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GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS
IMMERSED IN SPACE FORMS AND ELLIPSOIDS

By XUE-SHAN ZHANG

Abstract

Let M™ be a compact submanifold of a simply connected space form
N™(¢) with ¢=0. Denote by s and H the square length of the second funda-
mental form and the mean curvature vector field of M respectively. By in-
troducing a selfadjoint linear operator Q4 associated with the shape operator
of M, we show that there are no stable currents in M and topologically, M
is a sphere if s<H?/(m—1). For an immersed submanifold of the ellipsoid
we show that appropriate assumption on Q4 implies the vanishing of a given
homology group.

1. Introduction

Let M™ be a submanifold immersed in a Riemannian manifold N*. Denote
by V(N, M) the normal bundle of M in N. For a smooth section ve C(V(N, M)),
the shape operator A, determined by v is given by

(AKX, YH=CX, Y), v,

where X, YeC(TM) and h is the second fundamental form of M.
In 1973, by using techniques of the calculus of variations in geometric
measure theory, H.B. Lawson and J. Simons [4] showed the following

THEOREM LS. Let M™ be a compact submanifold of S™ and p a given
integer, p(0, m). If for any x&M and any orthonormal basis {e,, e,} (=1,
o, pra=p+1, -, m) of T:M the following condition is satisfied

lg [Znh(et; ea)||2_<h(eu el)) h(ea; ea)>]<}b<m_p)»

then there is no stable p-current in M and hence
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Hy(M, Z)=H,p_(M, Z)=0.

Theorem LS has been extended to the submanifolds of E® and S*:xS™ by
Y.L. Xin [7] and the author [8], respectively.

On the other hand, as an extension of the well-known gap theorem in the
minimal submanifolds, M. Okumura [5] proved that

THEOREM O. Let M™ be a compact, connected submanifold immersed in a
Riemannian manifold of non-negative constant curvature. Suppose that
(c) the connection of the normal bundle is flat and the mean curvature vector
field H is parallel with respect to the connection of the normal bundle.
If s——-%} tr A%, the square length of the second fundamental form, satisfies s<

H?/(m—1), then M is totally umbilical.
In this paper, we shall cancel the condition (¢) in Theorem O and prove that

THEOREM 1. Let ¢: M™—N™c) be an isometric immersion of a Riemannian
manifold M™ into a simply connected space form N™(c¢), m=dim M=3. If one
of the following is satisfied :

Cl. M is compact ¢=0 and s<H?*/(m—1) on M,

C2. M is complete, ¢>0 and s<H?/(m—1) on M,
then

i) there exist no stable p-currents in M and hence

Hy M, Z)=0  for p=1,2, -, m—1;

il) M is homeomorphic to a sphere when m=4.

Remark. Just as Okumura [5] indicated, the condition s<H?/(m—1) is the
best possible when N*=FE". For example, let M™=S™"'XE'c,E™*!, then s=
H?/(m—1) on M.

Now we give an example for Theorem 1. Consider the ellipsoid

M™: x4 x24 - 20+ (X n /D=1 (c>0).

Denote by » the position vector of the point x&eM™ in E™*'. Then M can
also be expressed by

r=(sin @, sin 6,,_, --- sin 8, sin @, ---, cos @, sin @, ccos ).
A calculation indicates that the shape operator A of M can be given by

(1.1) AX=aX+bX, t)t,
where XeC(TM) and



264 XUE-SHAN ZHANG
t=(0r/00)/)0r/a8| , a=c/(cos?f+c® sin?@)/? ,
b=c(1—c?) sin?f/(cos?@+c? sin%f)*/% .

(1.2)

Choose an orthonormal basis {e;} of T.M such that e, is parallel to dr/a0,
(=1, 2, ---, m, 6;=0). Then from (1.1),

s=tr A’= >} (A%, e,>=(a+b)?*+(m—1)a?,

H*=(tr AP=(2<4e,, epy=[(a+b)+(m—Dal*.

And thus
H?/(m—1)—s=(a+b)[ma+(2—m)b]/(m—1).

