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1. Introduction

Let S271"1 (n>l) be the (2n —l)-dimensional sphere of constant curvature 1
and G be a finite subgroup of the orthogonal group of degree 2n acting fixed
point freely on S2n~ι. Then the spherical space form M=S2n~ι/G has a con-
stant curvature 1. If G is cyclic then the spherical space form is called a lens
space. The Laplacian Δ acting on the space of smooth functions on a spherical
space form has a discrete spectrum with finite multiplicities. It is well known
that the eigenvalues of the Laplacian Δ are of the form k(k+2n—2) (k=0,1,2, •••).
Let ak be the multiplicity of eigenvalue k(k-\-2n—2). The Poincare series
2Γ=o a>kZk associated to the spectrum for homogeneous spherical space becomes
a rational function which is a nice form to study the spectrum of spherical
space forms and has been studied by the author in order to construct rieman-
nian manifolds which are isospectral but not isometric. On the other hand, the
classification for homogeneous spherical space forms is given by Wolf [4].
Wolf's classification theorem for homogeneous space forms states that for any
g^G of a homogeneous spherical space form S2n~ι/G, there is a unimodular
complex number λ such that half the eigenvalues of g are λ and the other half
are λ. By this theorem, the Poincare series associated to the spectrum for
homogeneous spherical space forms becomes a simple form.

In this paper using this form we give the spectrum of homogeneous spherical
space forms explicitly. For the cases of the spheres and homogeneous lens
spaces their spectra are given in M. Berger [1] and in T. Sakai [3]. Our
table for the spectrum of homogeneous lens spaces is different from Sakai [3],
and is more simpler than Sakai's table.

2. Preliminary

In this section we give elementary formulae which we need in the follow-
ing sections. The following two lemmas are well known.
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LEMMA 2.1. We have ( l - ^ - ^ Σ

LEMMA 2.2. Let λ be a q-th root of one. Then

0 ifλΦl,

q if λ=l .

Using the above two Lemmas, we get

L E M M A 2 .3 . Let λ be a unimodular complex number, \λ\—l. The

ί = 0 i = o \ n —

Let λ be a primitive q-th root of one. Define

FJn, z)= — J] (l-^Xl-λ'zT^l-J'z)-11.
q t=i

Then we obtain easily by using Lemma 2.2 and Lemma 2.3

PROPOSITION 2.4. Let λ and Fq(n, z) be as above. Then we have

n-2

Define ak(n, q) by

Then

(w, e)= Σ ak(n, q)zk .
k=0

PROPOSITION 2.5. Lei α*(n, a) be as above. Then
(1) // q is odd, then ak(n, q)φθ if and only if k is even or k is odd with ^q.
(2) // q is even, then ak(n, q)Φθ if and only if k is even.

Proof. By Proposition 2.4, ak(n, z)φQ if and only if the congruence equa-
tion k~2l (q) (0^l<k) has a solution. Hence our assertions are easy to see.

q. e. d.

We use the following Lemma 2.6 in 4.
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LEMMA 2.6. For n > l , ( 2n-2 A 2n-2 ) iS strιctιy decreasing
with respect to t {O£t<>k).

Proof. An easy computation. q. e. d.

3. Homogeneous spherical space forms

The classification of homogeneous spherical space forms has been obtained
by J. A. Wolf [4]. In this section we describe his results and study some pro-
perties of the finite subgroups appearing in the classification. Let SO(3) be the
special orthogonal group acting on the Euclidean 3-space R\ It is well known
that the finite subgroups of SO(3) (up to conjugations in 50(3)) are given as
follows (for details, see [4]);

Zm: the cyclic group of order m(m^l) ,

D2m' the dihedral group of order 2m(m>2),

T: the tetrahedral group of order 12,

O: the octahedral group of order 24,

/: the icosahedral group of order 60.

Let Sp(l) be the group of unit quaternions and π : Sp(l)—>S0(3) the universal
covering map. The binary dihedral and binary polyhedral groups are defined by

T*, O* and /* are called the binary tetrahedral, binary octahedral, binary
icosahedral groups, respectively.

