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PROJECTIVE SPACES IN A WIDER SENSE, I

By KENJI ATSUYAMA

Introduction.

The purpose of this paper is to generalize the notion of projective spaces
in compact symmetric spaces. For pairs {0, p} of antipodal points in a com-
pact symmetric space M, we attach to each p a pair of totally geodesic sub-
manifolds (M.° M_°) (simply denoted by (M,, M_)) in M. The general theory
of (M,, M_) has been developed by B.Y. Chen and T. Nagano and now it plays
an important role as a new method in the global study of compact symmetric
spaces (cf. [5], [6]). We generalize projective spaces in terms of (M., M_).

The aim of our study was to find a geometry for exceptional Lie groups.
The compact Lie group F,cs is realized as the isometry group of the Cayley
projective plane and the non-compact Lie group Egc. is the projective trans-
formation group. For the compact exceptional Lie groups E;, E, and E,;, we
would like to find good symmetric spaces which play the same role as the
Cayley plane does. The study originates from H. Freudenthal [7] and B.A.
Rozenfeld [10].

First we intended to solve a problem proposed by H. Freudenthal (p. 175,
[71). Roughly speaking, it asks us whether the adjoint compact symmetric
spaces of type EII, EVI and EVIl (in the sense of E. Cartan) can be regarded
as generalized projective planes. This problem was solved affimatively in
[2], [3] and [4].

We know a unified construction of real simple Lie algebras (cf. [1]). In
order to study the above problem, we constructed the usual projective planes
explicitly by making use of the unifield algebras. Then we encountered the
symmetric spaces of type EII, EVI and EVI, and moreover we obtained the real
and the complex Grassmann manifolds G® (4, 4n)* and G€(2, 2n) (cf. Example
1.2). We found some common structures existing in these spaces (cf. Definition
1.1) and we called the symmetric spaces with such structures the projective
spaces in a wider sense (cf. [3], [4]).

In this paper especially the projective planes in the wider sense are studied.
For these planes we first establish a duality between points and lines (cf.
Corollary 1.8) and also give the intersection number of two lines. We list the
classification of the planes at the end of this paper.
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We summarize the notations used below. Let RP,, CP, and QP, denote
the real, the complex and the quaternion projective spaces respectively and let
€ P, be the Cayley projective plane. Let GE(n, m)=SO(n+m)/SO(n)X SO(m),
G%n, m)=SU(n+m)/SU XU y) and G¥ (n, m)=Sp(n+m)/Sp(n)xSp(m). For a
compact symmetric space M, we denote by M* the adjoint space of M (cf. [8]).
It is also called the bottom space of M by Chen and Nagano.

1. Projective planes in a wider sense.

Let M be a compact symmetric space. For each p in M, the involutive
isometry s, is called the symmetry at p. Let G denote the closure of the
group generated by all symmetries of M with respect to the compact-open
topology. For some point o in M, let K, be the isotropy subgroup in G at o
(or we simply denote it by K). Then K is compact and M=G/K.

For geG, the mapping Ad(g): h—ghg™! is an isomorphism of G into itself.
Let e be the identity element of G and T,G the tangent space to G at e. We
put gx=dAd(g) (the differential of Ad(g) on T.G. Then gexp(X)o)=
exp (g«(X))(u) holds for XeT .G and u=g(o)=M. Hence, when we regard each
tangent space T,M (to M at v) as T,MCT.G, g«(T,M)=T,M holds.

Let p be an antipodal point of o on a closed smooth geodesic. Then the
orbit K(p) of p becomes a connected, compact, complete totally geodesic sub-
manifold. We call K(p) a polar and denote it by M.,%(p). If it is one point, it
is called a pole. There exists a unique complete, connected totally geodesic
submanifold M_%p) whose tangent space is the normal space of T,M.%(p). We
call M_°(p) the orthogonal complement of M.%(p).

DEFINITION 1.1. Let M be a compact, connected symmetric space. M is
called an n-dimensional projective space 1n the wider sense (n=2) if it satisfies
the following conditions:

(1) M is the bottom space,

(2) M has a sequence of totally geodesic submanifolds {M;} (=1, ---, n)
such that

(2-1) M=M,, M,DM,_, and each M,_, 1s a polar in M,,

(2-2) the orthogonal complement of M,_, in M, (=2, ---, n) is conjugate
to M, under the isometry group G.

