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1. Introduction

The concept of Riemannian submersion was introduced by O’Neil [10] and
is discussed by him and others ([4], [8], etc). A Riemannian submersion with
totally geodesic fibers often appears in the differential geometry.

On the other hand, in [3] Chen and Vanhecke introduced the notion of the
reflections with respect to submanifolds. And there are some studies of reflec-
tions with respect to the fibers in a Riemannian submersion or local fibering
of a Sasakian manifold (e.g. [2], [9], [11]).

In this paper, we shall consider a Riemannian submersion z: M —N with
fibers of dimension one. In Section 2, we give some properties of the integra-
bility tensor A with respect to 7. In Section 3, we shall consider the isometric
reflections with respect to the fibers in Riemannian submersion which satisfies
certain conditions. Our result is a generalization of the result of Kato and
Motomiya [6], [11]. And particularly, in the case of 3-dimension, we get the
following result: the reflections with respect to the fibers are isometries if and
only if M admits a Sasakian locally ¢-symmetric structure. Finally, we give
a complete classification of 3-dimensional Riemannian manifolds with isometric
reflections with respect to the fibers.

2. Riemannian submersion

In this section we collect some results on Riemannian submersions. Let
w: M—N be a Riemannian submersion. Let X denote a tangent vector at
xeM. Then X decomposes as Y X+ 4 X, where VX is tangent to the fiber
through x and %X is perpendicular to it. If X=cVX, X is called a vertical
vector. If X=u4X, it is called horizontal. Let V and V denote the Riemannian
connections of M and N respectively.

We define tensors 7 and A associated with the submersion by
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for arbitrary vector fields £ and F on M. T and A satisfy the following pro-
perties ([10]).

(i) Tg and Ag are skew symmetric linear operator on the tangent space
of M, and reverse the horizontal and vertical parts.

(ii) Tg=T.g while Ag=Aur.

(iii) For V, W vertical, TyW is symmetric, i.e. T,2W=TyV. For X, YV
horizontal, AxY is skew-symmetric, i.e. AyY =—AyX.

A vector ﬁe1d~X on M is said to be basic if X is horizontal and =-related
to a vector field X on N. Every vector field X on N has a unique horizontal
lift X to M, and X is basic. We denote it by X=h.1.(X). Let gand & be the
metrics of M and N respectively.

LEMMA 1 ([10]). Let X and Y be horizontal vector fields and V and W are
vertical vector fields on M. Then

( i ) VVW:TVW‘I'CVVVW,

(ii) VVX:ﬂ[vVX‘l’TvX,

(iii) VXVZALL\'V'*’CVVXV,

(iV) VX)’=ﬂ[VXY+.4XY.
Furthermore, if X is basic, then 4Ny, X=AxV.

Denote by R the curvature tensor of M. The horizontal lift of the curva-
ture tensor R is defined as follows: if X,, X, X, X, are horizontal tangent
vectors to M, we set

(R x x,(Xy), X)=8(R 3,2,X), Xom,

where X,=n(X,).
Let #: M—N be a Riemannian submersion with totally geodesic fibers.
Then T=0.

LEMMA 2 ([10]). Let w: M—N be a Riemannian submersion with totally
geodesic fibers. Let X,Y, Z and H be horizontal vector fields and V and W be
vertical vector fields on M. Then

(i) RX,V,Y, W)=g(VwA)xY, W)+g(AxV, AyW),

(ii) RX,Y, Z, V)=g((NzA)xY, V),

(i) RX,Y, Z, H)=R(X, Y, Z, H)—2g(AxY, AzH)+g(AyZ, AxH)

+g(AzX, AyH).

LEMMA 3. Let n: M—N be a Riemannian submersion with totally geodesic
fibers. Let X and Y be horizontal vector fields and V and W be vertical vector
fields on M. Then

(1) g(WwA)xY, W)=—g(Vu(AxW), Y)—g(AxY, VeW)—g(Vv X, ArW),

(ii) g((WrA)xY, V)=0.
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Proof. By Lemma 1 and the property of A, we get
g(WA)xY, W)=g(Vv(AxY), W)—g(Av,xY, W)—g(Ax(WY), W)

=Vg(AxY, W)—g(AxY, WW)+g(Ax(Vy X), W)
+g(WY, AxW)

=—Vg(Y, AxW)—g(AxY, VyW)—g(Vv X, AyW)
+g(AxW, VyY)

=—g(WY, AxW)—g(Y, V(AxW))—g(AxY, VW)
—g( WX, AyW)+g(AxW, VvY)

=—g(Ww(AxW), Y)—g(AxY, WwW)—g(VvX, AyW)

Next, we put V=W in Lemma 2 (i), then g((VyA)xY, V) is symmetric with
respect to X and Y. On the other hand, since A has the alternation property
AyY=—AyX and VX, VY are horizontal, g((VyA)xY, V) is skew-symmetric
with respect to X and Y. Therefore we see that g(Vy4)xY, V)=0. |

From these Lemmas, we have the following.

