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ON THE SHARP GROWTH OF ANALYTIC
CAUCHY-STIELTJES TRANSFORMS

By D.J. HALLENBECK AND K. SAMOTIJ*

Introduction

Let A={z: |z|<1} and I'={z: |z|=1}. Let  denote the set of complex-
valued Borel measures on /. For each a=0 the family F, of functions analytic
in A is defined as follows. If >0 then feg, provided that there exists pe
M such that

(1) F@=fue)={ e 4
for |z]<1. Also, fe%, provided that there exists gy such that
(2) 1&)=f @)= Jog g5 O+ 10)

for |z| <1 (Here and throughout this paper every logarithm means the principal
branch.). The classes &, for a=0 were first studied in [3] and [4]. Of course,
the case a=1 is classical and well studied in the literature. The mapping from
M to g, given by p— f, is not one-to-one, i.e., the correspondence between
measures and functions in &, is not unique. Suppose that pe.H. Let |pg|
denote the total variation norm of p and let ull=|g|(I"). For |{]=1 and 0<
x<w let I({, x) denote the closed arc on [ centered at { and having length
2x. A function w is defined on [0, =] by

(3) w(x)=|p|(IE, x) for 0<x=m and w(0)=0.
To indicate the dependence of w on { and x we sometimes write w(x)=w(x, 2,
) or w(x)=w(x, g). As explained in [1] formula (1) is equivalent to
n 1
f={. gy 4

where g is a complex-valued function of bounded variation on [—=, #]. Similar
remarks apply to (2). We point out, that in the standard way, our measures
may be regarded as being defined on [—=, w] rather than on I". This is noth-
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ing more than a technical convenience which we will use in Theorems 1 and 2.
In [1] and [2] the authors examined the interplay between local and global
aspects of radial and nontangential limits for functions in &,(a=0) and how
this depends on an analysis of properties of the representing measures.
In this paper we intend to describe precisely in what sense the following
two theorems from [1] and [2] respectively can be said to be sharp.

THEOREM A. Let a=0. Suppose that f&F, and (1) or (2) holds where p
€M. Let w be defined by (3) where {=¢'’ and —n<0==x. Then there are
positive constants A and B depending only on o such that

S S Al +B]T U dx for 0sr<l.
THEOREM B. Suppose that a=1, g is a complex-valued function of bounded
variation on [—x, m] and let

fo={ =

(e 80

for |z|<1. Assume that g is differentiable at some 6 in [—m=, n]. If a>1
then (1—e *%2)*"'f(z) has the nontangential limit zero at ¢‘°. If a=1 then
F(2)/log(1/(1—e"%%2)) has the nontangential limit zero at e*‘.

In Theorems 1 and 2 to follow we show that Theorem A [1] is sharp and
in Theorem 3 we show that Theorem B [2] is sharp. We note that when 1<
a<2, Theorem B was shown to be “sharp” in [Theorem 5, 1].

In our Theorem 3 we strengthen this result by replacing “lim sup” by “lim”
and extend the range of a to all a=1. This result for &, classes is analogous
to the result of G.D. Taylor [5] for H? spaces.

PROPOSITION 1. Let a>0 and p be a non-negative measure on [—x, n]. Then

i -a 7 7 d
and
RS

where w(x)=w(x, 1, p) and r&[0, 1). Also the constants A and B depend only
on a.

Proof. The proof of (5) can be found in [1]. To prove (4) we first remark
that it is easy to use the identity |1—re*®|?=(1—7r)%+4r sin®(x/2) and the ine-
quality sin|x|<|x| to prove that

1 1 1
(6) |[1—7e*®| >ﬁ 1—7»
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when xel,=[—(1—7), 1—7], and that
1 1 1

(7) [1—ret® | >77|x|

when xel,=[—=x, n]\I,.
It follows from (6) and (7) that
= dp) 1 1 1 1
VTS re e > e gy, SO g, e 40
1 wld—r) 1 Sn dw(x)

= Qa2 ‘(1—-7‘)“ + Qa2 ), xa

(8)

An integration by parts gives

S'r dw(x) w(l—r)  w(m) _I_agx w(x)

1-r  x® 1—r)2 = n¢ 1-r X%

(9) dx

From (8), (9) and the fact that w(zw)=|g| we infer that (4) holds.

