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1. Introduction

The concept of Riemannian submersion was introduced by O'Neil [10] and
is discussed by him and others ([4], [8], etc). A Riemannian submersion with
totally geodesic fibers often appears in the differential geometry.

On the other hand, in [3] Chen and Vanhecke introduced the notion of the
reflections with respect to submanifolds. And there are some studies of reflec-
tions with respect to the fibers in a Riemannian submersion or local fibering
of a Sasakian manifold (e.g. [2], [9], [11]).

In this paper, we shall consider a Riemannian submersion π: M->N with
fibers of dimension one. In Section 2, we give some properties of the integra-
bility tensor A with respect to π. In Section 3, we shall consider the isometric
reflections with respect to the fibers in Riemannian submersion which satisfies
certain conditions. Our result is a generalization of the result of Kato and
Motomiya [6], [11]. And particularly, in the case of 3-dimension, we get the
following result: the reflections with respect to the fibers are isometries if and
only if M admits a Sasakian locally ^-symmetric structure. Finally, we give
a complete classification of 3-dimensional Riemannian manifolds with isometric
reflections with respect to the fibers.

2. Riemannian submersion

In this section we collect some results on Riemannian submersions. Let
π: M->N be a Riemannian submersion. Let X denote a tangent vector at
X G M . Then X decomposes as <VX+<MX, where CVX is tangent to the fiber
through x and MX is perpendicular to it. If X=cyχf X is called a vertical
vector. If X—MX, it is called horizontal. Let 7 and 7 denote the Riemannian
connections of M and N respectively.

We define tensors T and A associated with the submersion by
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( 2) AeF

for arbitrary vector fields E and F on M. T and A satisfy the following pro-
perties ([10]).

( i ) TE and AE are skew symmetric linear operator on the tangent space
of M, and reverse the horizontal and vertical parts.

(ii) TE=TvE while AE=AJCB.
(iii) For V, W vertical, TVW is symmetric, i.e. TVW=TWV. For X, Y

horizontal, AXY is skew-symmetric, i.e. AXY — — AYX.
A vector field X on M is said to be basic if X is horizontal and π-related

to a vector field X on N. Every vector field X on N has a unique horizontal
lift X to M, and X is basic. We denote it by X=h. l.(X). Let g and g be the
metrics of M and JV respectively.

LEMMA 1 ([10]). Let X and Y be horizontal vector fields and V and W are
vertical vector fields on M. Then

( i ) lyW
(ii) !VX
(iii) 1XV

(iv) !ZY
Furthermore, if X is basic, then MlvX—AxV.

Denote by R the curvature tensor of M. The horizontal lift of the curva-
ture tensor R is defined as follows: if Xlf X2, X*, XA are horizontal tangent
vectors to M, we set

g(RXίX2(Xs), Xt)=g{RXιX2{X,\ X4)oπ,

where Xi = π(Xt).
Let π: M->N be a Riemannian submersion with totally geodesic fibers.

Then T=0.

LEMMA 2 ([10]). Let π: M-+N be a Riemannian submersion with totally
geodesic fibers. Let X, Y, Z and H be horizontal vector fields and V and W be
vertical vector fields on M. Then

( i ) R{X, V, Y, W)=g(φvA)xY, W)+g(AxV, AYW\
(ii) R(X,Y,Z,V)=g((yzA)xY,V),
(iii) R(X, Y, Z, H)=R(X, Y, Z, H)-2g(AxY, AzH)+g(AγZ, AXH)

+g(AzX, ArH).

LEMMA 3. Let π: M—>N be a Riemannian submersion with totally geodesic
fibers. Let X and Y be horizontal vector fields and V and W be vertical vector
fields on M. Then

( i ) g(&vA)xY, W)=-gφv(AxW), Y)-g(AxY, lvW)-g{lvX, AYW),
(ii) g(C7vA)xY,V)=0.
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Proof. By Lemma 1 and the property of A, we get

g{{lvA)xY, W)=g(lv(AxY), W)-g{AlγXY, W)-g{Ax{lvY\ W)

= Vg(AxY, W)-g(AxYf lvW)+g{Ay{lvX\ W)

+g(lvY, AXW)

= -Vg(Y, AxW)-g(AxY, lvW)-g{lvX, AYW)

+ g(AxW, lyY)

= -g(VvY, AxW)-g{Y, lv(AxW))-g{AxY9 ivW)

-g{lvX, ArW)+g{AxW, ivY)

AxW)y Y)-g(AxY, lvW)-g{lvXy AYW)

Next, we put V=W in Lemma 2(i), then g((VvA)xY, V) is symmetric with
respect to X and Y. On the other hand, since A has the alternation property
AXY— — AYX and 1VX, 1VY are horizontal, g((ΊvA)xY, V) is skew-symmetric
with respect to X and Y. Therefore we see that g{(lvA)xY, V)=0. •

From these Lemmas, we have the following.