PROPOSITION 1. Let m: M — N be a Riemannian submersion with totally
geodesic fibers of dimension one. If X is a basic vector field on M, then AxV
is a basic vector field where V is a vertical vector field on M such that Y,V =0.

Proof. By Lemma 3, for basic vector field X and any basic vector field B,
we get

Vg(AxV, B)=g(Vy(AxV), B)+g(AxV, VyB)
=g(VW(AxV), B)+g(VvX, AgV)
=0.

This means that AxV is a basic vector field. n

3. Isometric reflection

Let M be a Riemannian manifold and B a connected embedded submanifold
which is relatively compact. The (local) reflection ¢z with respect to B is
defined as the local geodesic symmetry for normal geodesics to B in a suf-
ficiently small tubular neighbourhood of B. The reflection ¢p is a local dif-
feomorphism ([3]).

Next, we give the definition of a Sasakian locally ¢-symmetric space. A
Riemannian manifold (M, g) is said to be a Sasakian manifold if there exist a
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tensor field ¢ of type (1, 1), a unit vector field V and a 1-form 7 such that

(3) o(V)=0,

(4) (¢ X)=0,

(5) (X )=—X+nX)V,

(6) g(6X, oY )=g(X, Y)—9(X)n(Y),
(7) (Vx@)Y =g(X, Y)V—n(Y)X

for any vector fields X, Y on M, where V is the Riemannian connection for g.
Let R be the curvature tensor of M. A Sasakian manifold M is said to be a
locally ¢-symmetric space if ¢*[(VxR)Y, Z)H]=0 for any vector fields X, Y,
Z, H orthogonal to V.

THEOREM 1. Let M be an orientable connected (2n+1)-dimensional Rieman-
nian manifold and w: M — N be fiber dimension one Riemanman submersion
satisfying the condition Ay wW=—pg(W, W)X, where p s a positive function
and X is any horizontal vector field and W a vertical vector field on M. Then
the reflections with respect to the fibers are 1sometries 1f and only if M admits a
Sasakian locally ¢-symmetric structure.

Proof. We assume that the reflections with respect to the fibers are iso-
metries. Then the fibers are totally geodesic submanifolds in M. Let V be a
unit vertical vector field such that V,V=0. We define a (1, 1)-tensor ¢ by

___L

(8) oL = \/{TAEV

where I is any vector field on M. Let 7 be the one-form dual to V. By the
definition of ¢ and 7n, we get

(9) o(V)=0,

(10) N(GE)=0.

By the condition A4,vV=—pg(V, V)X=—pX, for any vector field £ on M,
we get

(1D GHE)= A E+VE) =g K E) = AuggrV == E
= (HE+VE)+ (K E+VE)W =—E+nL)V .

Moreover, for vector fields £ and F on M, we get
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(12)  g(@E, ¢F)=%g(/1mV, AgrV)=— %g(V, Ase(AxrV))

1 1 .

= g(HE+VE, HF +VF)—n(H E+VE)yp(HF +VF)
=g(E, F)—n(E)n(F).

Thus (M, ¢, V, 5, g) admits an almost contact metric structure.

Since the reflections with respect to the fibers are isometries, for horizontal
vector fields X, Y, Z, we have R(X, Y, Z, V)=0and (VxR) X, V, X, V)=0([3]).
Since the fibers are totally geodesic submanifolds in M, by Lemma 2 and Lemma
3, we have R(X, V, Y, V)= g(AxV, AyV)=pg(V, V)g(X, Y)=pg(X, V), where
X, Y are horizontal vector fields. For any horizontal vector field X, we get

0=VxR)X, V, X, V)
=XR(X,V, X, V)—2R(VxX, V, X, V)—2R(X, Yy, V, X, V)
=X(pg(X, X)—2pg(VxX, X)
=(Xp)g(X, X).

Therefore, we get Xp=0. Moreover, when g(X, X)=1, using V, V=0 and
Lemma 3, we get

Vo=V(g(AxV, AxV)=2g(Nv(AxV), AxV)
=—2g(VWA)x(AxV), V)—28(Vv X, AayvV)
=2pg(VyX, X)=0.

Therefore p is constant.

