i.e. Ho=x, Hence S Hdezg Hodvy =
M M M M

ngodvaoV. Lemma 2.4 follows.

2
LEMMA 2.5. (SMHde> <V? and the equality is true iff x is constant,

2

Proof. (SMHde) ——(SMHode)2=<Suxodv,,,Y:(xo, PN

=SM<xo, xo>dvu‘V_S_SM<x, x>dvy - V=V?2,

and the equality holds iff x=x,.
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3. Eigenvalue inequalities and their corollaries

By Takahashi theorem, if ¢ is minimal, then ¢ is mass symmetric and of
order {k} for some k, and A4,=n. The following theorem shows that the in-
verse is true.

THEOREM 3.1. If ie¢ is mass symmetric and of order {k, k+1} for some k
such that 2x=n or Ax..=n, then ¢ is minimal (hence is of 1-type by Takahashi
theorem) and Ax=n or Az,.,=n.

Proof. By Lemmas 2.1-(i) and 2.2-(i) we have
n Hdvat(n—2)(n =20,V =0

from which the result follows.

THEOREM 3.2. For any k=0

ng (V'H, V*H>dvy+ng H0%+2n— 2 —An ) dvn
M M
+(n—2)(n—Ar. )V =0

where the equality for k=1 implies that ¢ is of order {k, k+1}.

Proof. From Lemmas 2.1-(ii), 2.2-(ii) and 2.3 we can reach the inequality
we need. The equality shows that i-¢ is of order {k, £+1} by Lemma 2.1-(ii).

COROLLARY 3.1. Let ¢ have parallel mean curvature normal and A,=n for
some k. Then M™ is minimal or 6*(x)=2Ax.1—Ar for some x&M?™,

THEOREM 3.3. Let x, be the mass center of x=i-¢, then for any real number
t, we have

(n——21)(71——t)“V—}—Zn”(n—t)SMHZde%—n’SM(V*H, VEH >dvy

| H¥ o= ) dvut 2| Cxo, x>0,

Proof. Set Fi=—Ayx—t(x—x,). Then SMFtdvuzo. By the minimal prin-
ciple for A, we have

) —{ <auF, Podvuzal <, Fodvw.

On the other hand,



EIGENVALUE INEQUALITIES 239
Fi=—nH+nx—t(x—x,), AyFi=—nAyH+n(n—t)(H—x),

f <0 xo>duM=§ (xe, xo>dvu,§ By, xe>dvy=0,
M M M

[, Aut, xdvu=0, | CH, xodvu={ cxs, xodvy.
M M M
Therefore, we reach

S {AxF,, FdeM:nzS {AyH, H)de—2n2(n—t)S Hidvy—n(n—t)V,
M M M

S (F, F,>de=n2S HZdu,,+(n—z)2V—ﬂS (xoy o>dva .
M M M

Substituting the last two equalities into (*) and using Lemma 2.3, the theorem
follows.

For minimal submanifolds of a unit sphere, if ¢®<n, then ¢°=0or n. For
non-minimal ones, we also have a similar result (see (ii) below).

COROLLARY 3.2. Suppose that x=ie¢ is mass symmetric or equivalently that
|, Hdvu=0.
M

(i) If Z=n, then ¢ is minimal.

(ii) If V*H=0, d*<2,, then ¢*=24, unless H=0.

Proof. Under the assumption of (i), using Theorem 3.3 (taking t>n), we
have

SMHﬂdu,,g "2<n1Tz){—SM<VLH’ V*H}de——SMHz(oz—Z,)de}.

Let t—oo we have H=0.
For the proof of (ii), we use Theorem 3.3 (take {=n) and Lemma 2.4. We

get HZSM(JZ—Xl)degO. Then the (ii) follows.
. nv:
VZ—(SMHde)Z

Especially, if SMHde:O, then A,<n. Furthermore, A,=n implies H=0.

COROLLARY 3.3. A4 <

Proof. Let the both ends of the inequality in Theorem 3.3 be divided by
(n—1)?%, then let ¢ go to infinity. The inequality is obtained. The rest follows
from Corollary 3.2-(i).

Remark. Let M be an n-dimensional compact submanifold of the unit hy-
persphere S™ of an Euclidean m-1-space with lower order p and upper order
q. B.Y.Chen proved the following two statements (see [1] p. 144 Corollary 6.13):
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(1) If M is mass symmetric, then 4,<1,<n. In particular, 1,=n iff M is
of 1-type and of order {p}.

(2) If M is of finite type, then 4,=n. In particular, 4,=n iff M is of 1-
type and of order {g}.

Because 1-type is 2-type, by Theorem 3.1 we know that M in (1) and (2)
above is in fact minimal (if M is also of mass symmetric in (2)).
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