We divide the binary dihedral and binary polyhedral groups into cyclic sub-
groups as follows;

PROPOSITION 3.1. (1) Dfm is the sum of the sets consisting of one cyclic
group of order 2m and m cyclic subgroups of order 4. Any two subgroups have
a common cyclic subgroup of order 2 which is the center of Sp(l). (2) T* is the
sum of the sets consisting of 4 cyclic subgroups of order 6 and 3 cyclic subgroups
of order 4. Any two subgroups have a common cyclic subgroup of order 2 which
is the center of Sp(l). (3) O* is the sum of the sets consisting of 3 cyclic sub-
groups of order 8, 4 cyclic subgroups of order 6 and 6 cyclic subgroups of order
4. Any two subgroups have a common cyclic subgroup of order 2 which is the
center of Sp(Y). (4) /* is the sum of the sets consisting of 6 cyclic subgroups of
order 10, 10 cyclic subgroups of order 6 and 15 cyclic subgroups of order 4. Any
two subgroups have a common cyclic subgroup of order 2 which is the center of
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Proof. We shall show (2). The tetrahedral group T consists of symmetries
of regular tetrahedron. There are two types of symmetries. One is a rotation
about the line through a vertex of the tetrahedron and the center of the face
opposite the vertex. Other one is a rotation by π about the line through mid-
points of two edges which are in opposite side to each other. From these facts,
(2) is easy to see. By the same way as above, we can show (1), (3) and (4).

q. e. d.

The following classification theorem can be found in Wolf [4].

THEOREM 3.2. Let G be a fixed point free finite subgroup of SO(2n) (n>l) .
Then the following conditions are equivalent.

(1) S2n~1/G is a Riemannian homogeneous space.
(2) For any g<^G, either g—±l2n or there is a unirnodular complex number

λ such that half the eigenvalues of g are λ and the other half are λ.
(3) Either (i) G is cyclic of order q>l, and G ts conjugate to the image of

Zq— {g^^zl under the representation ? 0 ••• ©r(n — times) of Zq, where τ{g1)—

S ( ! S ® C S 0 ® ' " <H> G is "omorphic to a binary dihedral
or binary polyhedral group P*, n is even and G ts conjugate to the image of P*
under the representation p® ••• ®p (n/2—times) of P*, where p: P*C.Sp(l)cz
SO(4).

From the above Theorem, we can list homogeneous spherical space forms
as follows

(1) M=S2n-ι/Zm (ra^l), where Zm is generated by e2πι/m and acts on
R2n—Cn by multiplication on each complex coordinate;

(2) M=S4Λ-V/>4*m (m^2), where Dfm acts on RAn^Hn by multiplication
on each quaternionic coordinate from the left

(3) M^S 4 7 1 " 1 /! 7 *, where Γ* acts on Rin=Hn by multiplication on each
quaternionic coordinate from the left

(4) M=S4 7 ϊ~7O*, where O* acts on R*n=Hn by multiplication on each
quaternionic coordinate from the left;

(5) M=S 4 7 l ~7/*, where /* acts on Rin—Hn by multiplication on each
quaternionic coordinate from the left.

4. Spectra of homogeneous spherical space forms

In this section we start with recalling the Poincare Series associated to the
spectrum of a spherical space form. For details of this section, refer to [2].

Let M—S2n~ι/G be a (2n — l)-dimensional spherical space form and Δ the
Laplacian acting on the smooth functions on M. Then each eigenvalue of Δ is
of the form k{k+2n—2) (fc=0, 1, 2, •••). Let ak be the multiplicity of eigen-
value k(k-\-2n—2). We defined the Poincare series associated to the spectrum
of Δ by
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FG(z)= Σ f l /

Then this function has the representative of a rational function [2].

PROPOSITION 4.1. We have

ΛυκΛ/"\G

where \G\ denotes the order of G.

Let S2n~ι/G be a homogeneous spherical space form. Let Zq be a cyclic
subgroup of order q in G and λ a primitive q-th root of one. By (2) in Theorem
3.1, we have

— qFq(n, z).

