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GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS

IMMERSED IN SPACE FORMS AND ELLIPSOIDS

BY XUE-SHAN ZHANG

Abstract

Let Mm be a compact submanifold of a simply connected space form
Nn(c) with c^O. Denote by s and H the square length of the second funda-
mental form and the mean curvature vector field of M respectively. By in*-
troducing a self ad joint linear operator QΛ associated with the shape operator
of M, we show that there are no stable currents in M and topologically, M
is a sphere if s<H2/(m—l). For an immersed submanifold of the ellipsoid
we show that appropriate assumption on QΛ implies the vanishing of a given
homology group.

1. Introduction

Let Mm be a submanifold immersed in a Riemannian manifold Nn. Denote

by V(N, M) the normal bundle of Min N. For a smooth section v&C(V(N, M)),

the shape operator Av determined by v is given by

where X, Y(=C(TM) and h is the second fundamental form of M.

In 1973, by using techniques of the calculus of variations in geometric
measure theory, H. B. Lawson and J. Simons [4] showed the following

THEOREM LS. Let Mm be a compact submanifold of Sn and p a given
integer, p^(0, m). If for any x e M and any orthonormal basis {ely ea\ ( ί = l ,
... f p a~ρ-{-l) ... f m) of TXM the following condition is satisfied

y eaW-<h{e%, ex\ h(ea> ea)>l<P(m-p),
x, a

then there is no stable p-current in M and hence
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HP(M, Z)=Hm_p(M, Z ) = 0 .

Theorem LS has been extended to the submanifolds of En and S n i x S W 2 by
Y. L. Xin [7] and the author [8], respectively.

On the other hand, as an extension of the well-known gap theorem in the
minimal submanifolds, M. Okumura [5] proved that

THEOREM O. Let Mm be a compact, connected submanifold immersed in a
Riemannian manifold of non-negative constant curvature. Suppose that

(c) the connection of the normal bundle is flat and the mean curvature vector
field H is parallel with respect to the connection of the normal bundle.

If s = 2 ] t r Aχ2, the square length of the second fundamental form, satisfies s <

H2/{m—l), then M is totally umbilical.

In this paper, we shall cancel the condition (c) in Theorem O and prove that

THEOREM 1. Let φ: Mm-*Nn(c) be an isometric immersion of a Riemannian
manifold Mm into a simply connected space form Nn(c), ra=dim M ^ 3 . // one
of the following is satisfied:

Cl. M is compact c^O and s<H2/(m-l) on M,
C2. M is complete, c>0 and s^H2/(m-l) on M,

then
i) there exist no stable p-currents in M and hence

HP(M, Z)=0 for p=l, 2, •••, m - 1

ii) M is homeomorphic to a sphere when m^4.

Remark. Just as Okumura [5] indicated, the condition s<H2/(m—l) is the
best possible when Nn=En. For example, let Mm=Sm-1xEίc+Em+1, then s=
H2/(m-l) on M.

Now we give an example for Theorem 1. Consider the ellipsoid

Mm : x1

2+x2

2+ ••• +xJ+(xm+i2/c2)=l (c>0).

Denote by r the position vector of the point x e M m in Em+1. Then M can
also be expressed by

r=(sin θm sin 0m_i •••sin θ2 ύnθ, •••, cos θ2 sin θ, ccos θ).

A calculation indicates that the shape operator A of M can be given by

(1.1) AX=aX+b<X, t>t,

where XEEC(TM) and
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t=(dr/dθ)/\\dr/dθ\\ , a=c/(cos2θ + c2 sin20)1 / 2,
(1.2)

b=c(l-c2) sin20/(cos20+c2 sin 20) 3 / 2.

Choose an orthonormal basis {et} of TXM such that eτ is parallel to dr/dθt

(z = l, 2, •••, m, θ,=θ). Then from (1.1),

s = t r A 2 = t,

#*=(tr Λ)2=(Σ <Aeτ,

And thus

H2/{m-l)-s={a+b)[ma+(2-m)b~]/{m-l).

