ON THE SHARP GROWTH OF ANALYTIC CAUCHY-STIELTJES TRANSFORMS

BY D. J. HALLENBECK AND K. SAMOTIJ*

Introduction

Let $\Delta = \{z : |z| < 1\}$ and $\Gamma = \{z : |z| = 1\}$. Let $\mathcal M$ denote the set of complex-valued Borel measures on Γ . For each $\alpha \ge 0$ the family $\mathcal F_\alpha$ of functions analytic in Δ is defined as follows. If $\alpha > 0$ then $f \in \mathcal F_\alpha$ provided that there exists $\mu \in \mathcal M$ such that

(1)
$$f(z) = \int_{\Gamma} \frac{1}{(1 - \overline{\xi}z)^{\alpha}} d\mu(\zeta)$$

for |z| < 1. Also, $f \in \mathcal{F}_0$ provided that there exists $\mu \in \mathcal{M}$ such that

(2)
$$f(z) = f_{\mu}(z) = \int_{\Gamma} \log \frac{1}{(1 - \bar{\zeta}z)} d\mu(\zeta) + f(0)$$

for |z|<1 (Here and throughout this paper every logarithm means the principal branch.). The classes \mathcal{F}_{α} for $\alpha \geq 0$ were first studied in [3] and [4]. Of course, the case $\alpha=1$ is classical and well studied in the literature. The mapping from \mathcal{M} to \mathcal{F}_{α} given by $\mu \to f_{\mu}$ is not one-to-one, i.e., the correspondence between measures and functions in \mathcal{F}_{α} is not unique. Suppose that $\mu \in \mathcal{M}$. Let $|\mu|$ denote the total variation norm of μ and let $\|\mu\| = |\mu|(\Gamma)$. For $|\zeta| = 1$ and $0 < x \leq \pi$ let $I(\zeta, x)$ denote the closed arc on Γ centered at ζ and having length 2x. A function w is defined on $[0, \pi]$ by

(3)
$$w(x) = |\mu|(I(\zeta, x))$$
 for $0 < x \le \pi$ and $w(0) = 0$.

To indicate the dependence of w on ζ and x we sometimes write $w(x) = w(x, \zeta, \mu)$ or $w(x) = w(x, \mu)$. As explained in [1] formula (1) is equivalent to

$$f(z) = \int_{-\pi}^{\pi} \frac{1}{(1 - e^{-it}z)^{\alpha}} dg(t)$$

where g is a complex-valued function of bounded variation on $[-\pi, \pi]$. Similar remarks apply to (2). We point out, that in the standard way, our measures may be regarded as being defined on $[-\pi, \pi]$ rather than on Γ . This is noth-

^{*} This research was partially supported by a grant from Komitet Badan Naukowych. Received December 15, 1992; revised November 29, 1993.

ing more than a technical convenience which we will use in Theorems 1 and 2.

In [1] and [2] the authors examined the interplay between local and global aspects of radial and nontangential limits for functions in $\mathcal{F}_{\alpha}(\alpha \geq 0)$ and how this depends on an analysis of properties of the representing measures.

In this paper we intend to describe precisely in what sense the following two theorems from $\lceil 1 \rceil$ and $\lceil 2 \rceil$ respectively can be said to be sharp.

THEOREM A. Let $\alpha \ge 0$. Suppose that $f \in \mathcal{F}_{\alpha}$ and (1) or (2) holds where $\mu \in M$. Let w be defined by (3) where $\zeta = e^{i\theta}$ and $-\pi \le \theta \le \pi$. Then there are positive constants A and B depending only on α such that

$$|f(re^{i\theta})| \le A \|\mu\| + B \int_{1-r}^{\pi} \frac{w(x)}{x^{\alpha+1}} dx$$
 for $0 \le r < 1$.

THEOREM B. Suppose that $\alpha \ge 1$, g is a complex-valued function of bounded variation on $\lceil -\pi, \pi \rceil$ and let

$$f(z) = \int_{-\pi}^{\pi} \frac{1}{(1 - e^{-it}z)^{\alpha}} dg(t)$$

for |z|<1. Assume that g is differentiable at some θ in $[-\pi,\pi]$. If $\alpha>1$ then $(1-e^{-i\theta}z)^{\alpha-1}f(z)$ has the nontangential limit zero at $e^{i\theta}$. If $\alpha=1$ then $f(z)/\log(1/(1-e^{-i\theta}z))$ has the nontangential limit zero at $e^{i\theta}$.

In Theorems 1 and 2 to follow we show that Theorem A [1] is sharp and in Theorem 3 we show that Theorem B [2] is sharp. We note that when $1 \le \alpha \le 2$, Theorem B was shown to be "sharp" in [Theorem 5, 1].

In our Theorem 3 we strengthen this result by replacing "lim sup" by "lim" and extend the range of α to all $\alpha \ge 1$. This result for \mathcal{F}_{α} classes is analogous to the result of G.D. Taylor [5] for H^p spaces.

PROPOSITION 1. Let $\alpha > 0$ and μ be a non-negative measure on $[-\pi, \pi]$. Then

$$\frac{\min(\alpha, \pi^{-\alpha})}{2^{\alpha/2}} \left[\|\mu\| + \int_{1-r}^{\pi} \frac{w(x)}{x^{\alpha+1}} dx \right] \leq \int_{-\pi}^{\pi} \frac{d\mu(t)}{|1-re^{-tt}|^{\alpha}}$$

and

(5)
$$\int_{-\pi}^{\pi} \frac{d\mu(t)}{|1 - re^{-it}|^{\alpha}} \leq A \|\mu\| + B \int_{1 - r}^{\pi} \frac{w(x)}{x^{\alpha + 1}} dx$$

where $w(x)=w(x, 1, \mu)$ and $r\in[0, 1)$. Also the constants A and B depend only on α .

Proof. The proof of (5) can be found in [1]. To prove (4) we first remark that it is easy to use the identity $|1-re^{ix}|^2=(1-r)^2+4r\sin^2(x/2)$ and the inequality $\sin|x|\leq|x|$ to prove that

$$\frac{1}{|1-re^{ix}|} > \frac{1}{\sqrt{2}} \frac{1}{1-r}$$

when $x \in I_1 = [-(1-r), 1-r]$, and that

(7)
$$\frac{1}{|1 - re^{ix}|} > \frac{1}{\sqrt{2}} \frac{1}{|x|}$$

when $x \in I_2 = [-\pi, \pi] \setminus I_1$.

It follows from (6) and (7) that

(8)
$$\int_{-\pi}^{\pi} \frac{d\mu(t)}{|1-re^{-it}|^{\alpha}} > \frac{1}{2^{\alpha/2}} \frac{1}{(1-r)^{\alpha}} \int_{I_{1}} d\mu(t) + \frac{1}{2^{\alpha/2}} \int_{I_{2}} \frac{1}{|t|^{\alpha}} d\mu(t)$$

$$= \frac{1}{2^{\alpha/2}} \frac{w(1-r)}{(1-r)^{\alpha}} + \frac{1}{2^{\alpha/2}} \int_{1-r}^{\pi} \frac{dw(x)}{x^{\alpha}}.$$

An integration by parts gives

(9)
$$\int_{1-r}^{\pi} \frac{dw(x)}{x^{\alpha}} + \frac{w(1-r)}{(1-r)^{\alpha}} = \frac{w(\pi)}{\pi^{\alpha}} + \alpha \int_{1-r}^{\pi} \frac{w(x)}{x^{\alpha+1}} dx.$$

From (8), (9) and the fact that $w(\pi) = ||\mu||$ we infer that (4) holds.