It is easy to verify that a+6>0 and ma+@2—m)b>0 when ¢2>(m—2)/2(m—1).
Therefore, s<H?/(m—1) on the ellipsoid with ¢*>(m—2)/2(m—1).

The above example tells us, just as on S™ [4, p. 438], there is no stable
p-currents on the ellipsoid with ¢*>(m—2)/2(m—1). Besides, if the condition
(c) in Theorem O is canceled, then the submanifolds in Theorem O do not neces-
sarily have to be totally umbilical.

Furthermore, we shall prove the following

THEOREM 2. Let ¢: M™—N™ be an isometric immersion of a compact Rie-
mannian manifold M in the ellipsoid N™: x,®+ -+ +x,2+x,.,%/c*=1, ¢<1 and p
a given integer, p<(0, m). If for any xEM and any p-subspace V of T .M

tr QA< p(m—p)c®,

Then there is no stable p-current in M and
HyM, Z)=H,,_,(M, Z)=0.

Remark. When ¢=1, Theorem 2 is due to Theorem LS.

2. Rectifiable currents

In this section we shall give a brief description of rectifiable currents (ref.
[3, 4, 8]).

Let M™ be an m-dimensional compact Riemannian manifold with Rieman-
nian metric <,)» and Levi-Civita connection V. Denote by 4? Hausdorff p-
measure on M. A subset S of M is called a p-rectifiable set if S is a countable
union of disjoint p-dimensional C!' submanifolds, up to sets of 4 ?-measure zero.
Consider over S an 4(?P-measurable section & : S—=A?TM with the property that
for 4f?-almost all xS, &, is a simple vector of unit length which represents
T.S. Such a pair (S, &) is called an oriented, p-rectifiable set.

The set of rectifiable p-currents is defined by
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Ry M)={8= 3 18, 8u=(Sn, &), M(@)= I ns?(Sn)<oo} .

In the case that © and 0 are both rectifiable currents, & is called an integral

p-current. The space of integral p-currents is denoted by 9 ,(M). The direct

sum T(M)=@T ,(M) together with 0: T«(M)—T (M) forms a differential chain
¥4

complex. For this complex there are the following results due to Federer and
Fleming [3].

THEOREM FF. For each p=0 there s a natural isomorphism
Hy(T«(M))=H,M, Z) .
And for each ac H(T«(M)) there exists a current @< a of “least area”, that is,

M@)=M(©)
for all &'<a.

For a smooth vector field XeC(TM), let ¢,: M—M be the l-parameter
group of diffeomorphisms generated by X. A current = R,(M) is said to be
stable if for each vector field X there is an ¢>0 such that

M($uBS)=M(E)
for |t|<e.
Lawson and Simons [4] derived the following formulae :

d o e 2
TM©.e)| _=[a@), Sadlel,

d2

2.1) i

M(pu®)| _=[1~<a*@), Er+<a¥a* @), &

HIa* @I+ 2X, S} dIS]
where a* : APT ., M—APT .M is a linear map given by
a*(XiN - /\Xp)=§Xx/\ e ANGFXIA AN X,
aX(Xj)=VXJ~X s
and Vy, X: A?T . M—A\?T .M is another linear map defined by
VX,XI/\M/\XPX=?X1/\ = ANVx 2, XN - ANXp,

VX,XjX:VXVXjX_VVXXjX .

To any simple p-vector E&A?T .M and XeC(TM), let ¢, be the flow
generated by X, and define
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Q0= "hgutl| .

Then the expression (2.1) can be denoted by

dZ
de

If X=Vf for some feC¥M) and f{e, e.} (=1, ---, p; a=p+1, ---, m) is an
orthonormal basis of T .M with é&=e;Ae,A - Ae,, then we can obtain

2.3) Qe(X)=[X<a*(ey), e]>]2+212 <a*(ey), ea>2+;<VX.ery e .
J ,a

2.2) M@.®)| _=Sn|, Q:,X)ds2(x).

3. Linear operator Q*

For a p-rectifiable set S in M, we know that at 4(?-almost all point x&S,
there exists an approximate p-space T,.SCT .M, to S. In this section we shall
introduce a selfadjoint linear operator @“ on 7.,S and prove some lemmas.