It is easy to verify that a+b>0 and ma+(2—m)b>0 when c2>(m—2)/2(ra—1).
Therefore, s<// 2 /(m-l) on the ellipsoid with c 2>(ra-2)/2(m-l).

The above example tells us, just as on Sn [4, p. 438], there is no stable
^-currents on the ellipsoid with c2>(m—2)/2(ra—1). Besides, if the condition
(c) in Theorem O is canceled, then the submanifolds in Theorem O do not neces-
sarily have to be totally umbilical.

Furthermore, we shall prove the following

THEOREM 2. Let φ: Mm-*Nn be an isometric immersion of a compact Rie-
mannian manifold M in the ellipsoid Nn : x x

2 + ••• -\-xn

2+Xn+i2/c2=l, c<l and p
a given integer, />e(0, m). If for any X G M and any p-subspace V of TXM

tvQA<p(m-p)c2,

Then there is no stable p-current in M and

HV{M, Z)=Hm_p(M, Z ) = 0 .

Remark. When c=l, Theorem 2 is due to Theorem LS.

2. Rectifiable currents

In this section we shall give a brief description of rectifiable currents (ref.
[3, 4, 8]).

Let Mm be an m-dimensional compact Riemannian manifold with Rieman-
nian metric <, > and Levi-Civita connection V. Denote by Mv Hausdorff p-
measure on M. A subset S of M is called a /?-rectifiable set if S is a countable
union of disjoint /^-dimensional C1 submanifolds, up to sets of ^-measure zero.
Consider over 5 an <#p-measurable section ξ: S-*ΛPTM with the property that
for c#p-almost all X G S , ξx is a simple vector of unit length which represents
TXS. Such a pair (5, ξ) is called an oriented, ^-rectifiable set.

The set of rectifiable /^-currents is defined by
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ΆP(M)=\®= S n<Bn ®n=(Sn, ξn), M(©)= Σ nJC>(Sn)<«>\ .
I 71 = 1 71 = 1 J

In the case that @ and d@ are both rectiίiable currents, © is called an integral
/^-current. The space of integral /^-currents is denoted by £ΓP(M). The direct
sum 2**(M)=0£rp(M) together with d: £Γ*(M)—>£Γ*(M) forms a differential chain

p

complex. For this complex there are the following results due to Federer and
Fleming [3].

THEOREM FF. For each p^O there is a natural isomorphism

And for each αG^p(£Γ*(M)) there exists a current β e α of "least area", that is,

for all <5'<^a.

For a smooth vector field X^C{TM), let φt: M-^M be the 1-parameter
group of diffeomorphisms generated by X. A current @ e ^ p ( M ) is said to be
stable if for each vector field X there is an ε>0 such that

for | ί | < e .
Lawson and Simons [4] derived the following formulae:

(2.1)

where α x : /\PTxM->/\VTXM is a linear map given by

and Vx, Z : f\pTXM^/\PTXM is another linear map defined by

ΛXP,

To any simple ^-vector ξ<^ΛpTxM and I ε C ( T M ) , let φt be the flow
generated by X, and define
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at

Then the expression (2.1) can be denoted by

If X=Vf for s o m e / e C 8 ( A ί ) a n d K , £«} ( ί = l , •••, p;a=p+l, •••, m) i s a n

o r t h o n o r m a l bas i s of TXM w i t h ξ—eι/\e2/\ ••• Λ β p , t h e n w e c a n o b t a i n

(2.3)

3. Linear operator QA

For a />-rectifiable set 5 in M, we know that at c#p-almost all point
there exists an approximate />-space TxSd.TxM, to S. In this section we shall
introduce a selfadjoint linear operator QΛ on TXS and prove some lemmas.

Let φ: Mm—*Nn be an isometric immersion of a Riemannian manifold M
into a Riemannian manifold N. The Levi-Civita connections of M and iV are
denoted by V and V respectively.