LEMMA 1. Suppose 0<a<<2. Then we have

elSBH(t)(ﬂal‘i) 1

o Re ey 2008 () ey

whenever te[—mx, 7] and r<[0, 1).

Proof. Note that since both sides of (10) are even functions of ¢, it is
enough to prove the lemma for 0<t<zm. To this end note that for »[0, 1)
and 0<t<7m we have —n/2<Arg(l/(1—re *"))<0, where Arg denotes here (and
elsewhere in this paper) the principal argument. Hence we have —(z/4)a<
(r/Ha+a Arg 1/(1—re ))<(n/4)a. Using this fact, the fact that 0<a<2 and
the identity

ersen ey cos(a(m/4)+-a Arg(l/(l——re‘“)))_
e (1__7,e-in)a - |1—re‘“|“

we obtain (10).
In Theorem 1 to follow we prove that Theorem A is sharp when 0<a<2.

THEOREM 1. Suppose 0=a<2 and p is a complex measure on [—=, «].
Then there exists a function f,&%F, such that |v|=|p| and a constant A, de-
pending only on a such that

wix) dx]

T
T
1-r x%%!

an |12 Ad el +
where w(x)=w(x, 1, p) and r<[0, 1).

Proof. We suppose @>0. The proof for a=0 is similar and we do not
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give it here. For a complex measure p on [—x, n] define a measure v by
dy(t)=e*e®@aDd| 4| (¢) and, consequently,

(12) f»(z)-——g’j;(—f%

for zeA. Note that |lv|=]lgl. It follows from (12) that

etsgn(t) (Ta/4)

13 | fur) 2Re fun={" Re[ S |alul.

We infer from (4), (10) and (13) that (11) holds for A,=(min(a, 7~%)/2%/%) cos
(ra/4).

Remark. Theorem 1 shows that for 0<a<2, Theorem A in [1] is sharp
in the most strict possible manner. For a>2 we are not able to do quite as
well. The case a=2 (and also a=6, 10, 14, ---) remains open.

LEMMA 2. For any >0 there are positive constants a, b, and T such that
T<x and for all ¥<[0, 1) we have

1
whenever 0<t<a(l—r) and
1 T
(15 |Arg iy | <

whenever b(1—r)<t<T.

Proof. To verify the first inequality we note that without loss of generality
we may assume that e<tan (w/2). Let a=tane. Then for 0=t<a(l1—7r) we
have

rsint < rt
l1—rcost = 1—»

1
_< pumnny
O_tan( Arg a re‘“))—
s<ra<a=tane,

which gives (14).

We may assume without loss of generality that e<(x/2) and is such that
A=tan(x/2—e)>1. Let b=2rA and T=(2/b). Then we have T=1/znA. Noting
that b=27 and T<w we see that the set of ’s such that b(1—r)<t<T when
0=7r<1/2 is vacuous. So to prove (15) we may assume r<[1/2, 1). The ine-
qualities b(1—#)<t<T are equivalent to 2rA(1—7r)<t<(1/zA), which implies
(1-r)/t<1/27 A and rt/2<1/2rA. Adding the last two inequalities we obtain
(A—r)/t+rt/2<1/mA. This can be rewritten as A<1/n(t/1—r-+(rt?/2)). Since
1/2<r<1 we deduce that
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- 2 ” 2t r rsint
1 T )=t T A '
19 tan(G =€) =A<y Gy S w Tremt < Toreost

It is clear that (15) follows from (16).

LEMMA 3. Let a>0 with (a+2)/4&Z. Let B=((n/2)a—2kw)/2, where k15 the
greatest integer less than or equal to (a+2)/4. Then there exist positive constants
a, b, T, 0<T<rm, and ¢, such that

. e f o
(I—re )% = |1—re |

for every r&[0, 1) and every t such that 0<t=<a(l—r) or b(l—r)St<T or t=m.