PROPOSITION 1. Let π: Λf->./V be a Riemannian submersion with totally
geodesic fibers of dimension one. If X is a basic vector field on M, then AXV
is a basic vector field where V is a vertical vector field on M such that V F F=0.

Proof. By Lemma 3, for basic vector field X and any basic vector field B,
we get

Vg(AxV, B)^g{lv{AxV), B)+g(AxV, 1VB)

=gΦv(AxV), B)+g{lvX, ABV)

This means that AXV is a basic vector field.

3. Isometric reflection

Let M be a Riemannian manifold and B a connected embedded submanifold
which is relatively compact. The (local) reflection φB with respect to B is
defined as the local geodesic symmetry for normal geodesies to B in a suf-
ficiently small tubular neighbourhood of B. The reflection φB is a local dif-
feomorphism ([3]).

Next, we give the definition of a Sasakian locally ^-symmetric space. A
Riemannian manifold (M, g) is said to be a Sasakian manifold if there exist a
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tensor field φ of type (1, 1), a unit vector field V and a 1-form η such that

(3) φ(V)=0,

(4) η(φX)=0,

(5) φ\X)=-X+r](X)V,

(6) g(φX, φV)=g(X, Y)-η{X)η{Y),

(7) Φxφ)Y=g(X, YW-η{Y)X

for any vector fields X, Y on M, where 7 is the Riemannian connection for g.
Let R be the curvature tensor of M. A Sasakian manifold M is said to be a
locally ^-symmetric space if φ2\_(lxR)(Y, Z)//]=0 for any vector fields X, Y,
Z, H orthogonal to V.

THEOREM 1. Let M be an onentable connected {2n-\-l)-dimensional Rieman-
nian manifold and π: M -»N be fiber dimension one Riemannian submersion
satisfying the condition AAχWW= — pg(W, W)X, where p is a positive function
and X is any horizontal vector field and W a vertical vector field on M. Then
the reflections with respect to the fibers are isometries if and only if M admits a
Sasakian locally φ-symmetric structure.

Proof. We assume that the reflections with respect to the fibers are iso-
metries. Then the fibers are totally geodesic submanifolds in M. Let V be a
unit vertical vector field such that VVV=Q. We define a (1, l)-tensor φ by

(8) ώE: = ]^AEY

Vp

where E is any vector field on M. Let η be the one-form dual to V. By the
definition of φ and η, we get

(9) φ(V)=Q,

(10) η(ώE)=0.

By the condition ΛAχVV= — ρg(V, V)X— — pX, for any vector field E on M,
we get

(11) φ2(E)=φ2(<KE+cvE)=φ\ME)=-

Moreover, for vector fields E and F on M, we get
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(12) g(φE, φF)=-g(ΛJ{EV> ΛMFV)=--

= -g(V, AAMFvME)=--g(AAMFVV', ME)=g(MF, ME)

MF

= g(E,F)-η(E)η(F).

Thus (M, φ, V, η, g) admits an almost contact metric structure.
Since the reflections with respect to the fibers are isometries, for horizontal

vector fields X, Y, Z, we have R(X, Y, Z, V)=0 and (VXR)(X, V, X, V)=0([3]).
Since the fibers are totally geodesic submanifolds in M, by Lemma 2 and Lemma
3, we have R(X, V, Y% V) = g(AzV, AγV)=pg(V, V)g(X, Y)=pg(X, Y\ where
X, Y are horizontal vector fields. For any horizontal vector field X, we get

0=φxR)(X, V, X, V)

=XR(X, V, X, V)-2RC7XX, V, X, V)-2R(X, !x, V, X, V)

=X(pg(X, X))-2pg{lxX, X)

={Xp)g{X,X).

Therefore, we get ^ = 0 . Moreover, when g{X, X) — 1, using 1VV— 0 and
Lemma 3, we get

Vp=V{g(AxV, AxV))=2g{lv(AxV\ AXV)

= -2g{(lvA)x{AxV), V)-2g{lvX, AAχVV)

=2pgφvX,X)=0.