LEMMA 1. Suppose $0 < \alpha < 2$. Then we have

(10)
$$\operatorname{Re} \frac{e^{i\operatorname{sgn}(t)(\pi\alpha/4)}}{(1-re^{-it})} \ge \cos\left(\frac{\pi\alpha}{4}\right) \frac{1}{|1-re^{-it}|^{\alpha}}$$

whenever $t \in [-\pi, \pi]$ and $r \in [0, 1)$.

Proof. Note that since both sides of (10) are even functions of t, it is enough to prove the lemma for $0 < t \le \pi$. To this end note that for $r \in [0, 1)$ and $0 < t \le \pi$ we have $-\pi/2 \le \operatorname{Arg}(1/(1-re^{-it})) \le 0$, where Arg denotes here (and elsewhere in this paper) the principal argument. Hence we have $-(\pi/4)\alpha \le (\pi/4)\alpha + \alpha \operatorname{Arg}(1/(1-re^{-it})) \le (\pi/4)\alpha$. Using this fact, the fact that $0 < \alpha < 2$ and the identity

$$\operatorname{Re} \frac{e^{i\operatorname{sgn}(t)(\pi^{\alpha/4})}}{(1-re^{-it})^{\alpha}} = \frac{\cos(\alpha(\pi/4) + \alpha \operatorname{Arg}(1/(1-re^{-it})))}{|1-re^{-it}|^{\alpha}}$$

we obtain (10).

In Theorem 1 to follow we prove that Theorem A is sharp when $0 \le \alpha < 2$.

Theorem 1. Suppose $0 \le \alpha < 2$ and μ is a complex measure on $[-\pi, \pi]$. Then there exists a function $f_{\nu} \in \mathcal{F}_{\alpha}$ such that $|\nu| = |\mu|$ and a constant A_{α} depending only on α such that

(11)
$$|f_{\nu}(r)| \ge A_{\alpha} \left[\|\mu\| + \int_{1-r}^{\pi} \frac{w(x)}{x^{\alpha+1}} dx \right]$$

where $w(x)=w(x, 1, \mu)$ and $r \in [0, 1)$.

Proof. We suppose $\alpha > 0$. The proof for $\alpha = 0$ is similar and we do not

give it here. For a complex measure μ on $[-\pi, \pi]$ define a measure ν by $d\nu(t)=e^{i\operatorname{sgn}(t)(\pi\alpha/4)}d|\mu|(t)$ and, consequently,

(12)
$$f_{\nu}(z) = \int_{-\pi}^{\pi} \frac{d\nu(t)}{(1 - e^{-it}z)^{\alpha}}$$

for $z \in \Delta$. Note that $\|u\| = \|\mu\|$. It follows from (12) that

(13)
$$|f_{\nu}(r)| \ge \operatorname{Re} f_{\nu}(r) = \int_{-\pi}^{\pi} \operatorname{Re} \left[\frac{e^{i \operatorname{sgn}(t) (\pi \alpha/4)}}{(1 - re^{-it})^{\alpha}} \right] d |\mu|(t).$$

We infer from (4), (10) and (13) that (11) holds for $A_{\alpha} = (\min(\alpha, \pi^{-\alpha})/2^{\alpha/2}) \cos(\pi \alpha/4)$.

Remark. Theorem 1 shows that for $0 \le \alpha < 2$, Theorem A in [1] is sharp in the most strict possible manner. For $\alpha > 2$ we are not able to do quite as well. The case $\alpha = 2$ (and also $\alpha = 6$, 10, 14, \cdots) remains open.

LEMMA 2. For any $\varepsilon > 0$ there are positive constants a, b, and T such that $T \le \pi$ and for all $r \in [0, 1)$ we have

$$\left| \operatorname{Arg} \frac{1}{(1 - re^{-it})} \right| < \varepsilon$$

whenever $0 \le t \le a(1-r)$ and

(15)
$$\left| \operatorname{Arg} \frac{1}{(1 - re^{-it})} + \frac{\pi}{2} \right| < \varepsilon$$

whenever $b(1-r) \le t \le T$.

Proof. To verify the first inequality we note that without loss of generality we may assume that $\varepsilon < \tan^{-1}(\pi/2)$. Let $a = \tan \varepsilon$. Then for $0 \le t \le a(1-r)$ we have

$$0 \leq \tan\left(-\operatorname{Arg}\frac{1}{(1-re^{-it})}\right) = \frac{r\sin t}{1-r\cos t} \leq \frac{rt}{1-r}$$

$$\leq ra < a = \tan \varepsilon,$$

which gives (14).

We may assume without loss of generality that $\varepsilon < (\pi/2)$ and is such that $A = \tan(\pi/2 - \varepsilon) > 1$. Let $b = 2\pi A$ and T = (2/b). Then we have $T = 1/\pi A$. Noting that $b \ge 2\pi$ and $T < \pi$ we see that the set of t's such that $b(1-r) \le t \le T$ when $0 \le r < 1/2$ is vacuous. So to prove (15) we may assume $r \in [1/2, 1)$. The inequalities $b(1-r) \le t \le T$ are equivalent to $2\pi A(1-r) \le t \le (1/\pi A)$, which implies $(1-r)/t < 1/2\pi A$ and $rt/2 < 1/2\pi A$. Adding the last two inequalities we obtain $(1-r)/t + rt/2 < 1/\pi A$. This can be rewritten as $A < 1/\pi (t/1-r+(rt^2/2))$. Since $1/2 \le r < 1$ we deduce that

(16)
$$\tan\left(\frac{\pi}{2} - \varepsilon\right) = A < \frac{2t}{\pi} \frac{r}{1 - r(1 - (t^2/2))} \le \frac{2t}{\pi} \frac{r}{1 - r\cos t} < \frac{r\sin t}{1 - r\cos t}.$$

It is clear that (15) follows from (16).

LEMMA 3. Let $\alpha>0$ with $(\alpha+2)/4\notin \mathbb{Z}$. Let $\beta=((\pi/2)\alpha-2k\pi)/2$, where k is the greatest integer less than or equal to $(\alpha+2)/4$. Then there exist positive constants $a, b, T, 0< T < \pi$, and c_1 such that

(17)
$$\operatorname{Re} \frac{e^{-i\beta}}{(1-re^{-it})^{\alpha}} \ge \frac{c_1}{|1-re^{-it}|^{\alpha}}$$

for every $r \in [0, 1)$ and every t such that $0 \le t \le a(1-r)$ or $b(1-r) \le t \le T$ or $t=\pi$.