17 R

Proof. By the definition of f it follows that fe(—=x/2, /2). Choose >0
such that [f—ae, f+ac]C(—n/2, n/2). Let a, b and T be such that Lemma 2
holds. We have the equality

Re- et cos(f—aArg(l/(1—re "))
(I—re-tty* 1—reit|® .

(18)
Suppose 0=t<a(l—r). Then (14) gives

T 1 T
(19) —§<‘B—as<ﬁ—aArg~(»l\_7;l§ <,3+a5<7

Let d=max{|f—acl|, |B+ac|} and note that —=/2<d<m/2. Therefore (18)
and (19) imply (17) with ¢;=cos d.
Now suppose b(1—r)<t<T. Then (15) implies

T

2

Using the definition of 8 and a short computation, (20) gives

a—ac<la Arg—~—1—— <——n~a+ae.

20) (I—re™t) 2

21) B—ac<a Arg —B—2kr<B+as.

B
(1—re*)
Again (18) and (21) give (17) with ¢,=cos d.

Finally, if t== then, since cos f>cos d, (17) holds also in this case.

LEMMA 4. Suppose 0<r<1, 0<r<r, 0<a<l<b and a(l—r)<z<b(l—r7).
Then

22) gll—re-fwg%r

SHEN

whenever 0<t<r and
(23) %Il—e“lg|1—re‘“]§2]l—e”l

whenever t=(n/a)r.
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Proof. We note that if 0<t<7 then
24) I—rS|l-re | SU-r)ts L tes 2o

and (24) clearly implies (22) since t/b<l—r. By the inequality sin x=(2/7)x,
0<x<m/2, we have

1 " Lt
- — ot | — —_— >
(25) 2|l et sin=—.
When t=(xn/a)r, (25) implies
1=t
(26) 5 [1—e*| = e
Hence

|[l—re *|=le"—r|z|e"—1]—(1—7)
) T 1, .
> | ptt — > it
=|et*—1| 7= |et*—1].
It also follows from (26) that
[1—re ¥ |=]e"—r|<|e* —1]+1—7)

) T ) 1, .,

<|eg*t— < | ptt— it

<le*—1|4+ 2 <let'—1|4+ 5 |ett—1]

<2]ett—1].
So (23) holds.
We remark that in this paper we assume the notation 3!Z3, ;=31
+ac.

LEMMA 5. Let a>0. Then for each positive sufficiently small number q

there is an 9>0 so that for each sequence o, -, fts, -+, fteo Of non-negative
numbers with 2}=5 gy < 400 there are sequences vo, vi, *, Vi, =, Yoo 0f NON-
negative numbers, and Ty, Ty, **, Th, -, Tw SALISfYING

=00 l=o0 l=0c0
(27) ”UZHCU and 1)2l—zkﬂl§ l_zk ylé l—k#l, k:0’ 1,
and
(28) 7,=7, =0, 7,=¢**n or q¢** 'z, k=1,2, -,

such that for each k=1 we have either

2%, el b e ]
C Y —9lgasy M Y
(29) g =2[2 P e YR
or
b%y, Cy o TE=2 ) a® i=x» ]
< 9« - —_
(30) e R PR |
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where a, b and ¢, are numbers from Lemma 3.

Proof. Let ¢ be any positive number such that

a+19a ay,apa -a
2 (2+b)(]b< 2

31) - ey

We introduce the auxiliary sequence {f,} defined by

1

=00

=00 l
_kvz=0k12[lz; k:O) ly Tt

L =k

In the case when 3}=Fu,=0 we put 6,=1. Conditions (27), (29) and (30) may
by rewritten as the following conditions on (8,)

(32) PN<0,<1, k=0,1, -, 0,=60,=1,
ave e W b* =g ]
(33) 2%g =2[2 lgo [1—e 7] + Ty 0k+ll=k+l#l
and
by C1 o, R vy a” =% ]
< lo-a 4%
(34) o T 2 2 [lgo [l—etrt| T k74 0k+ll=k+1”l
with

() =045 m—0un 3 m=0, k=0,1, - and with v.=0 if p.=0.