We call the polar which is conjugate to M, a line and, if M=M, M is
called a projective plane in the wider sense. The incidence relation as a pro-
jective geometry is introduced into M by the inclusion relation of sets.

ExaMPLE 1.2. The examples of n-dimensional projective spaces in the wider
sense are RP,, CP,, QP,, G°(2, 2n) and G®(4, 4n)*. For instance, in the case
of M=G°(2, 2n) we have M,=G¢(2, 2/) (1<:<n). Since M,=G°(2, 2) there,
the orthogonal complement of M, in M,,, is conjugate to G¢(2, 2). The pro-
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jective spaces in the wider sense have been classified. If n=3, they are
GE(m, nm)*, G¢(m, nm) and G¥ (m, nm) where m is an arbitrary natural number.
Note that RP,=G®(, n)*, CP,=G°(, n) and QP,=GH (1, n).

The classification in the case of n=2 is listed in the last section. The
result was given essentially by Chen and Nagano [6]. According to the list
we notice that the space of type EVI has two kinds of structures of projective
planes in the wider sense. There is an important sequence of planes:

RP,CCP,CQP,CcCP,CENICEVICEV.

This sequence was the starting point of our study.

LEMMA 1.3. If M is a projective plane in the wider semse, it satisfies the
Jollowing properties

(1) for any p, q=M, s,=s, is equvalent to p=gq,

(2) there exists a polar M.°(p) such that s,s,=s, holds for some g& M.,°(p).

Proof. We can prove (1) and (2) by Chen’s results in [6]. Namely
Theorem 4.1 says that s,=s, holds in M if and only if p=q or ¢ is a pole of p.
And Theorem 5.1 asserts that if M has a pole it is a double covering space of
some symmetric space (that is, M is not the bottom space). (2) is also obtained
by Theorem 4.4. It shows that (2) holds if and only if M.°(p) and M_°(p) are
conjugate. O

Remarlk 1.4. Let M be a compact irreducible symmetric space. Then, if M
satisfies the above two properties, it becomes the bottom space. We can see
this fact from the explicit classification of the spaces which satisfy (1) and (2).
Hence we can use the properties (1) and (2) as the definition of projective
planes in the wider sense.

Let M be a projective plane in the wider sense and L(M) the set of all
lines. Let L(o) be the polar M.°(p) which is conjugate to M;. We define a
map L from M to L(M) by o—L(0). Since rank M_°(p)=rank M, all lines have
the same rank as symmetric spaces.

LEMMA 1.5. If M, “(v)=M.,(p) for u, vE M, then u=o holds.

Proof. Since peM,(p) (hence also p=M,*(v)), the symmetries s, and s,
leave p fixed. Then the tangent space T,M to M at p has two direct sum
decompositions T ,M=T,M,*(p)PT ,M_-*(p) and T, ,M=T,M.°(p)PT,M-(p)
where the subspaces are the (+1)-eigenspaces of the differentials (s,)x and (s,)«
of s, and s, respectively. Since M.*(p)=M,%p), we obtain T ,M,“(p)=T ,M.°(p)
and, hence, T ,M_“(p)=T,M_(p). These implies (s,)x+=(So)x in T,M. By
Lemma 11.2 (p. 62 [8]), we get s,=s,. Therefore we have u=o0 for M is the
bottom space. [
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LEMMA 1.6. The map L 1s well-defined and bijective.

Proof. Let A be a maximal flat torus in M which passes through o and p.
Assume that M.°(v), v A, is conjugate to M.°(p) under G. Then there exists
g<G such that gM,°(v)=M,(p). Since gM.,’(v)=M,*(g(v)), we obtain g(o)=o0
by Lemma 1.5. This means g K, and M,°v)=gM.°(v)=M.,%(p). Thus L is
well-defined.