We set g=pg, V=(1/+p )V and 7=+/p 7. Then we have the following
equations

(13) #(V)=0,

(14) H($E)=0,

(15) 6" E)=—E+7(E)V,

(16) 2(PE, pF)=3(E, F)—7(E)7(F),

where E and F are vector fields on M.

Let ¥ be the Riemannian connection and R the curvature tensor with
respect to 3. Let A be the integrability tensor with respect to V. Since p is
constant, we have VzF=VgF and AzF=AzF. We shall show the following
equation



RIEMANNIAN SUBMERSION WITH ISOMETRIC REFLECTIONS 421
a7 (Vep)F=g(E, F)V —7(F)E.

Since the fibers are totally geodesic submanifolds in M, we get WV,z4F=0
and 4V,;VF=0. Let X, Y and Z be horizontal vector fields. Since AyZ
inventical, we obtain

0=R(Y, Z, X, V)
=g((VxAWZ, V)
=8(Vx(Av2), V)= §(As yvZ, V)~ 5(Ay(x2), V)
=X3(AvZ, V)—g(ArZ, UxV)—g(AvyrZ, V)+2(xZ, AyV)
=—X5(Z, AyV)—g(AvyrZ, V)+28 xZ, AyV)
=—2(xZ, AyV)—3(Z, Ux(AyV)—8(AvyrZ, V)+28 s Z, AyV)
=—g(Vx(AyV), Z)+3(Av,V, 2),

and we get H(Vx(AyV))=Aq,yV. Using this equation and Lemma 3, for any
vector fields E, £, D, we have the following equation

2((Ved)F, D)= (¢ F), D)—g(¢(VsF), D)
=—g( e(ArV), D)+3(Av,#V, D)
=—g(Vae(AurV), %D)—g(Vae(AsrV), VD)~ g ,e(AsurV), D)
+3(As, parV, HD)+g(AvyparV , HD)+3(Aq ypoiV , ID)
=—5(Vus(AurV), I D)+g(Av,zurV, %D)
— 8N ae(AurV), VD) +§(Aq gV, HD)
=—g((VpA)urV + Aur(VN.eV), 4 D))
+2(AurV, AurVD)—g(AspV, AurVF)
=g(VeA)ardD, V)
+3(V, YD)g(AurV, AusV)—8(V, VF)g(AspV, AszV)
=g(V, YD)g(KE, 4F)—g(V, VF)g4D, £E),
because Axz(fV)=HVue(fV)=f4VysV =fA4eV. On the other hand,
2(8(E, F)V —5%(F)E, D)=g(4E, %F)g(V, WD)+ g(VE, VF)g(V, D)
—Z(HE, 4D)§V, CVF)—g(VE, cVD)g(V, CVF)
=gV, VD)g(HE, £F)—g(V, VF)g(4D, HE).
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Therefore we get
(Ved)F=g(E, F)V —j(F)E.

Hence (M, ¢, V, 7, g) is a Sasakian manifold. We complete the proof with the
following fact of [2], [11]: a necessary and sufficient condition for a Sasakian
manifold to be a locally @¢-symmetric space is that the local é-geodesic sym-
metries (i.e. the reflections with respect to the fibers) are isometries. ]

Remark 1. In the above theorem, if we suppose that the reflections with
respect to the fibers are isometries and set / X =—(1/vp )mx(AxV) where X is

any vector field on N and X=h./[. ()?), then N admits a locally symmetric
Kaehlerian structure.

Let G be a semi-simple, compact and connected Lie group and g a bi-
invariant Riemannian metric on G. Let G/K be a homogeneous space of a
Lie group G over a connected, closed subgroup K of G, and assume that the
Lie algebra g of G has a family (g,),., of subspaces of g satisfying the follow-
ing conditions (i)~(iv):

(i) g=go+8:+g, (direct sum),

(ii) [8., 8,1<8u+j+81-j1, Where g,={0} for (>2,

(iii) g, is the Lie algebra of K,

(iv) dimg,=1.

Let H be the connected and closed subgroup of G with the Lie algebra
go+g: and KcH. We shall consider the following diagram

G —G/K— G/H.
T 2
G/K and G/H inherit natural metrics through the projections 7 : G—G/K and
n=pon : G—G/H respectively. Then 7, = and g are real analytic Riemannian
submersions with compact connected totally geodesic fibers. Moreover, we
assume the following condition
(v) For any Xeg, and Veg,,

[LX, V], Vl=—pgV, V)X,

where p is a positive function on G/K.
Then, we get

COROLLARY 1. In the above Riemanman submersion p: G/K— G/H, we
assume that the Lie algebra g of G has a family (8,):z0 of subspaces of g satisfying
the conditions (1)~(v). Then G/K admits a Sasakian locally ¢-symmetric structure.