If #,>0 then (35) implies Jo(0r—0r.1)” = (1/¢te)e-opts.  This fact together
with the inequality 3320(0,—04.1) < 25ee(01—804.1)" +sup, 0,—inf, 8, implies
ol 0r—0r.1] <+oo. Therefore lim,. .0, exists and we define vo=(lim;..80;)
U in this case.

We will construct sequences (#,) and (z;) inductively. To start this induc-
tion set 8,=0,=1, 7,==n. Next suppose that n=1 and that @,, ---, 6, and =,
-+, T,_; are already selected so that (28), (32), (33) or (34), and (35) hold for
k=1, ---, n—1. 1If (33) or (34) is satisfied with k=n, r,=¢*"x, and 0,.,=0,;
then, naturally, set r,=¢*"7 and 6,.,,=60,. Then v,=0,¢,=0. Now assume
that this is not the case, i.e., we have

a®fpptn "y Y 620, =
(36) sy <22 B T g )
and

baenﬂn ¢y e n-1 Y; aaan l=o0
&0 > T B e )

We now consider 4 cases.

Case 1. If
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Vi /) l=c

(38) 5 n

= |1—e*tt|® = (¢*"m)* l=§+1#“

then set t,=¢*”"'xw, 6,,,=40,, and, consequently, v,=6@,u,. Then (38) combined
with (36) gives

aay"’ a a
gera <2| @400 S = e |
which can be rewritten as
bavn 2a+1(2a ba)qaba - Vl
(39) % a® g Il e—-nl|a .

Clearly, by our choice of ¢, (31) and (39) imply (34) with k=n.

Case 2. If (38) does not hold and 1>6,>7, then we set r,=¢*"x and
(40) 0n+1:ﬂ6n-
Note that (40) gives 9*<%90,=0,..<7<1 and that

l=o0

l=o00
41) vn=0nl=2nm—770nl S mzbap.20.

Combining the negation of (38) with (37) we obtain

(qZHTr)a'
Inequality (42), together with (40) and (41) implies

i aa<1+aa)(:1 ba0n+1 I=x
5 n  2:2°0% T8 1S+l

(42)

>—2 *(14a%)

1=
Eﬂz

(zn)zm

(43) L

Clearly (43) implies (33) (with k=mn) if only % is sufficiently small.

Case 3. If (38) does not hold, #,<% and

1 =
2 yom < S,
then we set 7, =¢*"x, and 6,.,=(1/9)f,. Note that 7*<(0./9)=0,.<1.
Moreover, by (44), we have v,=60,3i=7p—(0./7)Zi=5,.,:=0. Also since we
may require that »<1, we have v,=0,p.+0,.(1—1/9)3}=5,.p1<0,p,. This
last inequality together with the negation of (38) applied to (36) yields

45) AT

Inequality (45) may be rewritten as
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by, 22b2(2%+b%) a“c; Opny ==
<92
72 =2 a*%c, 2:2% 8 z=§+1‘a'

which clearly implies (34) with 2=mn if 7 is sufficiently small.

Case 4. It only remains to deal with the case when 6,=<7 and neither (38)
nor (44) hold. In this case put

00
n#l
t,=¢*"n and O0,.,=-= 6.,.

2#1

l=n+1

Since (44) is not true we have 7°<6,<0,.,=<(1/9)0,<(n»/n)=1. A simple cal-
culation shows that v,=0 and so (34) is trivially satisfied.

T

-~
[

LEMMA 6. Suppose that a>0 1s such that (a+2)/4 1s not an integer. Let ¢,
be the constant from Lemma 3, and let a, b, and T be the constants from Lemma
3. Let 0<g<min(a/b, T/x, a/x). Then there 1s a constant ¢,>0 such that for
any sequences: (v, satisfying (28) of Lemma 5, and non-negative vo, -, vi, =+,
Ve Which for each k, k=1, 2, ---, satisfies either (29) or (30) of Lemma 5 we have

l=c0 Yy =00 v

%t > g
(46) z‘:‘"o (I—re)* =Cgl§0 |l—re*et|«’

for 0=r=<1.