Let ¢: M™—N™ be an isometric immersion of a Riemannian manifold M
into a Riemannian manifold N. The Levi-Civita connections of M and N are
denoted by V and ¥ respectively.

For a given integer p=(0, m) let V be a p-dimensional subspace in 7T ,M.
And for veC(V(N, M)), let A, be the shape operator determined by y. Define
a map B,:V—V associated with A, by

B,X=orthogonal projection of A,X onto V,
where XeV. 1If {e;} is an orthonormal basis of V, we have

@.1) B,X=3<AX, ee, .

Let {v;} be an orthonormal basis of the normal space V.(N, M) and A;=A4,,.
Define a selfadjoint linear map Q4:V—V associated with the immersion ¢ by
(3.2) Q4X= ; [2(3<A2X, edes— B *X)—(tr A,—tr B3)BaX],

where XV and {e;} is an orthonormal basis of V. Let {e.} be an orthonormal

basis of V* which is the orthogonal complement of V in T,M. Then {e, e.}
is an orthonormal basis of T.M and from [8] the trace of Q4 is

(B.3)  trQ*=2<Q%,, en= ? [2 3 <Az, ea)—(tr Az—tr By)tr B;] .

LEMMA O [5]. Let a,, a,, -, @, and b be m+1 (m=2) real numbers satis-
fying the inequality

Barto<(Ba)  ep ),
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then 2asa.>b (resp. =) for any s+t.

Let s=>tr A;%, H=3(tr Ay)v;, Now we shall prove
a P

LEMMA 1. Let m=3 and pe0, m). If s<H?/(m—1) (resp. <), then for
any x&M and any p-subspace V in T .M,

tr Q4<0 (resp. <).

Proof. If s<H?/(m—1), because s=0 we see that H#0. So we can choose
an orthonormal basis {v;} of V.(N, M) such that H=(tr A,)v;. Hence tr A;=0
for A=2.

Because the maps B,: V—V and B,*: V*—V* associated with A, are selfad-
joint linear, we can choose orthonormal basises {e;} of V and {e,} of V* re-
spectively such that

Blel'—:,uiel ’ {ea:ﬂaea .

So from (3.1) we have

<Aleu e]>:<Bleu e;>=,u15i] ) <Alea: eﬂ>:<Beray eﬁ>:,ua5aﬂ )
and then

tr A= <A, e+ Z<{Aieq, ad=Z ptit+ 2 ta

3.4) tr Bi=>u,, tr Ai—tr Bi= 3 o,

s=2pi+2pi4+2 3 (Al)*+ 122[ 3 (A2 2 (Al + %(Aﬁ,e)zj ,

) a 1, a 2 ) L a a,
where A% =<(Aze,, e,>, Al,=<(Ase,, e.,>, Alp=CA;e,, eg>. Hence the condition
s<H?/(m—1) becomes
(3.5) S pi+ 2 phHb<(Z pt+ 3 pa)?/(m—1),
where
b=23% (A}a)2+12 [2 3 (Al)+ = (AL + Z}g(x‘lfxﬂ)zl .
1, a =2 1, a 1.7 a,

Using Lemma O to (3.5), we get that
(3.6) 2ﬂkﬂ7>b:21 S (Al)+ IZ‘, [ =A%)+ ZER (Adp].

22 .7

Combining (3.3), (3.4) with trrAI:O (A=2) and (3.6) gives
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trQ4=23 CAiey, e0)*— 2 pruptat 2 [2 3 <Aze,, e)*+(tr By)’]
. a L a z2 L a

2 2 _1_ 2 2
<23 (AL—pim—p){,Z (Al +5 LT AL+ T (k)

+ Ez(z <Aieu e1>)2
=[2—p(m—p)] g}a(z‘l’}a)z-— %p(m—- ») Ezf E (AL + Eﬂ(%ﬁ)”]

1

+ B{ 4by— 5 pm—p[S Ahy+ 24k}

Because m=3 and 0<p<m, 2—p(m—p)<0. Therefore,
1
(3.7) tr Q< 3 {(S Ab)— 3 pim— IS AL+ 3 (44}
Noting that for 4=2, tr A;=0, that is
2A4i+2 Al}xa=2<Aleh et>+2<A1ea’ ea>=0 ,

we have

aye— 1 ayey L 1y ? 1y M—P PRy
3.8) (Ef“ At —‘2‘(?{‘111) +7(§ A%a) _S_fg(z‘lu) -I-—T%}(Aaa) .