Therefore p is constant.

We set g=pg, V=(l/Vp )V and η — y/p η. Then we have the following
equations

(13) φ(V)=0,

(14) rj(φE)=0,

(15) Φ\E)=-E+η(E)V,

(16) g(φE, φF)=g(E, F)-rj{E)η(F),

where E and F are vector fields on M.
Let 7 be the Riemannian connection and R the curvature tensor with

respect to g. Let A be the integrability tensor with respect to 7. Since p is
constant, we have 1EF—1EF and AEF — AEF. We shall show the following
equation
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{ϊEφ)F=g{E,F)V-η{F)E.
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(17)

Since the fibers are totally geodesic submanifolds in M, we get
and MΪvE<=VF=0. Let X, Y and Z be horizontal vector fields. Since AYZ
inventical, we obtain

0=R(X, Z, X, V)

=g{{ϊχA)YZ, V)

=g(ϊx{ΆγZ), V)-2(AvzγZ, V)-g(Άy(ϊxZ), V)

=Xg(ΆrZ, V)-g(ΆγZ, ϊxV)-g{MχYZ, V)+g(ϊxZ, ΆyV)

= -Xg(Z, ΆyV)-g(ΆlχyZ, V) + g{ϊXZ, ΆyV)

, ΆyV)-g(Z, ϊX(ΆYV))-g(Άr,χyZ, V) + g(lXZ, ΆyV)

AyV), Z)+g(ΆηχYV, Z),

and we get Jί(yx(AγV))=A<jχYV. Using this equation and Lemma 3, for any
vector fields E, F, D, we have the following equation

g{{lEφ)F, D)=g{ϊE{φF), D)-g{φ{ϊEF), D)

, D)

, JCD)

, JCD)

, JCD)

V, JCD)

+g(AMFV,

, V)

) , JCD))

+g(V, cVD)g{AMFV, AMEV)-g<y, cUF)g(AΛDV, ASEV)

=g(V, <VD)g(JCE, JCF)-g(V, cvF)g{MD, ME),

because AΛE{fV)=M{ΊJ(E{fV))=fMljιEV=fAjιEV. On the other hand,

g(g(E, F)V-fj(F)E, D)=g(ME, JCF)g(V, <=VD)+g(cvE, <=VF)g{V,

-g{ME, JCD)g(V, cvF)-g(cvE, <VD)g(

=g(V, cvD)g(JCE, JCF)-g(Y, <=VF)g{MD, ME).
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Therefore we get

Hence (M, φ, V, rj, g) is a Sasakian manifold. We complete the proof with the
following fact of [2], [11] : a necessary and sufficient condition for a Sasakian
manifold to be a locally ^-symmetric space is that the local (^-geodesic sym-
metries (i. e. the reflections with respect to the fibers) are isometries. •)

Remark 1. In the above theorem, if we suppose that the reflections with
respect to the fibers are isometries and set JX-— (l/Vp~)π*(AxV) where X is
any vector field on N and X—h.L (X), then N admits a locally symmetric
Kaehlerian structure.

Let G be a semi-simple, compact and connected Lie group and g a bi-
invariant Riemannian metric on G. Let G/K be a homogeneous space of a
Lie group G over a connected, closed subgroup K of G, and assume that the
Lie algebra g of G has a family (gΛ s 0 of subspaces of g satisfying the follow-
ing conditions (i )~(iv):

( i ) g=go+gi+g2 (direct sum),
(ϋ) [0t, 9jczgt+>+9ι»-yι, where Qι={0\ for />2,
(iii) g0 is the Lie algebra of K,
(iv) dimg2—1.
Let H be the connected and closed subgroup of G with the Lie algebra

go+g2 and KczH. We shall consider the following diagram

G—>G/K—>G/H.
π μ

G/K and G/H inherit natural metrics through the projections π: G-+G/K and
η—μoπ: G-+G/H respectively. Then η, π and μ are real analytic Riemannian
submersions with compact connected totally geodesic fibers. Moreover, we
assume the following condition

(v) For any Z e g x and

, VI vi=-Pg(V, V)X,

where p is a positive function on G/K.
Then, we get

COROLLARY 1. In the above Riemannian submersion μ: G/K-* G/H, we
assume that the Lie algebra g of G has a family (g t) ί s o of subspaces of g satisfying
the conditions ( i )~(v). Then G/K admits a Sasakian locally φ-symmetric structure.