The surjectivity is known by the definition of L. The injectivity is an
easy consequence of Lemma 1.5. [

We can introduce a differentiable structure into L(M) since L is bijective.
Hence L(M) can be regarded as a symmetric space. It has the same structure
as M. Let = be a map, from M\UL(M) onto itself, which maps a point (resp.
a line) to some line (resp. to some point). If = satisfies the two properties

(1) =m*=identity map,

2) per(@er(p)=q, for p, g=M,
then = is called a polarity. This gives a duality between points and lines in M.

PROPOSITION 1.7. The map L induces a polarity in M.

Proof. Since L is bijective by Lemma 1.6, we can define a polarity = by
z(p)=L(p) and n(L(p))=p. And = satisfies the condition (2) by Theorem
4.4 [6]. O

COROLLARY 1.8. A duality between points and lines holds in each projective
plane in the wider sense.

2. The intersection of two lines.

Let M be a projective plane in the wider sense. Throughout this section
M will be semi-simple as a symmetric space. Our aim is to determine the
intersection NV of any two lines in M (See Theorem 2.11). We will see that N
is a finite set in general and the cardinal number #N of N is constant for M.
For example, #N=1, 1,1, 1, 1, 3 and 135 according to RP,, CP,, QP,, €P,, E1I,
Eviand EVIl. These numbers are listed later as #(M,). By the duality of M
(Corollary 1.8), the set of all lines, which pass through two points, has the
same structure as N. Hence, in the case of FII, there exists in general only
one line which passes through two points.

We have a Cartan decomposition 7.G=T .KpM with respect to the dif-
ferential (s,)x (=d Ad(s,)) of Ad(s,) where M\=G/K (K=K,). Since we identify
M and T, M, any geodesic of M, which passes o and has a tangent vector
XeT,M, can be given by 7(t)=exp (tX)(0) where t<R and exp(tX)=G.

LEMMA 2.1. If peM satisfies $pSq=S4Sp for any q=7(t), then exp (tX) leave
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p fixed as a transformation of M.

Proof. Put a=a,=exp(X) and g=a.(0) for tR. Let p=M satisfy the
above condition. Then we obtain, from s,=as,a!, that

SpSq=S¢Sp &= $pUSeA™' =05,y & a5, a=5,a7"5,05, & 5,=S$,,

where u=a"'(p) and v=s,a"*(p). Since M is the bottom space, s,=s, implies
u=v. On the other hand, s,a 's,=a holds because (s,)xX=—X. From this we
have v=s,a"(p)=as,(p) and hence a~'(p)=u=v=as,(p). Especially if we put
t=0, we have p=s,(p). And a~'(p)=a(p), i.e., a®(p)=p holds for any a(=a,).
Since t=R is arbitrary, we have a(p)=p. O

COROLLARY 2.2. Let A be a maximal flat torus in M which passes through o.
If a symmetry s,, p&M, commutes with any symmetry s, of A, then all iso-
metries exp(X), X&T,A, leave p fixed.

Let 0, pM. We denote by K, the isotropy subgroup of G at p and put
U,=K,NK,. Let U,® be the identity component of U,. And we denote the
corresponding Lie algebra by U,, and put 8=7T,G and &,=T.K,.

LEMMA 2.3. Let p, q be points of L(o) with s,sp=s, and let A be a maximal
flat torus in L(q) which passes through o and p. If a symmetry s,,r<L(o), com-
mutes with any s,, usA, then there exists ksexp(8,) such that r="~r(q) and
k(A)=A.

Proof. Assume that s,, rcL(o), satisfies the above conditiom. Since
L(o)=K,p) and ¢q, r=L(0), there exists g=exp(®,) such that »=g(g). Then
also £, =g«(8&,) holds in &, where gy is the differential of Ad(g). First we
show g (AUACMNK, in & where G=RDPM and A=T,A. We know
exp(A)¢)=¢g from ACL(g) and Corollary 2.2. This implies ACK, and hence
g+(A)CR,. By Corollary 2.2 one also has ACK, because s, commutes with all
symmetries s,, ucA. Since ACM, we get ACM. And g«(A)CM can be ob-
tained from the following argument. Since g(0)=o0, s,g=gs, holds. For any
Z =AU, one has (50)x2+(Z)=gx(So)x(Z)=—g«(Z). Therefore g«(Z)=M.