Proof. By the definition of β it follows that $\beta \in (-\pi/2, \pi/2)$. Choose $\varepsilon > 0$ such that $[\beta - \alpha \varepsilon, \beta + \alpha \varepsilon] \subset (-\pi/2, \pi/2)$. Let a, b and T be such that Lemma 2 holds. We have the equality

(18)
$$\operatorname{Re} \frac{e^{-i\beta}}{(1-re^{-it})^{\alpha}} = \frac{\cos\left(\beta - \alpha \operatorname{Arg}\left(1/(1-re^{-it})\right)\right)}{|1-re^{-it}|^{\alpha}}.$$

Suppose $0 \le t \le a(1-r)$. Then (14) gives

(19)
$$-\frac{\pi}{2} < \beta - \alpha \varepsilon < \beta - \alpha \operatorname{Arg} \frac{1}{(1 - re^{-i\iota})} < \beta + \alpha \varepsilon < \frac{\pi}{2}.$$

Let $d=\max\{|\beta-\alpha\varepsilon|, |\beta+\alpha\varepsilon|\}$ and note that $-\pi/2 < d < \pi/2$. Therefore (18) and (19) imply (17) with $c_1=\cos d$.

Now suppose $b(1-r) \le t \le T$. Then (15) implies

(20)
$$-\frac{\pi}{2}\alpha - \alpha \varepsilon < \alpha \operatorname{Arg} \frac{1}{(1 - re^{-it})} < -\frac{\pi}{2}\alpha + \alpha \varepsilon.$$

Using the definition of β and a short computation, (20) gives

(21)
$$\beta - \alpha \varepsilon < \alpha \operatorname{Arg} \frac{1}{(1 - re^{-it})} - \beta - 2k\pi < \beta + \alpha \varepsilon.$$

Again (18) and (21) give (17) with $c_1 = \cos d$.

Finally, if $t=\pi$ then, since $\cos \beta > \cos d$, (17) holds also in this case.

LEMMA 4. Suppose $0 \le r < 1$, $0 \le r \le \pi$, 0 < a < 1 < b and $a(1-r) < \tau < b(1-r)$. Then

(22)
$$\frac{\tau}{b} \le |1 - re^{-it}| \le \frac{2}{a}\tau$$

whenever $0 \le t \le \tau$ and

(23)
$$\frac{1}{2} |1 - e^{it}| \le |1 - re^{-it}| \le 2|1 - e^{it}|$$

whenever $t \ge (\pi/a)\tau$.

Proof. We note that if $0 \le t \le \tau$ then

(24)
$$1 - r \le |1 - re^{-it}| \le (1 - r) + t \le \frac{\tau}{a} + \tau \le \frac{2}{a} \tau$$

and (24) clearly implies (22) since $\tau/b < 1-r$. By the inequality $\sin x \ge (2/\pi)x$, $0 \le x < \pi/2$, we have

(25)
$$\frac{1}{2}|1-e^{it}| = \sin\frac{t}{2} \ge \frac{t}{\pi}.$$

When $t \ge (\pi/a)\tau$, (25) implies

$$(26) \qquad \frac{1}{2} |1 - e^{it}| \ge \frac{\tau}{a}.$$

Hence

$$\begin{aligned} |1 - re^{-it}| &= |e^{it} - r| \ge |e^{it} - 1| - (1 - r) \\ &\ge |e^{it} - 1| - \frac{\tau}{a} \ge \frac{1}{2} |e^{it} - 1|. \end{aligned}$$

It also follows from (26) that

$$\begin{split} |1-re^{-it}| &= |e^{it}-r| \leq |e^{it}-1| + (1-r) \\ &\leq |e^{it}-1| + \frac{\tau}{a} \leq |e^{it}-1| + \frac{1}{2} |e^{it}-1| \\ &< 2|e^{it}-1|. \end{split}$$

So (23) holds.

We remark that in this paper we assume the notation $\sum_{l=k+1}^{l=\infty} a_l = \sum_{l=k+1}^{\infty} \alpha_l + a_{\infty}$.

Lemma 5. Let $\alpha>0$. Then for each positive sufficiently small number q there is an $\eta>0$ so that for each sequence $\mu_0,\cdots,\mu_k,\cdots,\mu_\infty$ of non-negative numbers with $\sum_{l=0}^{l=\infty}\mu_l<+\infty$ there are sequences $\nu_0,\nu_1,\cdots,\nu_k,\cdots,\nu_\infty$ of non-negative numbers, and $\tau_0,\tau_1,\cdots,\tau_k,\cdots,\tau_\infty$ satisfying

(27)
$$\nu_0 = \mu_0, \quad and \quad \eta^2 \sum_{l=k}^{l=\infty} \mu_l \leq \sum_{l=k}^{l=\infty} \nu_l \leq \sum_{l=k}^{l=\infty} \mu_l, \qquad k=0, 1, \dots$$

and

(28)
$$\tau_0 = \pi, \ \tau_\infty = 0, \ \tau_k = q^{2k}\pi \quad or \quad q^{2k-1}\pi, \qquad k = 1, 2, \cdots,$$

such that for each $k \ge 1$ we have either

(29)
$$\frac{a^{\alpha}\nu_{k}}{2^{\alpha}\tau_{k}^{\alpha}} \ge 2 \left[2^{\alpha} \sum_{l=0}^{k-1} \frac{\nu_{l}}{|1 - e^{-i\tau_{l}}|^{\alpha}} + \frac{b^{\alpha}}{\tau_{k}^{\alpha}} \sum_{l=k+1}^{l=\infty} \nu_{l} \right]$$

or

(30)
$$\frac{b^{\alpha} \nu_{k}}{\tau_{k}^{\alpha}} \leq \frac{c_{1}}{2} 2^{-\alpha} \left[\sum_{l=0}^{k-1} \frac{\nu_{l}}{|1 - e^{-i\tau_{l}}|^{\alpha}} + \frac{a^{\alpha}}{\tau_{k}^{\alpha}} \sum_{l=k+1}^{l=\infty} \nu_{l} \right],$$

where a, b and c_1 are numbers from Lemma 3.

Proof. Let q be any positive number such that

$$\frac{2^{\alpha+1}(2^{\alpha}+b^{\alpha})q^{\alpha}b^{\alpha}}{q^{\alpha}} < c_1 \frac{2^{-\alpha}}{2}.$$

We introduce the auxiliary sequence $\{\theta_k\}$ defined by

$$\sum_{l=k}^{l=\infty} \nu_l = \theta_k \sum_{l=k}^{l=\infty} \mu_l, \qquad k=0, 1, \cdots.$$

In the case when $\sum_{l=0}^{l=\infty} \mu_l = 0$ we put $\theta_k = 1$. Conditions (27), (29) and (30) may by rewritten as the following conditions on (θ_k)

(32)
$$\eta^2 \leq \theta_k \leq 1, \quad k=0, 1, \dots, \quad \theta_0 = \theta_1 = 1,$$