(I) S2n~ι/Zq (#^1); homogeneous lens spaces.
The Poincare series is

where λ is a primitive q-th root of one.
By Proposition 2.4, the coefficients ak'$ of the Poincare series FZq(z) are

fli=0,

n
7 2 - 1 ^

By Proposition 2.4 and 2.5, we have

THEOREM 4.2 (cf. [3]). Let S2n~ι/Zq (q^2) be the homogeneous lens space.
Then eigenvalues of Laplacian for the lens space are

k(2n + k—2) for all even k^>0 and for all odd k>,q if q is odd,

k(2n + k—2) for all even k^>0 if q is even.

If k(2n-\-k—2) is an eigenvalue, then its multiplicity ak is

n-2+k-l\/n-2+l\

A
_n-l + k /n-2+k-l\/n-2+l\

72 — 1 *Ξ2i(«).0<;Z<;Λ 72 — 2 A 72 — 2 /

(II) S4n~yG where G is a binary dihedral group Dfm of order 4m (m^
By (1) in Proposition 3.1, the group Dfm consists of the cyclic subgroup
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Z 2 m of order 2m and m cyclic subgroups Z4 of order 4. The intersection group
of any two of these cyclic subgroups is a cyclic group of order 2 which is the
kernel of π: Dfm-^D2m. Thus we have

4(2n, z)-2mF2{2n, z)\F G ( 2 ) = — {2mFΐm(2n,

= ~F2m(2n, z)+Fi(2n, z)-±-Ft(2n, z).

By Proposition 2.5, α2^_i=0 (k^l). We compute a2ι

2n-2+2k-l\/2n-2+l\
2n-2 A 2n-2 /

2 β S

v 2n-2 A 2n-2

2n-2 A 2n-

_2n-l+2k fl
~ 2n — l 12 isi 2w-2 2n-2

2n-2+k+(k-l)\/2n-2+k-(k-l)\
2n-2 A 2rc-2 /

2n-2 2n-2

2n-l I ttί 2M-2 2n-2

2n-2

If n=l and & is odd, then the second term vanishes. Using Lemma 2.6,
we have a2k>Q for n>l. Thus we have,

THEOREM 4.3. (1) The spectrum of Laplacian for the homogeneous spherical
space form S5/Dfm (m>l) is

k

even

odd k>m

eigenvalue

4*(*+D

Ak(k + l)

multiplicity

(2A+lX[A/m]+l)

(2*+l)[*/m]

(2) Eigenvalues of Laplacian for the homogeneous spherical space form SAn~ι/Dtm

(n,
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l ) (ife=0, 1, 2 )
with multiplicities

2n-l+2k f\j™^/2n-2+k+mt\/2n
" 272-1 I hi V 2 n - 2 A 2 n - 2

(III) S471

By Proposition 3.1, T* consists of 4 cyclic subgroups of order 6 and 3 cyclic
subgroups of order 4. The intersection subgroup of any two of these cyclic
subgroups is a cyclic group of order 2. Thus we have

Fτ*(z)=^{24F6(2n, z)+12F4(2n, z)-12F2(2n, z)}

=Fβ(2n, z)+yF4(2n, z)-jF2(2n, z)

In this case, we have also a2k-ι—ΰ (&2

2 n - l Uik(3)^ιS2Λ 2 n - 2
2n-2+2*-/γ2w-2+/

A
γ2w-2+/\
A 2^-2 /

2. v
2 ιSk(2)7osis2k\ 2n-2

_j_ /2n-2+2*-/γ2n-2
2oSS2*\ 2n-2 A 2rc-

2n-l+2k i γ
2n-2 A 2n-2

fe-/)γ2w-2+^-
2n-2 A 2/2-2

-2+^-(*-/)
2n-2

_2n-l+2k u2n-2+kγ tψi/2n-2+k+3t\/2n-2+k-3t
" 2n-l l\ 2?2-2 / ίtί V 2n-2 A 2n-2

t*M/2n-2+k+2t\/2n-2+k-2t
tίί V 2n-2 A 2n-2

__ * /2n-2+^+ίγ2n-2+^-ίM
h\ 2n-2 A 2n-2 )\ '

If n > l then by Lemma 2.6, we see easily that a2k>0. If w = l, then a2k

]~^). Thus we have
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THEOREM 4.4. (1) The spectrum of Laplacian for the homogeneous spherical
space form S2/T* is

kΦl, 2, 5

eigenvalue multiplicity

(2fe + l)(l+2[A?/3]+[*/2]-fe)