For a given integer £e(0, m) let F be a /^-dimensional subspace in TXM.
And for veC(y(ΛΓ, M)), let 4̂̂  be the shape operator determined by v. Define
a map £ „ : V-^V associated with Av by

βυZ=orthogonal projection of AJί onto V,

where X e F . If {̂ i} is an orthonormal basis of V, we have

(3.1)

Let \vχ} be an orthonormal basis of the normal space VX(N, M) and Aχ — AVΓ

Define a selfadjoint linear map QA: V-+V associated with the immersion φ by

(3.2) QAX=Έί2(Έ<Aλ

2X, et>ei-Bλ»X)-(tτ Aλ-tr
λ I

where X<=V and {ej is an orthonormal basis of V. Let {ea\ be an orthonormal
basis of V1 which is the orthogonal complement of V in TXM. Then {elf ea\
is an orthonormal basis of TXM and from [8] the trace of QA is

(3.3) trQA=Σ<QΛetf O = Σ [ 2 Σ < ^ β t , O 2 - ( t r ^ 1 , -

L E M M A O [5] . Let au a2, •••, am and b be ra+1 ( m ^ 2 ) real numbers satis-

fying the inequality

1 / Jϋ

m-

1 / m \2

—l\s=i /
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then 2asat>b {resp. ^ ) for any sφt.

Let s=Σ>trAλ

2, H~ Σ ( t r Aλ)vλ, Now we shall prove

LEMMA 1. Let m ^ 3 and p(Ξ(0, m). If s<H2/{m-l) {resp. <), then for
any x^M and any p-subspace V in TXM,

trQA<0 {resp. ^ ) .

Proof. If s<H2/{m—l), because s^O we see that HφO. So we can choose
an orthonormal basis {vχ\ of VX{N, M) such that H— (tr Ax)vι. Hence t r ^ L ^ O
for X^2.

Because the maps Bλ: V-+V and Bλ

L : VL-^VL associated with A1 are selfad-
joint linear, we can choose orthonormal basises {#*} of V and {ea} of VL re-
spectively such that

Bιeι—μieι, B\ea=μaea

So from (3.1) we have

and then

tr At= Σ <Aιelf ety+ 2 <Aίea} ea>=

(3.4) t r β

2 Σ (̂ 4iα)
2+ Σ C Σ (^) 2 +2 Σ ( ^ ) 2 + Σ ^

i, a /is2 ι,j i, a a, β

where Aij={Aχelf βj}, A\a—(sAλeXy ea>, Aλ

aβ=(Aλea, ββ>. Hence the condition
s<H2/{m—l) becomes

(3.5) Σ/*f+Σ/4+/K(Σ^+ΣμJ7(™-l),
i a i a

where

b=2 Σ (A\aY+ Σ [2 Σ (Alγ+ Σ ( ^ )2+ Σ (^4^)2]
i, a λt.2 ι,a i, j a, β

Using Lemma O to (3.5), we get that

(3.6) 2μkμr>b=2 Σ (^«)2+ Σ [ Σ W + Σ {Aλ

aβ)
22 .

Combining (3.3), (3.4) with tr Aλ=0 {λ^2) and (3.6) gives



268 XUE-SHAN ZHANG

tr QΛ=2 Σ <Alβι, eay- Σ μtμ«+ Σ [2 Σ <Atet, O 2 +(tr
λ^2 t

<2 Σ ( L ) ί ( ί ) ( ( O J Σ t Σ ί ^ Σ
λ \λ Z a,β

= [2-/>(m-ί)] Σ (^•—iiOn-ZO Σ [ Σ

+ Σ {(Σ Aid2- 4 ί(m-/»[Σ W + Σ (^a

Because m^3 and 0<p<m, 2—p(m—p)^0. Therefore,

(3.7) tr Q*<Σ {(Σ AU)2- \ρ(m-p)£Σ(^
-ίs2 I t Z t

Noting that for λ^2, trτ4^—0, that is

we have

(3.8) (Σ Aλ

uf= \ (Σ Aλ

u)
2+ \ (Σ ALY £ | Σ (^4^)2+ ^

i Zi' Z « Zt Zα

Substituting (3.8) into (3.7), we obtain tr QΛ<0.
Repeating the above, if s£H2/(m-l) and HφO we have trζM^O. If s£

//2/(m-l) and H=0, then Λ ; =0 and hence tr QA=0. Q.E.D.