Proof. By Example 2 in [9], when a family (g,);zo Of subspaces of g
satisfies the conditions (i)~(iii), the reflections with respect to the fibers are
isometries. Let A be the integrability tensor with respect to p. Then, for
Veg, Xeg,, we get Ay V=>1/9[[X, V], V]j,=—(1/4)pg(V, V)X. Therefore,
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by Theorem 1, G/K admits a Sasakian locally ¢-symmetric structure. n

Remark 2. The above Theorem 1 is a generalization of the following
result of Kato and Motomiya [6], [11]:

Let G/K be a homogeneous space of a semi-simple, compact and simply
connected Lie group G over a connected, closed subgroup A of G, and assume
that the Lie algebra g of G has a family (g,);., of subspaces of g satisfying
the following conditions (i)~(vi):

(i) g=go+g:+g. (direct sum),

(ii) [g., 8,]<8u4;+81.-j1, Wwhere g,={0} for (>2,

(iii) g, is the Lie algebra of K, and [g,, 8,] =4,

(iv) dimg,=1,

(v) There is an element V of g, such that

[[X, V], Vl=—X  for all Xeg,,

(vi) Ad(g)g.=g,, and Ad(g)V=V for all g K, where Ad(g) denotes the
adjoint representation of K in g.
Let H be the connected Lie subgroup of G with the Lie algebra g,+gs.

Then G/K is a Sasakian locally ¢-symmetric space and G/K is a principal
circle bundle over a Hermitian symmetric space G/H with Kaehlerian structure.

Next, we consider the case where the dimension of A is three.

THEOREM 2. Let M be an orientable connected 3-dimensional Riemannmian
manifold and = : M —N be fiber dimension one Riemannian submersion satisfy-
g AxV +#0, where X is a horizontal vector field and V a vertical vector field
on M. Then the reflections with respect to the fibers are isometries 1f and only
if M admits a Sasakian locally ¢-symmetric structure.

Proof. By g(AxV, X)=—g(V, AxX) =0, AxV is orthogonal to X and
horizontal. Therefore, {V, X, AyV} is a local basis of tangent space of M.
By g(AuyvV, AxV)=—g(V, 4uyv(AxV))=0, AayvV is orthogonal to V and
AyV. Therefore we have A,,»V=—pg(V, V)X, where p is a positive function
on M, because g(Aa vV, X)=—g(V, AuywX)=gV, Ax(AxV)=—g(AxV, AxV)
=—pg(V, V)g(X, X). We show that p is independent of the choice of X. So,
we consider another horizontal vector field V=aX+BAxV. Then AuV=
AA(aX+,9AXV)VV = aAsvV + BAAAXVVV =—apg(V, V)X — Bpg(V, V)AxV =
—pg(V, V)Y. Hence, for any horizontal vector field X, we have the following
equation Au,vV=—pg(V, V)X(p>0). Therefore, by Theorem 1, M admits a
Sasakian locally ¢-symmetric structure. [ ]

Example 1. Let H be the Heisenberg group:
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1 s u
H=4{0 1 t]; st ueh;.
0 01

Heisenberg group H is not semi-simple. We identify H and R® as manifolds.
We denote the elements of H as m=(s, ¢, u), the multiplication being

(s, &, u)s’, ¥, w)=(s+s’, t+¥', utu'+st’).

The vector fields

0 0 0 0
'a's_: XZ‘—W_FSW; VI_W

are left invariant and [X,, X.1=V,, [X,, V.]=[X,, V.]=0. With respect to the
standard coordinates (s, t, u) in R® we set g=ds*+d*+(du—sdt)®>. Then g
is a Riemannian metric such that vector fields X,, X, and V, are orthonormal.
g is left invariant, but not right invariant. Let V be the Riemannian con-
nection associated to g. Then we get

1 1

VX1X2=—'VX2X1= ?Vl VX2V1:VV1X2: 5

VX1X1=VX2X2=VV1V1'——“0 .