(33)
$$\frac{a^{\alpha}\nu_{k}}{2^{\alpha}\tau_{k}^{\alpha}} \ge 2\left[2^{\alpha}\sum_{l=0}^{k-1}\frac{\nu_{l}}{|1-e^{-i\tau_{l}}|^{\alpha}} + \frac{b^{\alpha}}{\tau_{k}^{\alpha}}\theta_{k+1}\sum_{l=k+1}^{l=\infty}\mu_{l}\right]$$

and

$$(34) \qquad \frac{b^{\alpha}\nu_{k}}{\tau_{k}^{\alpha}} \leq \frac{c_{1}}{2}2^{-\alpha} \left[\sum_{l=0}^{k-1} \frac{\nu_{l}}{|1-e^{-\imath\tau_{l}}|^{\alpha}} + \frac{\alpha^{\alpha}}{\tau_{k}^{\alpha}}\theta_{k+1} \sum_{l=k+1}^{l=\infty} \mu_{l}\right]$$

with

(35)
$$\nu_k = \theta_k \sum_{i=1}^{l=\infty} \mu_i - \theta_{k+1} \sum_{i=1}^{l=\infty} \mu_i \ge 0, \ k=0, 1, \dots \text{ and with } \nu_\infty = 0 \text{ if } \mu_\infty = 0.$$

If $\mu_{\infty}>0$ then (35) implies $\sum_{k=0}^{\infty}(\theta_k-\theta_{k+1})^- \leq (1/\mu_{\infty})\sum_{k=0}^{\infty}\mu_k$. This fact together with the inequality $\sum_{k=0}^{\infty}(\theta_k-\theta_{k+1})^+ \leq \sum_{k=0}^{\infty}(\theta_k-\theta_{k+1})^- + \sup_k \theta_k - \inf_k \theta_k$ implies $\sum_{k=0}^{\infty}|\theta_k-\theta_{k+1}|<+\infty$. Therefore $\lim_{k\to\infty}\theta_k$ exists and we define $\nu_{\infty}=(\lim_{k\to\infty}\theta_k)$ μ_{∞} in this case.

We will construct sequences (θ_k) and (τ_k) inductively. To start this induction set $\theta_0 = \theta_1 = 1$, $\tau_0 = \pi$. Next suppose that $n \ge 1$ and that $\theta_0, \dots, \theta_n$ and $\tau_0, \dots, \tau_{n-1}$ are already selected so that (28), (32), (33) or (34), and (35) hold for $k=1,\dots,n-1$. If (33) or (34) is satisfied with k=n, $\tau_n=q^{2n}\pi$, and $\theta_{n+1}=\theta_n$; then, naturally, set $\tau_n=q^{2n}\pi$ and $\theta_{n+1}=\theta_n$. Then $\nu_n=\theta_n\mu_n\ge 0$. Now assume that this is not the case, i.e., we have

(36)
$$\frac{a^{\alpha}\theta_{n}\mu_{n}}{2^{\alpha}(q^{2n}\pi)^{\alpha}} < 2\left[2^{\alpha}\sum_{l=0}^{n-1}\frac{\nu_{l}}{|1-e^{-i\tau_{l}}|^{\alpha}} + \frac{b^{\alpha}\theta_{n}}{(q^{2n}\pi)^{\alpha}}\sum_{l=n+1}^{l=\infty}\mu_{l}\right]$$

and

(37)
$$\frac{b^{\alpha}\theta_{n}\mu_{n}}{(q^{2n}\pi)^{\alpha}} > \frac{c_{1}}{2}2^{-\alpha} \left[\sum_{l=0}^{n-1} \frac{\nu_{l}}{|1-e^{-i\tau_{l}}|^{\alpha}} + \frac{a^{\alpha}\theta_{n}}{(q^{2n}\pi)^{\alpha}} \sum_{l=n+1}^{l=\infty} \mu_{l} \right].$$

We now consider 4 cases.

Case 1. If

(38)
$$\sum_{l=0}^{n-1} \frac{\nu_l}{|1 - e^{-i\tau_l}|^{\alpha}} \ge \frac{\theta_n}{(q^{2n}\pi)^{\alpha}} \sum_{l=n+1}^{l=\infty} \mu_l,$$

then set $\tau_n = q^{2n-1}\pi$, $\theta_{n+1} = \theta_n$, and, consequently, $\nu_n = \theta_n \mu_n$. Then (38) combined with (36) gives

$$\frac{a^{\alpha}\nu_n}{2^{\alpha}\tau_n^{\alpha}q^{\alpha}} < 2\left[(2^{\alpha} + b^{\alpha}) \sum_{l=0}^{n-1} \frac{\nu_l}{|1 - e^{-i\tau_l}|^{\alpha}} \right],$$

which can be rewritten as

$$\frac{b^{\alpha}\nu_{n}}{\tau_{n}^{\alpha}} < \frac{2^{\alpha+1}(2^{\alpha}+b^{\alpha})q^{\alpha}b^{\alpha}}{a^{\alpha}} \sum_{l=0}^{n-1} \frac{\nu_{l}}{|1-e^{-i\tau_{l}}|^{\alpha}}.$$

Clearly, by our choice of q, (31) and (39) imply (34) with k=n.

Case 2. If (38) does not hold and $1 \ge \theta_n > \eta$, then we set $\tau_n = q^{2n} \pi$ and

$$\theta_{n+1} = \eta \theta_n.$$

Note that (40) gives $\eta^2 < \eta \theta_n = \theta_{n+1} \le \eta < 1$ and that

(41)
$$\nu_n = \theta_n \sum_{l=n}^{l=\infty} \mu_l - \eta \theta_n \sum_{l=n+1}^{l=\infty} \mu_l \ge \theta_n \mu_n \ge 0.$$

Combining the negation of (38) with (37) we obtain

(42)
$$\frac{b^{\alpha}\theta_{n}\mu_{n}}{(q^{2n}\pi)^{\alpha}} > \frac{c_{1}}{2}2^{-\alpha}(1+a^{\alpha})\frac{\theta_{n}}{(q^{2n}\pi)^{\alpha}}\sum_{l=n+1}^{l=\infty}\mu_{l}.$$

Inequality (42), together with (40) and (41) implies

$$(43) \qquad \frac{a^{\alpha}\nu_{n}}{\tau_{n}^{\alpha}} > \frac{1}{\eta} \frac{a^{\alpha}(1+a^{\alpha})c_{1}}{2 \cdot 2^{\alpha}b^{2\alpha}} \frac{b^{\alpha}\theta_{n+1}}{\tau_{n}^{\alpha}} \sum_{l=n+1}^{l=\infty} \mu_{l}.$$

Clearly (43) implies (33) (with k=n) if only η is sufficiently small.

Case 3. If (38) does not hold, $\theta_n \leq \eta$ and

$$\frac{1}{\eta} \sum_{l=n+1}^{l=\infty} \mu_l < \sum_{l=n}^{l=\infty} \mu_l,$$

then we set $\tau_n = q^{2n}\pi$, and $\theta_{n+1} = (1/\eta)\theta_n$. Note that $\eta^2 \leq (\theta_n/\eta) = \theta_{n+1} \leq 1$. Moreover, by (44), we have $\nu_n = \theta_n \sum_{l=n}^{l=\infty} \mu_l - (\theta_n/\eta) \sum_{l=n+1}^{l=\infty} \mu_l \geq 0$. Also since we may require that $\eta < 1$, we have $\nu_n = \theta_n \mu_n + \theta_n (1 - (1/\eta)) \sum_{l=n+1}^{l=\infty} \mu_l \leq \theta_n \mu_n$. This last inequality together with the negation of (38) applied to (36) yields

$$\frac{a^{\alpha}\nu_{n}}{2^{\alpha}\tau_{n}^{\alpha}} \leq 2\eta(2^{\alpha}+b^{\alpha}) \frac{\theta_{n+1}}{\tau_{n}^{\alpha}} \sum_{l=n+1}^{l+\infty} \mu.$$

Inequality (45) may be rewritten as

$$\frac{b^{\alpha}\nu_{n}}{\tau_{n}^{\alpha}} \leq 2^{2}\eta \frac{2^{\alpha}b^{\alpha}(2^{\alpha}+b^{\alpha})}{a^{2\alpha}c_{1}} \frac{a^{\alpha}c_{1}}{2 \cdot 2^{\alpha}} \frac{\theta_{n+1}}{\tau_{n}^{\alpha}} \sum_{l=n+1}^{l=\infty} \mu_{l}$$

which clearly implies (34) with k=n if η is sufficiently small.