We take X< g(A) and Y A such that these centralizers become g«(N) and
A respectively (cf. p. 248 [8]). On the identity component U,° we define a
differentiable function F:U,’—R, by F(k)=B(X, kyY) for k=U.," where B is
the Killing form of ®. Since U,° is compact, we can assume that F takes an
extremal value at k=h. Then, it holds that, for any Z&ll,,

0:{_(%— B(X, (exp (tZ))*h*(Y))}

t=0

=BX, [Z, hx1)])
=-B([X, h«(1], 2).
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Since ACTMNK,, h:F)=MNK, holds. This implies [X, r.¥)]=RNK,(=U,)
because Xeg«(A) and g(AMTMNK,. So, we obtain B(Z, Z)=0 for Z=
[X, he(Y)] in the above equation. This means Z=[X, h4(Y)]=0 because M is
semi-simple and so the Killing form B is negative definite. From the definition
of X and Y, this gives h(A)=g(A). If we put k=h"'g, k belongs to the
identity component of K, and it satisfies the above properties: in fact, 2(A)=A,
k(0o)=o0 and k(g)=h"'glg)=h"(N=r. O

Let p, ¢ be points of L(o) with s,s,=s,. Let A be a maximal flat torus in
L(g) which passes 0 and p. Define two subsets S, and S in M by S,=L(0)NA
and S= f\AL(r). Since AC L(g), we have ¢=S by the duality. By Lemma 1.3

s

and the transitivity of points in L(o), for any u< L(o) there exists v& L (o) such
that s,s,=s,. Hence we can define a map ¢: S—S, by ¢(u)=v because SCL(0).

LEMMA 2.4. Let ucM and A’ be a maximal flat torus which passes through
0 and u. Then (s)x(Z)=—Z holds for Z&T,A" where we regard T,A’ as a
subspace of T,G.

Proof. Let A’ be a maximal flat torus which satisfies the above condition.
Take X&T,A’ such that u=exp(X)(v). Put a,=exp(tX) for t=R and put
a=a,. Then for Z=T,A’ we have

$,eXP(tZ)Su=Sacr€XP(tZ)Sucy=as,a"'exp(tZ)as,a *=exp(—tZ)

because aexp(tZ)=exp(tZ)a and s,exp(tZ)s,—exp(—tZ) hold. Hence (s,)x(Z)
=—Z7 holds for Z€T,A’. [

LEMMA 2.5. The map ¢ is well-defined and bijective.

Proof. If s,s,=s, and s,s,=s, hold, s,=s, gives v=w because M is the
bottom space. Next we show that ¢(S)CS,. From Lemma 2.3, for any ucS
there exists k<exp(®,) such that u=k(g) and k(A)=A. Hence it holds that,
by k'ssk=s, and s,s,=s,,

S6Su=S0Sk(gy=SokSqk T =kSeSek T =kSpkT ' =S4(p>-

This implies ¢(u)=Fk(p). And we have also k(p)=L(0)NA because p= L(0)NA
and k(L()NA)=L@)NA.

Next we show the injectivity. If ¢(u)=¢(r) for some u, r<S, $,5,=5,5,
holds. Hence one has s,=s, and so u=r because M is the bottom space. We
show the surjectivity. By Lemma 1.3, for any u<S,, there exists v& L(o) such
that s,s,=s,. Then, since s,s,=s, holds, we may show veS. Let reA.
Assume r=exp (X)(0) with XeT,A. Since 0, u A and s, leave o fixed, we
have (s,)x=—1 on T,A by Lemma 2.4. Hence it holds that

So(r) =508 u(F) =505, €xp (X)(0) =exp ((So)x(su)x X)(0)=exp (X)(0)=r.
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This gives s,=s,s,S,, that is, s,.s,=s,s,. Since r&A is arbitrary and v L(0),
by Lemma 2.3 there exists k<exp (R, such that v=~k(q) and k(A)=A. There-
fore we have ve=S because ¢=S and 2(S)=S. O

LEMMA 2.6. Let k€K, and u, veS. Then k(u)=v is equivalent to k¢(u)
=o).