Substituting (3.8) into (3.7), we obtain tr Q4<0.
Repeating the above, if s<H2/(m—1) and H+#0 we have tr Q4<0. If s<
H?/(m—1) and H=0, then A;=0 and hence tr Q4=0. Q.E.D.

Let the ambient space N be of constant curvature ¢, and s<H?/(m—1) on
M. Choose an orthonormal basis {v;} of V.(N, M) such that H=(tr A;)v;, and
hence tr A;=0 when A=2. And choose an orthonormal basis {E;} of T.M so
that A,E,=AFE; (s=1, ---, m). Then the condition s<H?/(m—1) gives

283132+ 2z S (AE,, Ep*<(ZA)*/(m—1).

Az2 8.t

From Lemma O, for any s+t we have
(3.9) 22325>22 D<KAE,, Et.
22 q. 7

L

Let v be a unit vector in T,M and m=3. Applying (3.9) and the equation of
Gauss we can obtain
Ric (v, v)>(m—1)c.

If s<H?*/(m—1), we can get that Ric (v, v)=(m—1)c. Hence from Myers’ theo-
rem (ref. [1, p. 28]) we have
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LEMMA 2. Let M™ be a submanifold immersed in a Riemannian manifold
of comstant curvature ¢ and m=3. If M s compact, ¢=0 and s<H?/(m—1) on
M, then the fundamental group of M 1s finite. If M is complete, ¢>0 and s<
H®/(m—1) on M, then the fundamental group of M 1s finite and M 1s compact.

Now assume ¢: N*—E" is an isometric immersion of the Riemannian mani-
fold N in the Euclidean space E'. Let D be the Levi-Civita connection on E.
Associated with the isometric immersion x=¢-¢: M™—E", the shape operator
A} determined by veC(V(E', M)) is given by

AlY =—(Dy)",
where YeC(T'M). Especially, if veC(V(N, M)),
(3.10) AlY =—(Dp)T'=—[Vpw+hly, Y)IT=—(—AY +VE)T=AY ,

where % is the second fundamental form of the immersion ¢. And if ye
C(V(E', N)),

(3.11) AlY =(AY)T.

Let S be a p-rectifiable set. At xS, associate a tangent p-space V=T.,S
T M. Choose an orthonormal basis {e,, e,} of T .M such that {e;} is a basis
of V and &=e; A\ - Ae,. Let Q4 be the selfadjoint linear operator on V asso-
ciated with the immersion ¢-¢: M™—E" defined by (3.2). At x&M let {yv,} be
an orthonormal basis of V.(E', M) and A;=A;,. Then there is the following
relation between Q4' and Q. given by (2.3) from [8]

LEMMA 3. tr Qs=tr Q*', where

(3.12) tr Q4= [2 X3 <Ase,, e,)*—(tr A;—tr By) tr B;] .

At a point x€M, we take an orthonormal basis {vi, 7.} of V.(E', M) so
that {v;} and {7,} are bases of V.(N, M) and V.(E', N) respectively. From
(3.10) and (3.11) we obtain

(3.13) tr Q4'=tr Q4+A(V),
where tr Q4 is given by (3.3) and

(3.14) AV)= 32 [KAqe, e —<Aqeq, ea)Ases, )] .

4. Proof of Theorem 1

Let 0={Vf; f:E*'-R is linear} and S€R,(M). For X&40, let ¢, be
the flow generated by X and set
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@) Q)= MBS .

Then from (2.2) and (2.3), Qs can be considered as a quadratic form on & and
4.2) tr Qe=Sn| _trQe,ds?(X).

According to the assumption in Theorem 1, N can be considered as a totally
umbilical hypersurface of E"*! (ref. [1, p. 41]). In this case, (3.14) becomes

AWV)=—p(m—p)c.
Thus from (3.13) we obtain

tr Q4 =tr Q4—p(m—>p)c .