Let the ambient space N be of constant curvature c, and s<H2/(m—l) on
M. Choose an orthonormal basis {î ;} of VX(N, M) such that H=(tr AJvi and
hence tr^l^^O when ^^2. And choose an orthonormal basis {Es} of TXM so
that AιEs=λsEs (s=l, •••, m). Then the condition s<H2/(m-l) gives

S, Ety
2<(Σλs)

2/(m-l).
S λ^2 S,t S

From Lemma O, for any sΦt we have

(3.9) 2 J U > Σ Σ<AλEq, Ery
2.

λ^2 q,r

Let v be a unit vector in T*M and w^3. Applying (3.9) and the equation of
Gauss we can obtain

Ric(p, v)>(m-l)c.

If s£H2/(m—l)f we can get that Ric(v, v)^(m—ϊ)c. Hence from Myers' theo-
rem (ref. [1, p. 28]) we have
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LEMMA 2. Let Mm be a submanifold immersed in a Riemannian manifold
of constant curvature c and ra^3. // M is compact, c^O and s<H2/(m—l) on
M, then the fundamental group of M is finite. If M is complete, c>0 and s^
H2/(m—l) on M, then the fundamental group of M is finite and M is compact.

Now assume ψ: Nn->E1 is an isometric immersion of the Riemannian mani-
fold N in the Euclidean space E1. Let D be the Levi-Civita connection on E1.
Associated with the isometric immersion x=ψ°φ: Mm-+E1, the shape operator
Al determined by v^C(V(E\ M)) is given by

A'vY=-(DYv)T ,

where Y^C{TM). Especially, if VΪΞC{V{N, M)),

(3.10) A'vY=-(DYv)T=-\yYv+h(v, Y)Y=-(-Aiy+V^)τ=AvY ,

where h is the second fundamental form of the immersion ψ. And if p<=
C(V(E\ Λ0),

(3.11) AίY=(AvY)τ.

Let S be a /)-rectifiable set. At X G 5 , associate a tangent £-space V=TXS
dTxM. Choose an orthonormal basis {ely ea\ of TXM such that {ej is a basis
of V and ξ=eλ/\ ••• /\ev. Let QΛ' be the selfadjoint linear operator on V asso-
ciated with the immersion ψ°φ: Mm->E1 defined by (3.2). At x ε M let {vσ} be
an orthonormal basis of VX(E\ M) and A'σ—A'Va. Then there is the following
relation between QA> and Qξ given by (2.3) from [8]

LEMMA 3. t r ^ = t r < ? ^ ' , where

(3.12) tr Q*= 2 [2 Σ <Alet, ̂ «>2-(tr Aί-tr Bf

a) tr Bίl .
o x, a

At a point x e M , we take an orthonormal basis {vx, ηa] of VX(E\ M) so
that {vλ} and {ηa} are bases of VX{N, M) and VX{E\ N) respectively. From
(3.10) and (3.11) we obtain

(3.13) trQA'=trQA+Ά{V),

where tr QA is given by (3.3) and

(3.14) A(V)= Σ [2<Άaelf ea>
2-<Άaea, ea)(Άaeu et>] .

4. Proof of Theorem 1

Let θ={Vf;f:En+1-*R is linear} and <B^3lp(M). For XZΞΘ, let φt be
the flow generated by X and set
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d2

(4.1) QB{X) =

Then from (2.2) and (2.3), Q@ can be considered as a quadratic form on θ and

(4.2) t r ρ β = Σ « ( tr QίndJC»(X).
n JS

Sn

According to the assumption in Theorem 1, N can be considered as a totally
umbilical hypersurface of En+1 (ref. [1, p. 41]). In this case, (3.14) becomes

Ά<y)=-p(m-p)c.