Proof. Since s,s.=S4u), We have, by sok=Fks,,
SoSkcuwy=SokRSuk T =k SoSuk T ' =kSgcwy R ' =Srgcw .

Hence, k(u)=v is equivalent to k¢(u)=¢). O
COROLLARY 2.7. For ucS, Uy,=Ugcu holds.

We take three points {0, p, ¢} and a maximal flat torus A as in Lemma 2.3.
The aim is to study the set of lines which pass through any two points u, vE M.
Without loss of generality, we may assume v=o0 and u<A by the transitivity.
For any uc A, define two subsets by,

Nuw)={veMlo, uc L@)},
Ny(uw)={k(@)|any vES, and any k<U,°} .
We will see later that these sets are isometric (Proposition 2.10) and that S,

and U,° (i.e., Ny(u)) can be determined explicitly. Note that N,(x) is not
necessarily connected.

PROPOSITION 2.8. Let A’ be another maximal flat torus in M which passes
through two points 0o, ucA. Then there exists k€U ," such that k(A")=A.

Proof. We have a direct sum decomposition T.G=T KPM where M=G/K
and M=T,M. Put A=T,A and N'=T,A’. Take X=¥W and Y A’ such that
these centralizers become U and A’ respectively. Next we define a differentiable
function F:U,'~R by F(k)=B(X, k+Y), k€U,°’, where B is the Killing form
of T.G. Since U," is a compact group, we may assume that F takes an ex-
tremal value at k=h. Then it holds that, for Z&ll, (=T.U."),

0:{% BX, (exp(1Z))xhs(V)}

=B, [Z, h+(Y)])

t=0

On the other hand, X and h4(Y) are tangent vectors to A and to A(A") at o
respectively. Since A and h(A’) passes through o and u, (s,)x and (s,)x act as
—1 for both X and h4(Y) by Lemma 2.4. This gives [ X, h«(Y)]=Ul,. Hence,
if we put Z=[X, h«(¥")] in the above equation, we get Z=0 because B is non-
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degenerate. This shows A(AY=A. O
LEMMA 2.9. Nw)={k@)lany veS and any k<U,} holds for each uecA.

Proof. Take veN(u). Then we have o, uL(v) by the definition. Since
L) and M have the same rank, there exists a maximal flat torus A’ of M
such that A’C L(v) and it passes through o and u. By Lemma 2.8, we can take
kU, such that k(A"Y=A. Since RL@w)=L(k@)), ACL(k@)) holds. By the
duality, we get 2(v)eS. Therefore we obtain v=Fk~'k()=k~'S for k'cU,".
Conversely, we take veS and k<U,". Then L(k@))Dk(A) holds by k(v)skS
and the duality. Hence we have L(k(w))>o, u since k(A)>o0, u. O

We define a map @ : N(u)—N,(u) by ®(k))=Fk(¢@)) where we use the ex-
pression in Lemma 2.9 for N(u).

PROPOSITION 2.10. @ s an isometry from Nu) to No(u).

Proof. First we show that @ 1s well-defined and injective by the follow-
ing arguments: for v, weS and &, heU,’, it holds that

EW)=h(w) = v="F h(w)
= dw)=kth(d(w)) (by Lemma 2.6)
& k(gw)=h(gw))
& O(k)=0(h(w)).

The surjectivity of @ can be given by that of ¢.

Let C be a connected componect of N(u). Then, by Lemma 2.9, C must
meet S because U," is connected. So we may assume veCNS. Then U,NU.,°
=U4wNU," holds in G by Corollary 2.7. Hence C and @(C) become totally
geodesic submanifolds with the type U,'/U,NU,°’. And, since both have the
induced metric from U,'/U,NU.,°, they are isometric. (]

THEOREM 2.11. (1) The set of all lines which pass through o, us A becomes
a totally geodesic submamifold in M. It 1s i1sometric to Ny(u).

(2) (the dual of (1)): The intersection of two lines L(o) and L(u), o, uc A,
becomes a totally geodesic submanifold in L(M). It is isometric to No(u).