Proof. By Example 2 in [9], when a family (g t) i έ 0 of subspaces of g
satisfies the conditions ( i )~(iii), the reflections with respect to the fibers are
isometries. Let A be the integrability tensor with respect to μ. Then, for

2, Z G 9 I , we get AAχVV={l/A)[ίXf V], 7 ] β l = - ( 1 / 4 ) ^ ( 7 , V)X. Therefore,
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by Theorem 1, G/K admits a Sasakian locally ^-symmetric structure. •

Remark 2. The above Theorem 1 is a generalization of the following
result of Kato and Motomiya [6], [11] :

Let G/K be a homogeneous space of a semi-simple, compact and simply
connected Lie group G over a connected, closed subgroup K of G, and assume
that the Lie algebra g of G has a family (gJ ί δ 0 of subspaces of g satisfying
the following conditions (i )~(vi):

( i ) 9:=9o+gi+92 (direct sum),
(ϋ) [0ι, 0j]c=0ι+^+0ii-ii, where Qι= {0} for />2,
(iii) g0 is the Lie algebra of K, and [g0, gol^go,
(iv) dimg 2 =l,
(v) There is an element V of g2 such that

HX,V],V] = -X for all XeΞQlf

(vi) Ad(g)Qτ=Qτ, and Aά(g)V = V for all g<BK, where Aά(g) denotes the
adjoint representation of K in g.
Let H be the connected Lie subgroup of G with the Lie algebra go+g2-

Then G/K is a Sasakian locally ^-symmetric space and G/K is a principal
circle bundle over a Hermitian symmetric space G/H with Kaehlerian structure.

Next, we consider the case where the dimension of M is three.

THEOREM 2. Let M be an orientable connected 3-dimensional Riemanman
manifold and π: AΊ-+N be fiber dimension one Riemannian submersion satisfy-
ing AXV ΦQ, where X is a horizontal vector field and V a vertical vector field
on M. Then the reflections with respect to the fibers are isometnes if and only
if M admits a Sasakian locally φ-symmetnc structure.

Proof. By g(AxV, X)=-g(V, AXX) = O, AXV is orthogonal to X and
horizontal. Therefore, {V, X, ΛXV} is a local basis of tangent space of M.
By g(ΛAχVV, AxV)=-g(V, iAχV(ΛxV))=0, AAχVV is orthogonal to V and
AXV. Therefore we have AAχVV— — pg(V, V)X, where p is a positive function
on M, because g{AAχVV, X)=~g(V, AAχVX)=g{V, Az{AxV))=-g(AxV, AXV)
— — pg(V, V)g(Xt X). We show that p is independent of the choice of X. So,
we consider another horizontal vector field Y=aX+βAxV. Then AAγVV —
AACaX+βAχVyvV = aAAχVV + βAAAχvVV = - apg{V, V)X - βpg (V, V) AXV =

— pg(V, V)Y. Hence, for any horizontal vector field X, we have the following
equation AAχVV = — ρg(V, V)X(ρ>Q). Therefore, by Theorem 1, M admits a
Sasakian locally ^-symmetric structure. •

Example 1. Let H be the Heisenberg group:
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H =

Heisenberg group H is not semi-simple. We identify H and R3 as manifolds.
We denote the elements of H as m—(s, t, u), the multiplication being

(S, t, U)(s', t', u') = (s + s', t + t', U+U' + Sf).

The vector fields

x - d
x - d + s d

at ou
are left invariant and \_Xlt X2~] — Vu [_XU Vr

1] = [Z 8, VΊ]=0. With respect to the
standard coordinates (s, t, u) in Rz, we set g=ds2+dt2+(du — sdty. Then g
is a Riemannian metric such that vector fields Xu X2 and Vλ are orthonormal.
g is left invariant, but not right invariant. Let 7 be the Riemannian con-
nection associated to g. Then we get

1 1

1

0

0

0

1

0

u

0

1

We consider the subgroup K of H:

K=

Then, π : H->H/K is a Riemannian submersion with totally geodesic fibers [5].
Vι is a vertical vector field and Xι and X2 are horizontal vector fields. Let R
be the Riemannian curvature tensor associated to g. Since g is left invariant,
for any left invariant vector fields C, E, F, /, L, we get Cg(E, F)=0 and
CR(E, F, /, L)=0. By