Thus from (3.13) we obtain

tr QΛ' =tr QA-p(m-p)c .

From Lemma 3 and Lemma 1, the condition Cl or C2 in Theorem 1 gives
that trQξn<0 for any n. Therefore tr (?©<0. This implies that there is no
stable /^-current in M for p=l, •••, m—1. By using Theorem FF we have
HP(M, Z)—Q {p—l, -••, ra—1). The proof of the conclusion i) is completed.

As for ii), from i) we have H^M, Z)= ••• =//m_1(M, Z)=0 and so M is a
homology sphere. From Lemma 2, M and its universal covering space M are
compact. So M is also a homology sphere and from the Hurewicz isomorphism
theorem M is (m—l)-connected, and thus it is a homotopy sphere. By the
generalized Poincare conjecture, we know that M is homeomorphic to a sphere.
Now the homology sphere M is covered by a sphere M and hence by a theorem
of D. Sjerve [6] we have π 1(M)=0. Using Hurewicz's theorem and the gener-
alized Poincare conjecture again we get that M is homeomorphic to a sphere.

5. Proof of Theorem 2

Let {βι, ea} be an orthonormal basis of TXM so that {βi\ is a basis of the
ί-subspace V. Denote by Λ the shape operator of the ellipsoid Nn-+En+1.
Then for any XCΞC(TM), from (1.1)

AX=aX+b<X, t}t,

where α, & and t are given by (1.2). Thus

(Aex, eay=b<et, tXea, t>,

(Άel} eιy=a-\-b{el} t}2, (Άea, ea>=a+b<ea, t}2.

Substituting these into (3.14) we get

(5.1) A(V)= Σ ίb\elf t}\ea) t}2-ab«et, t)2+<ea, t)2ft-p(m-p)a2.
i, a

For each pair of fixed indices i, a, let
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fχa=b*<et, »\ea, ty-ab«el} O2+<*«, 0 2 ) .

If c = l , then α = l, b=Q from (1.2) and hence / ι α = 0 . If c < l , then α>0,
In this case, / t α ^ 0 . In fact, let

<βt, 0=eu , <ea, t}=eat.
Then

(5.2) fta=b%euteat

2-ab(eu

2+eat

t),

where

Partially differentiating (5.2) with respect to each variable and equating to zero,
we obtain

2b2eίteat

2-2abeit=0, 2b2eit

2eat-2abeat=0.

If eu=0 or eat=0, then fιa = — ab(eat

2 or eit

2)^0. If g ^ O a n d eat^O, we have
eat

2=eu

2=^a/b. And hence fιa = — α 2 <0. Note that e i f

2 = l and £ α ί

2 = l can not
hold simultaneously because O t , O = 0 . Thus / t α ^ 0 when c < l .

Since / t α ^ 0 , from (3.13) and (5.1) we have

tr QA' £tr QA-p(m-p)a2.

Because c 2 ^ α 2 ^ l for c<l, tr QA'<0 when tr QA<p(m—p)c2. Therefore, from
Lemma 3 the trace of the quadratic form Q@ defined by (4.1) is less than zero
when tr QA<p(m—p)c2. This means that there is no stable /^-current. The
proof is completed.

If the immersion φ: M->Nn is minimal, then tr^4;—0, from (3.3)

tr QA= Σ [2 Σ <AxeX9 O 2 + ( t r Bλ)
2~\

λ i, a

= Σ [2^Σ -

But

ea, eay

because Σ < ^ β t , e*>+Σ<^^α, β«>=tr^ / l=0. Thus

^ —max {/?, m—p\s ,
Δ
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where s=tr Λλ

2.

COROLLARY. Let Mm be a compact minimal submanifold immersed in the
ellipsoid with c<l and £e(0, m). // the square length of the second fundamental
form of M satisfies s<2 min{p, m—p\c2, then

H
P
(M, Z)=H

m
,

v
{M, Z)=0.
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