Proof. Note that for any positive integer %k the inequality (29) of Lemma
5 implies that

Ve >2 Vi

47
“7) |[1—re*te | Fk |l—rere|’

when a(1—7»)<t,<b(l—r), while the inequality (30) of Lemma 5 implies that

Y S U W S
[1—re 2|2 = 2 &k |1—re it

48)

where a(1—r)<7,<b(l1—r). Indeed, since r,<¢7:<(a/7)7,, the first inequality
of (23) in Lemma 4 gives

k-l Vg - Vi -
a > >2 S I
2 lgo [1—e t7t|a = ; [I—re?te|® 22 ; [1— e‘“l
Then, since 7,<b(1—r) we have
b® 1= l=c Vi 27%q® i=o
< >
(50) 7 l=zk}+1yl__~ %4-1 [l—re | = of l=§+1yl'

Finally, applying the second inequality of (22) Lemma 4 we get
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a’vy Vi by,

2%c¢ T |1—re R|* T g
Combining (49), (50) and (51) with (29) we obtain (47). The proof of (48)
which we do not give here can be given in a similar fashion. If {r,}:=TN
(a(l—7r), b(1—7))=0, then since 7,<qgr<T we have {r:}{=5C[0, a(l—r)]U
[b(1—7), T]U{x}. Then, by Lemma 3 we have

A

(61

l=co V1 >l=oo R oA l=c0 v
B A ey |Z BV R G e 26 B T -

with 8 from Lemma 3. If this is not the case, then since (z;../7)<¢<(a/b),
(=0,1, ---, we have a(l—r)<7,<b(l—7) for exactly one k., 2 =1. By what
was proved earlier, either (47) or (48) holds for this case. If (47) holds then
we have

== Vi Vi Y
> -
l§) (I—re~*71)* [1—re~*k | l#zle [1—retit]®

1 == Vi
= 3% [1—retiyye’

™

If (48) holds, then, since all terms of (r;) except for 7, are in [0, a(l1—7»)]U
[b(1—r), T]U{x}, applying Lemma 3 and the fact that 0<c¢,;<1 we get

zio(l_—?”el“T Z| 5 (1—;:;-“1)“ B ll—rvek‘“kl"
= Re (1—er:in>a B |1—ruek-"k|“
gc‘lgk Il—rvel"”‘l"‘ B |1—7’yeli“’°|“

which completes the proof.

Before we state Theorem 2 we recall the notation
0 t=0
w(t, v)=
lvI(L—t, £]) 0<t<m
and likewise for g. Note that this implies
[l rwawe, »={"_ramaiie
for each f continuous on [0, x].

THEOREM 2. For each a>2 with (a+2)/4 not an integer there is a positive
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constant c; depending only on a such that for any measure p on [—mx, &] there
is a measure v on [0, 7] such that

(52) w(t, vSw(@, p)
for 0Zt<m, and

= dlpl®)
(53) |fu(7’)|ZCsS_”W
for r&[0, 1) where f, 1s defined by (1).

Remark. Note that by Proposition 1, the right-hand side of (53) in the
theorem may be replaced by

x4 Lt at]

and so Theorem 2 proves that Theorem A in [1] is sharp.

Proof. Without loss of generality we may and so assume that g is a non-
negative measure with support contained in [0, #]. Let a sequence g, g1, -,
/- be defined by the formula

ﬂk:“u((qzk+2ﬂr qZkE]); kgo

and po=pu({0}), where ¢ is a positive number for which both Lemma 5 and
Lemma 6 hold. Note that ¢ depends only on «. Let (z;) and (v:) be sequences
constructed in Lemma 5 for this ¢q. Define measures # and vy by the formulas

and

Since the measure f is obtained by “sweeping” the mass. from the interval
(g****x, ¢**x] to the point 7,(k=0, 1, --), which is given by (28) of Lemma 5,
and which is located to the right of the interval, without moving the mass
concentrated at 0 and at = we have

(54) wit, HSw(t, p)

for 0<t<m. Moreover, since |1—re | <s|l—re | for 0<t, s>1, st<m and
re[0, 1), we have