Case 4. It only remains to deal with the case when $\theta_n \leq \eta$ and neither (38) nor (44) hold. In this case put

$$au_n = q^{2n}\pi$$
 and $heta_{n+1} = \frac{\sum\limits_{l=n}^{l=\infty} \mu_l}{\sum\limits_{l=n+1}^{l} \mu_1} heta_n$.

Since (44) is not true we have $\eta^2 \le \theta_n \le \theta_{n+1} \le (1/\eta)\theta_n \le (\eta/\eta) = 1$. A simple calculation shows that $\nu_n = 0$ and so (34) is trivially satisfied.

LEMMA 6. Suppose that $\alpha>0$ is such that $(\alpha+2)/4$ is not an integer. Let c_1 be the constant from Lemma 3, and let a, b, and b the constants from Lemma 3. Let $0< q< \min(a/b, T/\pi, a/\pi)$. Then there is a constant $c_2>0$ such that for any sequences: $(\tau_k \text{ satisfying } (28) \text{ of Lemma 5, and non-negative } \nu_0, \dots, \nu_k, \dots, \nu_{\infty} \text{ which for each } k, k=1, 2, \dots, \text{ satisfies either } (29) \text{ or } (30) \text{ of Lemma 5 we have}$

$$\left|\sum_{l=0}^{l=\infty} \frac{\nu_l}{(1-re^{-\imath\tau_l})^{\alpha}}\right| \ge c_2 \sum_{l=0}^{l=\infty} \frac{\nu_l}{|1-re^{-\imath\tau_l}|^{\alpha}},$$

for $0 \le r \le 1$.

Proof. Note that for any positive integer k the inequality (29) of Lemma 5 implies that

$$\frac{\nu_k}{|1-re^{-i\tau_k|\alpha}} \ge 2\sum_{l\neq k} \frac{\nu_l}{|1-re^{-i\tau_l|\alpha}},$$

when $a(1-r) < \tau_k < b(1-r)$, while the inequality (30) of Lemma 5 implies that

(48)
$$\frac{\nu_k}{|1 - re^{-i\tau_k}|^{\alpha}} \le \frac{c_1}{2} \sum_{l \ne k} \frac{\nu_l}{|1 - re^{-i\tau_l}|^{\alpha}}$$

where $a(1-r) < \tau_k < b(1-r)$. Indeed, since $\tau_k \le q\tau_l \le (a/\pi)\tau_l$, the first inequality of (23) in Lemma 4 gives

$$2^{\alpha} \sum_{l=0}^{k-1} \frac{\nu_l}{|1 - e^{-t\tau_l}|^{\alpha}} \ge \sum_{l=0}^{k-1} \frac{\nu_l}{|1 - re^{-t\tau_l}|^{\alpha}} \ge 2^{-\alpha} \sum_{l=0}^{k-1} \frac{\nu_l}{|1 - e^{-t\tau_l}|^{\alpha}} \,.$$

Then, since $\tau_k < b(1-r)$ we have

$$(50) \qquad \frac{b^{\alpha}}{\tau_{k}^{\alpha}} \sum_{l=k+1}^{l=\infty} \nu_{l} \ge \sum_{l=k+1}^{l=\infty} \frac{\nu_{l}}{|1-re^{-i\tau_{l}}|^{\alpha}} \ge \frac{2^{-\alpha}a^{\alpha}}{\tau_{b}^{\alpha}} \sum_{l=k+1}^{l=\infty} \nu_{l}.$$

Finally, applying the second inequality of (22) Lemma 4 we get

(51)
$$\frac{a^{\alpha}\nu_{k}}{2^{\alpha}\tau_{k}^{\alpha}} \leq \frac{\nu_{k}}{|1-re^{-\imath\tau_{k}}|^{\alpha}} \leq \frac{b^{\alpha}\nu_{k}}{\tau_{k}^{\alpha}}.$$

Combining (49), (50) and (51) with (29) we obtain (47). The proof of (48) which we do not give here can be given in a similar fashion. If $\{\tau_k\}_{k=0}^{k=\infty} \cap (a(1-r), b(1-r)) = \emptyset$, then since $\tau_1 \leq q\pi \leq T$ we have $\{\tau_k\}_{k=0}^{k=\infty} \subset [0, a(1-r)] \cup [b(1-r), T] \cup \{\pi\}$. Then, by Lemma 3 we have

$$\left|\sum_{l=0}^{l=\infty} \frac{\nu_l}{(1-re^{-i\tau_l})^{\alpha}}\right| \ge \sum_{l=0}^{l=\infty} \nu_l \operatorname{Re} \frac{e^{-i\beta}}{(1-re^{-i\tau_l})^{\alpha}} \ge c_1 \sum_{l=0}^{l=\infty} \frac{\nu_l}{|1-re^{-i\tau_l}|^{\alpha}}.$$

with β from Lemma 3. If this is not the case, then since $(\tau_{l+1}/\tau_l) \le q < (a/b)$, $l=0, 1, \cdots$, we have $a(1-r) < \tau_k < b(1-r)$ for exactly one $k, k \ge 1$. By what was proved earlier, either (47) or (48) holds for this case. If (47) holds then we have

$$\begin{split} \left|\sum_{l=0}^{l=\infty} \frac{\nu_l}{(1-re^{-\imath\tau_l})^{\alpha}}\right| &\geq \frac{\nu_k}{|1-re^{-\imath\tau_k}|^{\alpha}} - \sum_{l \neq k} \frac{\nu_l}{|1-re^{-\imath\tau_l}|^{\alpha}} \\ &\geq \frac{1}{3} \sum_{l=0}^{l=\infty} \frac{\nu_l}{|1-re^{-\imath\tau_l}|^{\alpha}}. \end{split}$$

If (48) holds, then, since all terms of (τ_i) except for τ_k are in $[0, a(1-r)] \cup [b(1-r), T] \cup \{\pi\}$, applying Lemma 3 and the fact that $0 < c_1 < 1$ we get

$$\begin{vmatrix} \sum_{l=0}^{l=\infty} \frac{\nu_l}{(1-re^{-\imath\tau_l})^{\alpha}} \end{vmatrix} \ge \left| \sum_{l\neq k} \frac{\nu_l}{(1-re^{-\imath\tau_l})^{\alpha}} \right| - \frac{\nu_k}{|1-re^{-\imath\tau_k}|^{\alpha}}$$

$$\ge \sum_{l\neq k} \nu_l \operatorname{Re} \frac{e^{-i\beta}}{(1-re^{-\imath\tau_l})^{\alpha}} - \frac{\nu_k}{|1-re^{-\imath\tau_k}|^{\alpha}}$$

$$\ge c_1 \sum_{l\neq k} \frac{\nu_l}{|1-re^{-\imath\tau_l}|^{\alpha}} - \frac{\nu_k}{|1-re^{-\imath\tau_k}|^{\alpha}}$$

$$\ge \frac{c_1}{3} \sum_{l=0}^{l=\infty} \frac{\nu_l}{|1-re^{-\imath\tau_l}|^{\alpha}}$$

which completes the proof.