X,=

1
le vVlezvXIVIZ—EXZ:

We consider the subgroup K of H:
1 0 u
K=3|0 1 0/; uesR;}.
0 01

Then, n: H—H/K is a Riemannian submersion with totally geodesic fibers [5].
V. is a vertical vector field and X, and X, are horizontal vector fields. Let R
be the Riemannian curvature tensor associated to g. Since g is left invariant,
for any left invariant vector fields C, E, F, I, L, we get Cg(E, F)=0 and
CR(E, F, I, L)=0. By

(Vx RYXX,, Vi, Xy, Xo)=R(X,, Vg,Vy, Xy, Xo)+R(X,, V4, X, V,Yle):-;—,
H is not a locally symmetric space. By the following equations

R(X,, X, X, V1)=0, R(X, X,, Xz, V=0, (Vx,RXX,, X, X, X2)=0,

(VxR Xy, Xo, Xy, Xo)=0,  (Vx,RXX,, V,, X;, V)=0,

(Vx,RYX,, Vi, Xo, V=0, (Vg,RXX,, Vi, X,, V)=0,

we get
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RX, Y, X, V)=0, (VxR)X,Y, X, Z2)=0, (VxR)X,V, X, V)=0,

where X, Y, Z are horizontal vector fields and V is a vertical vector field.
Let g=H/K and p=zm~'(g). Let x, vy, z be horizontal vectors at p and v be a
vertical vector at p. Let V be a vertical vector field such that V,=v. We
extend x, y, z to horizontal vector fields X, Y, Z such that X, ¥ and Z are
linear combination of X, and X, with constant coefficients. Then, we get

VXXZO, VXYECV, VXVYZEﬂ[,

VXVZVVXEj[, VXVVY—ECV.
By the equation

VixR)X, Y, X, V)=V (VxR)X, Y, X, V))—(VxR)VxX, Y, X, V)
—(VxR)X, VxY, X, V)—(xRXX, Y, VxX, V)
—(VxR)XX, Y, X, VxV)=(Vozx R)X, Y, X, V),

using above property, at point p, we obtain (V2,R)(x, v, x, v)=0. Next, by the
mathematical induction, we can prove the following equations

(VELR)(x, v, x, 2)=0, (VESR)(x, v, x, v)=0,
(V22R)(x, v, x, v)=0 (kEN).

Therefore, the reflections with respect to the fibers are isometries ([3]). Hence
H admits a Sasakian locally ¢-symmetric structure.

Remark 3. The above example is an example of Theorem 1 which can
not be covered by the result of Kato and Motomiya.

Next, under the same notation in Corollary 1, we get

COROLLARY 2. Let the Lie algebra g of G has a family (g8,).s, 0f subspaces
of g satisfying conditions (i)~(iv). In a Riemanman submersion p: G/K—G/H,
suppose dim(G/K)=3 and AxV=+0 where X<g,, V=g, Then G/K admits a
Sasakian locally ¢-symmetric structure.

Proof. Since the reflections with respect to the fibers are isometries [9],
by Theorem 2, G/K admits a Sasakian locally ¢-symmetric structure. [ ]

Next, we shall consider a three-dimensional Lie group.

COROLLARY 3. Let G be a three-dimensional semi-ssmple, compact and con-
nected Lie group and K be a one-dimensional closed subgroup of G. Let gbe a
bi-invariant metric of G. In Riemannian submersion wm: G — G/K, suppose
R(X,Y, Z, V)=0 and AxV+0, where X, Y, Z are horizontal vector fields and
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V is a vertical vector field on G. Then G admits a Sasakian locally @-symmetric
structure.

Proof. Since G is a symmetric space and R(X, Y, Z, V)=0, the reflections
with respect to the fibers are isometries ([3]). By Theorem 2, G admits a
Sasakian locally ¢-symmetric structure. ]

Example 2. We consider a Riemannian submersion ;
7 SUQ2) — SU@2)/S(U)xU1)).
The decomposition of the Lie algebra g of SU(2) is given by
§6=g:+8. (direct sum),

ol el
el e

Then, for X, Y, Zcg, and Veg,, we have R(X,Y, Z, V)=0 and AxV #0.
Therefore, SU(2) admits a Sasakian locally ¢-symmetric structure. In this
example p=1.

where

and

Finally, we give a complete classification of 3-dimensional Riemannian
manifolds with isometric reflections with respect to the fibers. A simply con-
nected complete Sasakian locally ¢-symmetric space is a naturally reductive
homogeneous space [2]. Using the result of Theorem 2 and the explicit clas-
sification of naturally reductive homogeneous spaces in dimension three (cf. [2],
[12]), we get the following:

THEOREM 3. Let M be a three-dimensional orientable connected simply con-
nected complete Riemannian manifold and m: M — N be fiber dimension one
Riemannian submersion satisfying AxV +0, where X is a horizontal vector field
and V is a vertical vector field on M. Then all the reflections with respect to
the fibers are isometries if and only if M 1s isometric to one of the following
spaces :

(i) the unit sphere S*® in R*;

(ii) SU@2);

(iii) Heisenberg group H;

(iv) the universal covering space of SL(2, R).
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