(55) | ) _ _pe +3 1 dpt)

.71 |[1—re #|* (1—7r)%  £=0)@2t+2r.q2kzy |l—re™ |

IA

e+ 3 dptt)

(1—7)% ' iSo)@2k+2r.q2ka] |1_re-tq2k+2n|a
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R had U
~(L=r)" + kgo |l—pea®k+in|a

M STk N\ M
- (1—7’)“ +,§0< qzk+2n. ) |1—re"”k|"
—sa__ M= ~3a = ol
=q (1—») T4 i=o |1—re k|
_—_q"Sag dﬁ(t)
to.z1 |1—re ]’

Note that (54) and the second inequality in (27) of Lemma 5 give (52).
We next prove that

O vl .

to.x1 |1—re” ¥~ 2 Jrom |[1—re i@

(56) |

for 0<r<1. First note, it follows from (27), the choice of z, and the fact that
w(t, ) is nondecreasing that w(, v)=9*w(g’t, 7) for 0=t<m and w(w, v)=7n w(x,
7). Using the foregoing facts, the inequality (1/|1—re % |%)>=g*(1/|1—re % |%)
whenever 0<t<¢°r and the fact that 1/|1—re*?’*|* is nondecreasing, it is
readily proved that
Sn dwt, v) ZSx dw(g®, @) 2Saﬂﬂ dwt, @) qug«zsz dw(t, i)
0

o [l—re | =7 Jo [I—re ¥ |c " Y Jo  |1—pere 7| = |[1—re~it|a

and
Sﬂ dw(t, v) _ , Mgz dw(t, @)

° |l_re—it|a= a3z ll_re—it|a'
These last two inequalities imply (56).
Combining (55) and (56) with (46) of Lemma 6 we obtain (53) with c;=¢°*%%c,/2.
The following two lemmas are technical results needed for the proof of
Theorem 3.

LEMMA 7. Let a>1. Then there is a 0>0 such that for each positive non-
decreasing C' function &), 0<t<m, satisfying

d log &(t) - -
(67) “dlogt <0, O<iZm,
we have
. i(s)
|h($)12 Feamiq =)

for all sufficiently small s>0, where

h(s)=S:(s—|—z't)“"‘é(t)dt, s>0.
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Proof. Note that

o =i
(58) [+ edu=—"1.
Choose u, and u,, 0<u,<1<u,<-+oo, so that
Uy . —a < 1
(59) SO 1+l dus g
and
(60) u""<i
2 16 °
Note that (58), (59) and (60) imply that
N 3 1
®1) ‘S (i edu| 25—
Choose 0 so that 0<d<(a—1)/2 and that
U \3\ (= . 1
—— -—a < -
(62) (1 u2) )So L] *dus g~
Note that (57) implies that for any #,&(0, 1) we have
t\é
(63) 0=y ) e, tstsm,
and
(64) (0z(5) e, 0sts.
0
If s<(m/u,), then we may write
(65) h(s)=s""*[[,+I,+ 1]
where

=§:‘<1+iu)-aé(su)du, Iz’:guz(l—i—z‘u)“’é(su)du
U1
and
/s
IS:S (A4ru)"*&(su)du.
Uy
Since &(¢) is non-decreasing we obtain, by (59),

g(suy)

8(a—1) "

(66) |IIISS [14iu|"*5(su)du<s

While (63), with t,=su,, and (60) yield
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67) |13|§S |14iu|~&(su)du
U \9
< @ d
_S [147u|" e(suz)( z) u
gg w E(su)uluz’du
1
=153 up~*E(sum) = Se((suzl))

By (64), with t,=su,, and by (62), we have

(68)

e(sug)g A-+iw)*du—I,

— H“f(l +z'u)—a[g(su2)—g(su)]du'

gg"f |144u| -ae(suz)(l—(%)")du

2

&(sus)
= 8(a—1)"