From Lemma 3 and Lemma 1, the condition Cl or C2 in Theorem 1 gives
that tr Q,,<0 for any n. Therefore tr Qe<0. This implies that there is no
stable p-current in M for p=1, ---, m—1. By using Theorem FF we have
H,M, Z)=0 (p=1, ---, m—1). The proof of the conclusion i) is completed.
As for ii), from i) we have H(M, Z)= -+ =H,_,(M, Z)=0 and so MN is a
homology sphere. From Lemma 2, M and its universal covering space M are
compact. ~S.o M is also a homology sphere and from the Hurewicz isomorphism
theorem M is (m—1)-connected, and thus it i~s a homotopy sphere. By the
generalized Poincare conjecture, we know that M is homeomorphic to a sphere.
Now the homology sphere M is covered by a sphere M and hence by a theorem
of D. Sjerve [6] we have =,(M)=0. Using Hurewicz’s theorem and the gener-
alized Poincaré conjecture again we get that M is homeomorphic to a sphere.

5. Proof of Theorem 2

Let {e,, e.} be an orthonormal basis of T.M so that {e;} is a basis of the
p-subspace V. Denote by A the shape operator of the ellipsoid N*»— E™*1,
Then for any XeC(T M), from (1.1)

AX=aX+X, ),
where a, b and ¢ are given by (1.2). Thus
(Ae,, esy=ble,, t)eq, t),
(Ae,, ey=a+be, 1),  <(Aeq, ery=a+bles, t)*.
Substituting these into (3.14) we get
G.L)  AWV)= T [0Ke, HH¥eq, HP—ab(e, 1) +<eq, 1)]—pm—p)a’.

L a

For each pair of fixed indices 7, a, let
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fra=b¥e,, 1)¥eq, 1) —ab(e,, t)*+<eq, 1)?) .

If ¢=1, then a=1, b=0 from (1.2) and hence f,,=0. If ¢<1, then a>0, 6>0.
In this case, f.,<0. In fact, let

. <el; t>=eit ) <eay t>:eat .
Then

(.2) fra=b*ei’eq®—ablei+ear’),

where

Partially differentiating (5.2) with respect to each variable and equating to zero,

we obtain
2b*e;e4*—2abe;, =0, 2b%eite i —2abea=0.

If ¢;,=0 or e,,=0, then f,.=—ab(es;® or ¢;;)<0. If ¢;;#0 and e,,#0, we have
eqi=eyu?=a/b. And hence f,,=—a?<0. Note that ¢;,’)=1 and e,,*=1 can not
hold simultaneously because <e,, ¢,>=0. Thus f,,<0 when c<1.

Since f,,<0, from (3.13) and (5.1) we have

tr Q4 str Q4—p(m—p)a®.

Because ¢*=<a’<1 for ¢<1, tr Q4 <0 when tr Q4<p(m—p)c?. Therefore, from
Lemma 3 the trace of the quadratic form Q¢ defined by (4.1) is less than zero
when tr Q4<p(m—p)c®. This means that there is no stable p-current. The
proof is completed.

If the immersion ¢: M—N" is minimal, then tr A;=0, from (3.3)

tr Q4= 2 [212 (Ae,, e’ +(tr B;)*]

= XE [212 CAre,, e+ <Alez; el>)2] .

But

1

(5 Aren, e =5 (S Aie, e) + 5 (SAsea, e

<

IS N

Sdse, e+ "L ey, 00,
because S1<Ajze., e.>0+3<A 0., eay=tr A;=0. Thus

rQ*SD[2 3 Aoy, e+ 5D e, e+ 5 Ase,, 00

1

gfmax {17, m—P}S )
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where s=tr A4;%

COROLLARY. Let M™ be a compact minimal submanifold immersed in the
ellipsoid with ¢<1 and p=(0, m). If the square length of the second fundamental
form of M satisfies s<2 min {p, m—p}c?, then

(1]

£z]
£3]

(4]
(5]
[6]
L7]
£8]

Hy(M, Z)=H,_p(M, Z)=0.
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