Proof. We obtain (1) by Proposition 2.10 and (2) by the duality in Corollary
1.8. O

3. The determination of the intersection number of two lines.

In this section we keep the notation in §2 unless otherwise stated. Let p, ¢
be points of L(o) with s,s,=s,. Let A be a maximal flat torus in L(g) which
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passes through o and p. The structure of the set of all lines, passing through
0, u A, can be determined by N,(u) (cf. Theorem 2.11). Therefore we must
analyze the set S,(=L(0)NA) and the isotropy group U,°.

We have a direct sum decomposition T,.G=T.KPM with respect to the
involutive automorphism g—s,gs, of G. Put 8=T,G and =T .K. Since A is
a maximal flat torus also in M, one obtains an eigenspace decomposition of &
with respect to U where A=T,A M=T,M). We review some facts on this
decomposition after O. Loos [9] (p. 58-p. 62).

Set Q(A)=so84. Then Q(A) is a flat torus in G. When we consider the
adjoint representation AdQ(A) of Q(A) on complexification @, of G, we have
an eigenspace decomposition

@c=((‘3c)A@2@x ’

where (G¢)4 is the set of fixed points of AdQ(A) on G¢ and {X} are the mutu-
ally different non-trivial characters of the representation with the correspond-
ing eigenspaces

G,={Z<B¢ | AdQ)(Z)=X(w)Z for all ucA}.
Each X corresponds to a linear form A; on % by
L(exp (X))=exp (2A(X)) for Xe¥%,

where we denote Ay by A for simplicity. We call 4 a root relative to % and
denote the set of roots by 4.
Set, for A€4,

®:=1{Z=6 | [H, Z1=A(H)Z for all He%} .

It follows that ,=@, if =14 and ;=0 if 1+#0 and 1¢4. Here (%=
(Bc)¥=(B¢)* where G¥={X=@|[X, A]=0}. Then we obtain

) Be=R®"cDADHES;,

where X is the sum over ic4 and R¥={X<®|[X, AT]=0}. Put £,=8N
(8;PG-;) and M;=MN(G;:PS_;). Then it holds

2 R=RYDIR, and M=ADIM;,

where Y runs over positive roots.
Define a set U; by

U,=kernel(X)={u=exp(H)e A | X(u)=exp (2A(H))=1} .
Then we have
3) U, =R%prR,;,

where U, is the Lie algebra of U, (the isotropy group of 0 and ucA) and Y
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runs over A such that u<U;. (3) gives the isotropy group exp(il,) at uc A
explicitly.
For o, uc A, set

do={ied | S,cU;} and E,={icd|ucU;}.

When 2,4, (resp. 5.,N\Ad—4,)+ @), we say that two points 0 and u are in
the gemeral position (resp. n the singular position). Then, from the duality,
we also say that two lines L(o) and L(u) are in the general position (resp. in
the singular position).

EXAMPLE 3.1. Let M be an usual projective plane (being not in the wider
sense). Since M is of rank one, S, consists of one point and 4=4, holds.
Hence 5,C4,. This means that two points are always in the general position.
We usualy say that there exists only one line which passes through any two
points.

LEMMA 3.2. S, is a finite set.

Proof. We know from Lemma 3.15 in [6] that, in an abelian Lie group,
two antipodal points of the identity element are always antipodal to each other.
When we regard the base point o as the identity element, we may regard the
maximal flat torus A in M as an abelian Lie group. Hence any two u, vES,
are antipodal to each other because S,=L(0)N\A. This means that s, leaves v
fixed and » is an isolated point in S,. Since S, is a compact discrete set, it is
a finite set. [

LEMMA 3.3. If o, u A are in the general position, No(u) 1s a finite set.

Proof. Assume that o, ucA are in the general position. Then 5,C4,
holds. The above identity (3) means that exp(ll,) leaves all elements in S,
fixed. Therefore N,(u)=S,. By Lemma 3.2 we have that N,(u) is a finite
set. [

Let C be a component of the set of regular elements in the maximal flat
torus A (resp. in T,A) (cf. p. 68 [9]). We call the closure C of C a (closed)
cell and, if 0C (resp. 0=C), we call it a fundamental cell. From now on we
study the number of all cells in A. We will use the following notation :

D: a fundamental cell in T,A,

U1, Vs, -, Uy o the vertexes of D, where [ is the rank of M and the suffixes
{1, ---, I} correspond to that of the fundamental roots {4, ---, 4;} respectively,

ve: the origin of D,

¢,: the number of all points in D which are conjugate to v, under the
affine Weyl group of T, A,

n,: the number of all points in A which are conjugate to exp (v,)(0) under
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the affine Weyl group of T,A4,

r,: the number of all cells which have v; as a vertex when we regard
T,A as the tangent space of some maximal torus in the universal covering
space of M.