Before we state Theorem 2 we recall the notation

$$w(t, \mathbf{v}) = \begin{cases} 0 & t = 0 \\ |\mathbf{v}|([-t, t]) & 0 < t \le \pi \end{cases}$$

and likewise for μ . Note that this implies

$$\int_{0}^{\pi} f(t) dw(t, \nu) = \int_{-\pi}^{\pi} f(|t|) d|\nu|(t)$$

for each f continuous on $[0, \pi]$.

THEOREM 2. For each $\alpha > 2$ with $(\alpha + 2)/4$ not an integer there is a positive

constant c_3 depending only on α such that for any measure μ on $[-\pi, \pi]$ there is a measure ν on $[0, \pi]$ such that

$$(52) w(t, \nu) \leq w(t, \mu)$$

for $0 \le t \le \pi$, and

(53)
$$|f_{\nu}(r)| \ge c_3 \int_{-\pi}^{\pi} \frac{d |\mu|(t)}{|1 - re^{-tt}|^{\alpha}}$$

for $r \in [0, 1)$ where f_{ν} is defined by (1).

Remark. Note that by Proposition 1, the right-hand side of (53) in the theorem may be replaced by

$$c_{3}\left[\|\boldsymbol{\mu}\|+\int_{1-r}^{\pi}\frac{w(t,\boldsymbol{\mu})}{t^{\alpha+1}}dt\right]$$

and so Theorem 2 proves that Theorem A in [1] is sharp.

Proof. Without loss of generality we may and so assume that μ is a non-negative measure with support contained in $[0, \pi]$. Let a sequence $\mu_0, \mu_1, \cdots, \mu_{\infty}$ be defined by the formula

$$\mu_k = \mu((q^{2k+2}\pi, q^{2k}\pi]), \qquad k \ge 0$$

and $\mu_{\infty}=\mu(\{0\})$, where q is a positive number for which both Lemma 5 and Lemma 6 hold. Note that q depends only on α . Let (τ_k) and (ν_k) be sequences constructed in Lemma 5 for this q. Define measures $\tilde{\mu}$ and ν by the formulas

$$\tilde{\mu} = \sum_{l=0}^{l=\infty} \mu_l \delta_{\tau_l}$$

and

$$\nu = \sum_{l=0}^{l=\infty} \nu_l \delta_{\tau_l}$$
.

Since the measure $\tilde{\mu}$ is obtained by "sweeping" the mass from the interval $(q^{2k+2}\pi, q^{2k}\pi]$ to the point $\tau_k(k=0, 1, \cdots)$, which is given by (28) of Lemma 5, and which is located to the right of the interval, without moving the mass concentrated at 0 and at π we have

(54)
$$w(t, \tilde{\mu}) \leq w(t, \mu)$$

for $0 \le t \le \pi$. Moreover, since $|1-re^{-ist}| \le s|1-re^{-it}|$ for 0 < t, s > 1, $st < \pi$ and $t \in [0, 1)$, we have

(55)
$$\int_{[0,\pi]} \frac{d\mu(t)}{|1-re^{-tt}|^{\alpha}} = \frac{\mu_{\infty}}{(1-r)^{\alpha}} + \sum_{k=0}^{\infty} \int_{(q^{2k+2\pi}, q^{2k\pi}]} \frac{d\mu(t)}{|1-re^{-tt}|^{\alpha}} \\ \leq \frac{\mu_{\infty}}{(1-r)^{\alpha}} + \sum_{k=0}^{\infty} \int_{(q^{2k+2\pi}, q^{2k\pi}]} \frac{d\mu(t)}{|1-re^{-tq^{2k+2\pi}}|^{\alpha}}$$

$$\begin{split} &= \frac{\mu_{\infty}}{(1-r)^{\alpha}} + \sum_{k=0}^{\infty} \frac{\mu_{k}}{|1-re^{-iq^{2\,k+2\,\pi}|\,\alpha}} \\ &= \frac{\mu_{\infty}}{(1-r)^{\alpha}} + \sum_{k=0}^{\infty} \left(\frac{\tau_{k}}{q^{2\,k+2\,\pi}}\right)^{\alpha} \frac{\mu_{k}}{|1-re^{-i\tau_{k}|\,\alpha}} \\ &\leq q^{-3\,\alpha} \frac{\mu_{\infty}}{(1-r)^{\alpha}} + q^{-3\,\alpha} \sum_{k=0}^{\infty} \frac{\mu_{k}}{|1-re^{-i\tau_{k}|\,\alpha}} \\ &= q^{-3\,\alpha} \int_{[0,\,\pi]} \frac{d\,\tilde{\mu}(t)}{|1-re^{-it}|^{\alpha}}. \end{split}$$

Note that (54) and the second inequality in (27) of Lemma 5 give (52). We next prove that

(56)
$$\int_{[0,\pi]} \frac{d\nu(t)}{|1-re^{-it}|^{\alpha}} \ge \frac{\eta^2 q^{3\alpha}}{2} \int_{[0,\pi]} \frac{d\tilde{\mu}(t)}{|1-re^{-it}|^{\alpha}}$$

for $0 \le r < 1$. First note, it follows from (27), the choice of τ_k and the fact that $w(t, \tilde{\mu})$ is nondecreasing that $w(t, \nu) \ge \eta^2 w(q^3 t, \tilde{\mu})$ for $0 \le t < \pi$ and $w(\pi, \nu) \ge \eta^2 w(\pi, \tilde{\mu})$. Using the foregoing facts, the inequality $(1/|1-re^{-iq^{-3}t}|^{\alpha}) \ge q^{3\alpha}(1/|1-re^{-it}|^{\alpha})$ whenever $0 \le t \le q^3 \pi$ and the fact that $1/|1-re^{-iq^3t}|^{\alpha}$ is nondecreasing, it is readily proved that

$$\int_{0}^{\pi} \frac{dw(t, \nu)}{|1-re^{-it}|^{\alpha}} \ge \eta^{2} \int_{0}^{\pi} \frac{dw(q^{3}t, \tilde{\mu})}{|1-re^{-it}|^{\alpha}} = \eta^{2} \int_{0}^{q^{3}\pi} \frac{dw(t, \tilde{\mu})}{|1-re^{-iq-3}t|^{\alpha}} \ge \eta^{2} q^{3\alpha} \int_{0}^{q^{3}\pi} \frac{dw(t, \tilde{\mu})}{|1-re^{-it}|^{\alpha}} = \eta^{2} \int_{0}^{q^{3}\pi} \frac{dw(t, \tilde{\mu$$

and

$$\int_{0}^{\pi} \frac{dw(t, \nu)}{|1 - re^{-it}|^{\alpha}} \ge \eta^{2} q^{3\alpha} \int_{q^{3\pi}}^{\pi} \frac{dw(t, \tilde{\mu})}{|1 - re^{-it}|^{\alpha}}.$$

These last two inequalities imply (56).