Combining (65), (66), (67) and (68) we obtain

3 gi-a e(suz)
=33

h(s)—s““é(suz)g A+in)-edul < A

This, together with (61) and the fact that & is nondecreasing gives

3&(suy) < ¥ &(s)

|h($)| g S(a_l)sa—l = 4sa—l(a_1)

when 0<s<(m/u,).
LEMMA 8. Let a>1. Then

lim s°- 'S [(s4i0)"*—(s+(1—e )| dt=0.

s—»o
Proof. Denote the integrand in the preceding expression by k(s, t). Note
that
2 ¢
2 <
Il__e—izla = ia ’

for some constant ¢>0. On the other hand since |(s+it)—(s+(1—e )| <12,
0<=t<7, we may write

(69) k(s, )= 0<t<m

(70) k(s, HE<t?*sup a|z| %7}, 0<t<m,
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where the supremum is taken over the closed line segment joining s-+it and
s+(1—e™ ). If s<(1/4) and 0<t=(+/s/2) then for each z in this interval we
have

|2 (s | S |(s-Hi)—(s+(1—e" )| S5 minG, 5).
Hence for those z’s we have
3 \cani V5
(7" s==7
(%s)‘“”, 0<t<s.

Combining (69), (70) and (71) we get for 0<s<(1/4),

(71) lz]7*7'=

Vs
e, —=<i<m
4
k(s, H)Zc
pant sy ¥VS
== 2
sTatL 0<t<s.

T
Applying these estimates to Sok(s, t)dt we easily obtain the Lemma.

Our next result shows that Theorem B is sharp. When 1<a<2 a weaker
sharpness result containing a limit superior was obtained in [2].

THEOREM 3. Let a>1 and let &(r) be a positive function on 0=<r<l with
lim,_,-e(r)=0. Then there is a differentiable function g(t), —n<t=m, so that

| a—remyedgn
e

Proof. Denote é®)=+~'e(I—¢), 0<t<1, and &{t)=+/¢(0), 1<t<=m. Note that
if the assertion of the theorem is true with e(r)=¢,(r) and ,(r)<e,(r), then it is
also true with e(r)=ey(r). Hence, by replacing ¢(r) with a larger function we
may assume additionally that:

i) & is C! and nondecreasing on (0, x],

a 1

i) lim S |(s4-it)=* —(s (L — 1) | dt =0,
s>0+ &(8)

(Lemma 8 is used to ensure this),

iii) (d log &(t)/d log t)<4d, 0<t<m, with ¢ being the positive constant from
Lemma 7.

To obtain iii) note that for each bounded above real function a(s) defined
on a semifinite right-bounded interval with lim,._.a(s) = —oco there is a C!
function a, defined on the same interval, and such that lim,._.a,(s) = —co and
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(day(s)/ds)<d. Then take a(s)=log &(e*) with & satisfying ii) and replace &()
with exp(a,(log t)).
Let us define
0, =0

g(t)={ ¢
Soé(u)du, s,

Clearly geC'[—nm, «].
Note that

fn={"_a—reyedgw={"a—re awar.

Let h(s)=S:(s+z’t)'“é(z‘)dt. By Lemma 7 we have

a-1 &(s)
72) RS2 40
for all sufficiently small positive s.

Observe now that

‘f(r)—r‘“h( s )l gs:‘(l—-re‘“)‘“—f"a(

r 4 +it)_a’é(t)dt

r

(1" +<1—e-"))'“—( l:r +z‘t)"“}dt.

r

éé(n)r“"gz

By (ii) above, the last expression multiplied by (1—r)¢"!/&(1—7#))/r tends to 0
when » approaches 1. Hence, by (72) with s=(1—r)/r, for all r sufficiently
close to 1 we have

A=r)fnlz

(A—n)/r)_ &l=r) _ Ve(r)
8a—1) = 8a—1)" 8(a—1)

Therefore, 1—»)*|f(r)|/e(r) = 1/(8a—1)ve()) for such 7’s. But since
lim,.,-e(r)=0, the proof is complete.

Remark. When a=1 it is possible to prove that for any &(r) as in Theorem
3, there is a differentiable function g(¢), —x<t<=, so that

|7 10g /1—re-dec

e = T
We do not give the details. Such a result with a limit superior replacing the
limit was obtained in [2].
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