However, if exp (v,)(0)=exp (vo)(0)=0 in M, let ¢,, n, and r, denote the numbers
fOI’ Ui/2-

ProrosITION 3.4. For i< {1, -, I}, rin;/c, is equal to the number of all
cells in A.

Proof. Takeanyi:={l, ---, l}. In T, A(CT,M) there are n, points conjugate
to v; and there are », cells around v,. Since we count these r;n, cells ¢, times
repeatedly, »,n;/c, becomes the number of all cells in A. O

If we regard the fundamental cell D and the extended Dynkin diagram of
M as those of some compact, simply connected, semi-simple Lie group G(M)
respectively, then the normalizer K;(M) of exp (v;)(€G(M)) can be obtained from
the diagram by the same method as Borel-Siebenthal’s one. However, if
exp (v;)(0)=exp (W) (0)=0 in M, let K,(M) denote the normalizer of exp(v;/2)
(eG(M)). Let W(K,) be the Weyl group corresponding to K;(M). Then the
order #W(K;) of W(K,) is equal to »,. But, if the diagram is of the following
type, we must calculate r, directly because the corresponding G(M) does not
exist :

0=0—0—0—0——0—0—0=30,

where © means (—1)X(the highest root). For example, we see this type when
M=S0Q@n)/U(n) (n is odd), SUn+m)/SU.XUn) (n#m) or Spn+m)/Sp(n)
X Sp(m).

ExAMPLE 3.5. We consider G 1 =G,/SO@) as M since it becomes a pro-
jective plane in the wider sense. Then M,=M_=52.5? (semi-direct product of
two spheres). As a symmetric space, M is irreducible and of rank two. Let
A be a maximal torus in M which passes through o and T,A its tangent space
at 0. Let 4 be the set of roots of M with respect to A. Take a fundamental
root system {4, 4.} such that the highest root g is equal to 24,4-32,. Then the
extended Dynkin diagram is

And a fundamental cell is given by
D={x€T,A | 2,(x)=0, 2(xi)=0 and p(xi)<=x}.

Let vy, v, be the vertexes of D corresponding to A, and A, respectively.
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We regard the extended Dynkin diagram of the symmetric space M as that
of the simple Lie group G, (in this case G(M)=G, holds by chance). We denote
by K,(M) (or simply by K;) the normalizer of exp (v,) in G, (¢=1, 2). In this
case K;=S0O(4) and K,=SU(3). The diagrams, the types and the number of
elements of the Weyl groups for {K,} are given as follows:

OEO type Gz ro=#(W(Gz))=12 C0=1 y
© @) type A, XA, rn=#W(K,)=4 =1,
©0—O type A, re=#W(K))=6 =1,

Then we have

the number of all cells in A=(#(W(G,))X1)/c,=12
=(#W(K))Xny)/c;=4n,
=(#W(K,)) X ns)/ca=6n.,

where W(G,) denotes the Weyl group of G,. From these equations we obtain
n;=3 and n,=2. This means that the cardinal number of L(0)NA is 3 (=n,)
because the orbit of exp (v,)(0) becomes L(0). Hence we can say that there
exist three lines which pass through any two points in the general position.

For this model it holds that n,=#(W(G,))/#(W (K,)). Therefore n, is also
equal to the Euler number of G I.

We state here two facts about the Euler number 2(G) of compact, semi-simple
Lie groups G. But we don’t use them in our discussion.

First we consider a compact, semi-simple symmetric space M which is not
necessarily a projective plane in the wider sense. Denote by A a maximal flat
torus in M which passes through o. Let M, be a polar of 0. Assume that M,
is the orbit of exp (v;)(0) (or exp (v,/2)(0)). Then we have the following theorem
where n is the rank of M and Y means the sum over all polars M, of o.