Combining (55) and (56) with (46) of Lemma 6 we obtain (53) with $c_3=q^{6\alpha}\eta^2c_2/2$. The following two lemmas are technical results needed for the proof of Theorem 3.

LEMMA 7. Let $\alpha>1$. Then there is a $\delta>0$ such that for each positive non-decreasing C^1 function $\tilde{\varepsilon}(t)$, $0< t \leq \pi$, satisfying

(57)
$$\frac{d \log \tilde{\epsilon}(t)}{d \log t} \leq \delta, \qquad 0 < t \leq \pi,$$

we have

$$|h(s)| \ge \frac{\tilde{\epsilon}(s)}{4s^{\alpha-1}(\alpha-1)}$$

for all sufficiently small s>0, where

$$h(s) = \int_0^{\pi} (s+it)^{-\alpha} \tilde{\varepsilon}(t) dt, \qquad s > 0.$$

Proof. Note that

(58)
$$\int_0^\infty (1+iu)^{-\alpha} du = \frac{-i}{\alpha-1}.$$

Choose u_1 and u_2 , $0 < u_1 < 1 < u_2 < +\infty$, so that

(59)
$$\int_{0}^{u_{1}} |1+iu|^{-\alpha} du \leq \frac{1}{8(\alpha-1)}$$

and

$$(60) u_2^{1-\alpha} < \frac{1}{16}.$$

Note that (58), (59) and (60) imply that

(61)
$$\left| \int_{u_1}^{u_2} (1+iu)^{-\alpha} du \right| \ge \frac{3}{4} \frac{1}{\alpha - 1}.$$

Choose δ so that $0 < \delta < (\alpha - 1)/2$ and that

(62)
$$\left(1 - \left(\frac{u_1}{u_2}\right)^{\delta}\right) \int_0^{\infty} |1 + iu|^{-\alpha} du \leq \frac{1}{8(\alpha - 1)}.$$

Note that (57) implies that for any $t_0 \in (0, 1)$ we have

(63)
$$\tilde{\varepsilon}(t) \leq \left(\frac{t}{t_0}\right)^{\delta} \tilde{\varepsilon}(t_0), \qquad t_0 \leq t \leq \pi,$$

and

(64)
$$\tilde{\varepsilon}(t) \geq \left(\frac{t}{t_0}\right)^{\delta} \tilde{\varepsilon}(t_0), \qquad 0 \leq t \leq t_0.$$

If $s < (\pi/u_2)$, then we may write

(65)
$$h(s) = s^{1-\alpha} \lceil I_1 + I_2 + I_3 \rceil$$

where

$$I_1 = \int_0^{u_1} (1+iu)^{-\alpha} \tilde{\varepsilon}(su) du, \qquad I_2 = \int_{u_1}^{u_2} (1+iu)^{-\alpha} \tilde{\varepsilon}(su) du$$

and

$$I_3 = \int_{u_0}^{\pi/s} (1+iu)^{-\alpha} \tilde{\varepsilon}(su) du.$$

Since $\tilde{\epsilon}(t)$ is non-decreasing we obtain, by (59),

(66)
$$|I_1| \leq \int_0^{u_1} |1+iu|^{-\alpha} \tilde{\varepsilon}(su) du \leq \frac{\tilde{\varepsilon}(su_2)}{8(\alpha-1)}.$$

While (63), with $t_0 = s u_2$, and (60) yield

$$(67) |I_{\mathfrak{d}}| \leq \int_{u_{\mathfrak{d}}}^{\pi/s} |1+iu|^{-\alpha} \tilde{\varepsilon}(su) du$$

$$\leq \int_{u_{\mathfrak{d}}}^{\pi/s} |1+iu|^{-\alpha} \tilde{\varepsilon}(su_{\mathfrak{d}}) \left(\frac{u}{u_{\mathfrak{d}}}\right)^{\delta} du$$

$$\leq \int_{u_{\mathfrak{d}}}^{\infty} u^{-\alpha} \tilde{\varepsilon}(su_{\mathfrak{d}}) u^{\delta} u^{-\delta} du$$

$$= \frac{1}{\alpha - 1 - \delta} u_{\mathfrak{d}}^{1-\alpha} \tilde{\varepsilon}(su_{\mathfrak{d}}) \leq \frac{\tilde{\varepsilon}(su_{\mathfrak{d}})}{8(\alpha - 1)}.$$

By (64), with $t_0 = su_2$, and by (62), we have

(68)
$$\left| \tilde{\varepsilon}(su_2) \int_{u_1}^{u_2} (1+iu)^{-\alpha} du - I_2 \right|$$

$$= \left| \int_{u_1}^{u_2} (1+iu)^{-\alpha} \left[\tilde{\varepsilon}(su_2) - \tilde{\varepsilon}(su) \right] du \right|$$

$$\leq \int_{u_1}^{u_2} |1+iu|^{-\alpha} \tilde{\varepsilon}(su_2) \left(1 - \left(\frac{u_1}{u_2} \right)^{\delta} \right) du$$

$$\leq \frac{\tilde{\varepsilon}(su_2)}{8(\alpha-1)}.$$

Combining (65), (66), (67) and (68) we obtain

$$\left| h(s) - s^{1-\alpha} \tilde{\varepsilon}(s u_2) \int_{u_1}^{u_2} (1+iu)^{-\alpha} du \right| \leq \frac{3}{8} s^{1-\alpha} \frac{\tilde{\varepsilon}(s u_2)}{\alpha - 1}.$$

This, together with (61) and the fact that $\tilde{\epsilon}$ is nondecreasing gives

$$|h(s)| \ge \frac{3\tilde{\varepsilon}(su_2)}{8(\alpha-1)s^{\alpha-1}} \ge \frac{\tilde{\varepsilon}(s)}{4s^{\alpha-1}(\alpha-1)}$$

when $0 < s < (\pi/u_2)$.

LEMMA 8. Let $\alpha > 1$. Then

$$\lim_{s\to 0^+} s^{\alpha-1} \int_0^{\pi} |(s+it)^{-\alpha} - (s+(1-e^{-it}))^{-\alpha}| dt = 0.$$

Proof. Denote the integrand in the preceding expression by k(s, t). Note that

(69)
$$k(s, t) \leq \frac{2}{|1 - e^{-it}|^{\alpha}} \leq \frac{c}{t^{\alpha}}, \quad 0 < t \leq \pi$$

for some constant c>0. On the other hand since $|(s+it)-(s+(1-e^{-it}))| \le t^2$, $0 \le t \le \pi$, we may write

(70)
$$k(s, t) \leq t^2 \sup_{\alpha \mid z \mid^{-\alpha - 1}}, \quad 0 \leq t \leq \pi,$$

where the supremum is taken over the closed line segment joining s+it and $s+(1-e^{-it})$. If $s \le (1/4)$ and $0 \le t \le (\sqrt{s}/2)$ then for each z in this interval we have

$$|z-(s+it)| \le |(s+it)-(s+(1-e^{-it}))| \le t^2 \le \frac{1}{4} \min(t, s).$$

Hence for those z's we have

(71)
$$|z|^{-\alpha-1} \leq \begin{cases} \left(\frac{3}{4}t\right)^{-\alpha-1}, & s \leq t \leq \frac{\sqrt{s}}{2} \\ \left(\frac{3}{4}s\right)^{-\alpha-1}, & 0 \leq t \leq s. \end{cases}$$

Combining (69), (70) and (71) we get for $0 < s \le (1/4)$,

$$k(s, t) \le c$$

$$\begin{cases} t^{-\alpha}, & \frac{\sqrt{s}}{4} \le t \le \pi \\ t^{-\alpha+1}, & s \le t \le \frac{\sqrt{s}}{2} \\ s^{-\alpha+1}, & 0 \le t \le s. \end{cases}$$

Applying these estimates to $\int_0^{\pi} k(s, t) dt$ we easily obtain the Lemma.