(2) Eigenvalues of Laplacian for the homogeneous spherical space form Sin~ι/T*
(w>l) are

4&(2n + £-l) (έ=0, 1, 2 )

with multiplicities

2n-l+2k j/2w—2+feγ ί*/»γ2n—2+fe+3^\/2w—2+fe—
2 n - l IV 2n-2 / + ώ V 2n-2 A 2n-2

9
+ Z M 2n-2 A 2n-2
_ */2n-2+k+t\/2n-2+k-t\\

Ά\ 2/z-2 A 2/2-2 7Γ

(IV) SAn~ι/O*.
By Proposition 3.1, O* consists of 3 cyclic subgroups of order 8, 4 cyclic

subgroups of order 6 and cyclic groups of order 4. The intersection subgroup
of any two of these cyclic subgroups is a cyclic group of order 2. Thus we
have

™ rc, *)+24F4(2n, z)-24F2(2n, z)}

= ~{F8(2n, F4(2n, z)-F2{2ny z)}.

By the same calculations as in (III), we have

THEOREM 4.5. (1) The spectrum of Laplacian for the homogeneous spherical
space form S*/O* is

kΦl, 2, 3, 5, 7, 11

eigenvalue

±k(k+l)

multiplicity

(2Ar+l)(l + [A/4] + [A/3] + [A?/2]-Λ)

(2) Eigenvalues of Laplacian for the homogeneous spherical space form S*n~ι/O*
(w>l) are

4k(2n + k-l) (fc=0, 1, 2 )

ιw'f/ι multiplicities
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2n-l+2k f/2n-2+fey t*"i/2n-2+k+4:t\/2n-2+k-4t
2n-l IV 2n-2 ) + h\ 2n-2 A 2n~2

c*/83/2n

« \ 2?2-2 A

ι*M/2n-2+k+2t\/2n-2+k-2t\
ttί V 2n-2 A 2n-2 /

_ *
2/2-2 A 2/2 -2 )r

(V) S4n~V/*. By Proposition 3.1, /* consists of 6 cyclic subgroups of
order 10, 10 cyclic subgroups of order 6 and 15 cyclic groups of order 4. The
intersection sugroup of any two of these cyclic subgroups is a cyclic group of
order 2. Thus we have

n, z)}

= | - {F10(2n, £)+F6(2tt, ^)+F4(2n, z)-F2(2n, z)}.

By the same calculations as in (III), we have

THEOREM 4.6. (1) The spectrum of Laplacian for the homogeneous spherical
space form S3//* is

eigenvalue

4fc(£ + l)

multiplicity

(2*+l)(l + [ft/5] + [fe/3]+[*/2]-*)

where k runs through all nonnegative integers except 1, 2, 3, 4, 5, 7, 8, 9, 11, 13,
14, 17, 19, 23, 29. (2) Eigenvalues of Laplacian for the homogeneous spherical
space form S471"1//* (w>l) are

= 0 , 1, 2 )
multiplicities

2n-l+2k f/2n-2+kγ
" 2 / 2 - 1 IV 2 n - 2 /

tkni,2

c*/sD/2

A 2n-2

2n-2 A

)

2n-2

ι*M/2n—2+k+2t\/2n—2+k—2t
άi \ 2n-2 A 2n-2

-2+A;+ίγ272--2+^-ί\i
2n-2 A 2/2-2 //*
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5. First non zero eigenvalues

Using the results of 4, we can obtain the first non zero eigenvalues of
homogeneous spherical space forms.

THEOREM 5.1. The first non zero eigenvalue of Laplacian for homogeneous
spherical space forms are

(1) 3-dimensional spherical space forms.

S*/Z2

Sz/Zq q>2

1st non zero eigenvalue

24

48

80

I s3//* 168

multiplicity

9

13

(2) Spherical space forms S2n~ι/G (n>2).

s2n-ι/z*
S™-ι/Zq (q>2)

S4"-VZ)fm (m^2)

C471-1 /y*

s4n-γ/*

1st eigenvalue

4n

An

Sn

Sn

Sn

Sn

multiplicity

(n+lX2n-l)

(tt-1)2

(n-l)(2n + l)

(n-l)(2n+l)

(n~l)(2n + l)

(n-l)(2w+l)
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