X)
ι u Vu Xu X*)=R(Xlf lXιVu Xu Xi)+R(Xl9 Vu Xu Ί

H is not a locally symmetric space. By the following equations

R(XU X,, Xx, y,)=0, R(Xt, Xt, Xt, 7 t)=0, (7Xl/?XJf,, ^ 2 ) Λ

X2, Z1 ( X,)=0, (*XlR)(Xu Vu Xu 70=0,

ι u 7,, Z2, 70=0, (7XlS)(^,, 7,, X2, 70=0,

we get
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R{X, Y, X, V)=0, C7xR)(Xf Y, X, Z)=0, (VXR)(X, V, X, V)=0,

where X, Y, Z are horizontal vector fields and F is a vertical vector field.
Let q^H/K and p^π~1(g). Let x, y, z be horizontal vectors at p and v be a
vertical vector at p. Let V be a vertical vector field such that Vp—v. We
extend x, y, z to horizontal vector fields X, Y, Z such that X, Y and Z are
linear combination of Xx and X2 with constant coefficients. Then, we get

1XX=O, l

By the equation

(ΨχXR)(X, Y, X, V)=1Z(ΦΣRXX, Y, X, V))-{lχRXlxX, Y, X, V)

~{lxR){X, ΊXY, X, V)-{1XR){X, Y, 1XX, V)

~{1XR)(X, Y, X, lχV)-{liχXR\X, Y, X, V),

using above property, at point p, we obtain {!%xR)(x, y, x, v)=Q. Next, by the
mathematical induction, we can prove the following equations

y, x, z)=0, (Ψx

k+iR)(x, v, x, v)=Q,

(Ψx*i*R)(χ, y,χ,v)=0

Therefore, the reflections with respect to the fibers are isometries ([3]). Hence
H admits a Sasakian locally ^-symmetric structure.

Remark 3. The above example is an example of Theorem 1 which can
not be covered by the result of Kato and Motomiya.

Next, under the same notation in Corollary 1, we get

COROLLARY 2. Let the Lie algebra Q of G has a family (g t) t s o of subspaces
of G satisfying conditions (i )~(iv). In a Riemannian submersion μ: G/K-+G/H,
suppose dim(G/if)=3 cind AxV^-§ where X<ΞQU Veg 2 Then G/K admits a
Sasakian locally φ-symmetnc structure.

Proof. Since the reflections with respect to the fibers are isometries [9],
by Theorem 2, G/K admits a Sasakian locally ^-symmetric structure. •

Next, we shall consider a three-dimensional Lie group.

COROLLARY 3. Let G be a three-dimensional semi-simple, compact and con-
nected Lie group and K be a one-dimensional closed subgroup of G. Let g be a
bi-inυanant metric of G. In Riemannian submersion π: G~^G/K, suppose
R(X, Y, Z, V)=0 and AxV^<d, where X, Y, Z are horizontal vector fields and
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V is a vertical vector field on G. Then G admits a Sasakian locally φ-symmetric
structure.

Proof. Since G is a symmetric space and R{X, Y, Z, V)=0, the reflections
with respect to the fibers are isometries ([3]). By Theorem 2, G admits a
Sasakian locally ^-symmetric structure. •

Example 2. We consider a Riemannian submersion

π: Sί/(2)—>Sί/(2)/S(£/(l)xf/(l)).

The decomposition of the Lie algebra g of SU(2) is given by

(direct sum),
where

/O -i

\ξ 0
and

(a 0

\O -a)

Then, for X, Y, Z^Q, and Veg2, we have R(X, Y, Z, V)^0 and ^ F ^ O .
Therefore, SU(2) admits a Sasakian locally ^-symmetric structure. In this
example ρ=l.

Finally, we give a complete classification of 3-dimensional Riemannian
manifolds with isometric reflections with respect to the fibers. A simply con-
nected complete Sasakian locally ^-symmetric space is a naturally reductive
homogeneous space [2]. Using the result of Theorem 2 and the explicit clas-
sification of naturally reductive homogeneous spaces in dimension three (cf. [2],
[12]), we get the following:

THEOREM 3. Let M be a three-dimensional onentable connected simply con-
nected complete Riemannian manifold and π: M -> N be fiber dimension one
Riemannian submersion satisfying ΛXV^O, where X is a horizontal vector field
and V is a vertical vector field on M. Then all the reflections with respect to
the fibers are isometrtes if and only if M is isometric to one of the following
spaces:

( i ) the unit sphere Ss in R*

(ϋ) St/(2);
(iii) Heisenberg group H;
(iv) the universal covering space of SL(2, R).
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