Our next result shows that Theorem B is sharp. When $1 \le \alpha \le 2$ a weaker sharpness result containing a limit superior was obtained in [2].

THEOREM 3. Let $\alpha > 1$ and let $\varepsilon(r)$ be a positive function on $0 \le r < 1$ with $\lim_{r \to 1^-} \varepsilon(r) = 0$. Then there is a differentiable function g(t), $-\pi \le t \le \pi$, so that

$$\lim_{r \to 1^{-}} \frac{\left| \int_{-\pi}^{\pi} (1 - re^{-it})^{-\alpha} dg(t) \right|}{\varepsilon(r)(1 - r)^{1-\alpha}} = +\infty.$$

Proof. Denote $\tilde{\varepsilon}(t) = \sqrt{\varepsilon(1-t)}$, $0 < t \le 1$, and $\tilde{\varepsilon}(t) = \sqrt{\varepsilon(0)}$, $1 < t \le \pi$. Note that if the assertion of the theorem is true with $\varepsilon(r) = \varepsilon_1(r)$ and $\varepsilon_2(r) \le \varepsilon_1(r)$, then it is also true with $\varepsilon(r) = \varepsilon_2(r)$. Hence, by replacing $\varepsilon(r)$ with a larger function we may assume additionally that:

i) $\tilde{\varepsilon}$ is C^1 and nondecreasing on $(0, \pi]$,

ii)
$$\lim_{s\to 0^+} \frac{s^{\alpha-1}}{\tilde{\varepsilon}(s)} \int_0^{\pi} |(s+it)^{-\alpha} - (s+(1-e^{-it}))^{-\alpha}| dt = 0$$
,

(Lemma 8 is used to ensure this),

iii) $(d \log \tilde{\epsilon}(t)/d \log t) \leq \delta$, $0 < t \leq \pi$, with δ being the positive constant from Lemma 7.

To obtain iii) note that for each bounded above real function a(s) defined on a semifinite right-bounded interval with $\lim_{s\to-\infty}a(s)=-\infty$ there is a C^1 function a_1 defined on the same interval, and such that $\lim_{s\to-\infty}a_1(s)=-\infty$ and

 $(da_1(s)/ds) \le \delta$. Then take $a(s) = \log \tilde{\epsilon}(e^s)$ with $\tilde{\epsilon}$ satisfying ii) and replace $\tilde{\epsilon}(t)$ with $\exp(a_1(\log t))$.

Let us define

$$g(t) = \begin{cases} 0, & t \leq 0 \\ \int_0^t \tilde{\epsilon}(u) du, & 0 \leq t \leq \pi. \end{cases}$$

Clearly $g \in C^1[-\pi, \pi]$.

Note that

$$f(r) = \int_{-\pi}^{\pi} (1 - re^{-it})^{-\alpha} dg(t) = \int_{0}^{\pi} (1 - re^{-it})^{-\alpha} \tilde{\varepsilon}(t) dt.$$

Let $h(s) = \int_0^{\pi} (s+it)^{-\alpha} \tilde{\epsilon}(t) dt$. By Lemma 7 we have

(72)
$$s^{\alpha-1}|h(s)| \ge \frac{\tilde{\varepsilon}(s)}{4(\alpha-1)}$$

for all sufficiently small positive s.

Observe now that

$$\begin{split} \left| f(r) - r^{-\alpha} h\left(\frac{1-r}{r}\right) \right| & \leq \int_0^{\pi} \left| (1-re^{-it})^{-\alpha} - r^{-\alpha} \left(\frac{1-r}{r} + it\right)^{-\alpha} \right| \tilde{\varepsilon}(t) dt \\ & \leq \tilde{\varepsilon}(\pi) r^{-\alpha} \int_0^{\pi} \left| \left(\frac{1-r}{r} + (1-e^{-it})\right)^{-\alpha} - \left(\frac{1-r}{r} + it\right)^{-\alpha} \right| dt \,. \end{split}$$

By (ii) above, the last expression multiplied by $(1-r)^{\alpha-1}/\tilde{\varepsilon}((1-r))/r$ tends to 0 when r approaches 1. Hence, by (72) with s=(1-r)/r, for all r sufficiently close to 1 we have

$$(1-r)^{\alpha-1}|f(r)| \ge \frac{\tilde{\varepsilon}((1-r)/r)}{8(\alpha-1)} \ge \frac{\tilde{\varepsilon}(1-r)}{8(\alpha-1)} = \frac{\sqrt{\tilde{\varepsilon}(r)}}{8(\alpha-1)}$$

Therefore, $(1-r)^{\alpha-1}|f(r)|/\varepsilon(r) \ge 1/(8(\alpha-1)\sqrt{\varepsilon(r)})$ for such r's. But since $\lim_{r\to 1^-}\varepsilon(r)=0$, the proof is complete.

Remark. When $\alpha=1$ it is possible to prove that for any $\varepsilon(r)$ as in Theorem 3, there is a differentiable function g(t), $-\pi \le t \le \pi$, so that

$$\lim_{r \to 1^{-}} \frac{\left| \int_{-\pi}^{\pi} \log (1/(1-re^{-it})) dg(t) \right|}{s(r) \log 1/(1-r)} = + \infty.$$

We do not give the details. Such a result with a limit superior replacing the limit was obtained in [2].

REFERENCES

[1] D. J. HALLENBECK AND T.H. MacGregor, Radial limits and radial growth of Cauchy-Stieltjes transforms, Complex Variables Theory Appl., 21 (1993), 219-229.

- [2] D. J. HALLENBECK AND T.H. MACGREGOR, Radial growth and exceptional sets for Cauchy-Stieltjes integrals, Proc. Edinburgh Math. Soc., 37 (1993), 73-89.
- [3] R.A. HIBSCHWEILER AND T.H. MACGREGOR, Closure properties of families of Cauchy-Stieltjes transforms, Proc. Amer. Math. Soc., 105 (1989), 615-621.
- [4] R.A. Hibschweiler and T.H. MacGregor, Multipliers of families of Cauchy-Stieltjes transforms, Trans. Amer. Math. Soc., 331 (1992), 377-394.

DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF DELAWARE NEWARK, DELAWARE 19716 USA

Instytut Matematyki, Politechnika Wrocławska Wybrzeże St. Wyspiańskiego 27 50-370 Wrocław Poland