THEOREM 3.6. 2"=1+2c,#W(G(M)))/cott(W(K;(M))).

This theorem can be obtained from two identities 2"=2'n, (cf. Corollary 6.6 [5])
and n;=c,#W(GWM)))/cott (W (K (M))) (cf. Proposition 3.4). Notice that n,=1
always.

When M is a compact, semi-simple Lie group G, we set G,=M, and e=o
(the identity element). Then G.=G/K, holds for some 7 and the isotropy group
K, has the maximal rank.

THEOREM 3.7. XGCH=c,#W(G))/co#t(W(K3)).

If G is simply connected, we know that c,=c;=1 and K, is connected. Then
the identity becomes the well-known one. Moreover, we obtain a Chen-Nagano’s
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identity in Theorem 3.4 [6] from Theorem 3.6, 3.7. But their identity holds
for all compact Lie groups.

COROLLARY 3.8. 2 =14+3%G,).

From the above arguments, we know that it is very important to determine
the numbers {c;}. And so we have calculated them for all compact irreducible
symmetric spaces and for all orbits of exp (v;)(0) (resp. exp (v;/2)(0)). In the
table at the end of this paper, we list {c¢;} for projective planes in the wider
sense.

ExAMPLE 3.9. Let M be a compact, irreducible symmetric space with the
Dynkin diagram of type C;. Then M has two locally isometric spaces. One is
the bottom space and the other is the simply connected space. The examples
of such M are G¢(3, 3)*, G°(3, 3), C1@)*, C1(3), GX(3, 3)*, G#(3, 3), DI(3)*,
DI@3), Sp@3)*, Sp@3), EVi* and EVI. Then the extended Dynkin diagram and
the highest root of M are always given by

—u A A A
@=>O“‘—‘Oco and [l=221 +212+13 .

(1) Let M be the bottom space. Let each vertex v; of D correspond to the
simple root 4,. Now o=exp ,)(0)=exp(v:;)(0) holds. Hence we have c¢,=2.
Since v, and v, are conjugate, we get ¢,=2 (or ¢,=2). The point conjugate to
vs/2 does not exist in D except itself. This means ¢;=1. Note that we use
the notations {cs, n;, s} for v;/2. When we regard the above extended Dynkin
diagram of M as that of Sp(3) (i.e., G(M)=Sp(3)), the numbers {r;} can be
given by

(vo) O—0O=0 ro=#(W(C,)=23! =2,
(vl) @ O<=O " =#(W(A1 X Cg))=232! C, =2 y
(vs/z) O—O O r3=#(W(A2XDl))=3' Ca=1 .

Then we have three orbits of o0, exp (v,)(0) and exp (vs/2)(0). By Proposition
3.4, we obtain

#W(Cy))/co=#W(A1XC,))X nl/clz#(W(AZXDl))X ny/Cy.
It follows that n,=3 and n,=4. Certainly 2*=1+n,+n, holds. (cf. Theorem 3.6).

(2) Let M be simply connected. Then exp(v,)(0) and exp (v,)(0) are not
conjugate but they become two polars with the same type. The orbit of
exp (vs/2)(0) is not a polar since exp (v;)0) is a pole (=a polar consisting of one
point) of o. Hence there exist three polars which consist of the orbits of
exp (w;)(0) (=1, 2, 3). So we can caluculate {r;} as follows. In this case, we
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use the notions {cs, ns, 75} for vs;

(vo) O—0O=0 ro=#(W(C,))=2°3! =1,
(v1) © OO0 n=#W(A,XC)=22! ¢,=1,
(ve) 0=0 O re=#W(Cs X A))=2%2! ¢,=1,
(vs) 0=>0—-720 re=#W(C,))=2°3! cs=1.

The symmetry of the fundamental cell D disappears since all ¢;=1. By Pro-
position 3.4, we have

#W(Co))/co=#W (A X Co))Xn,/c,=#W(Ca X A))X s/ ca=#W(C3))Xns/c;.

These identities give n,=3, n,=3 and n;=1. Also 2"=1+4n,+n,+n; holds.

EXAMPLE 3.10. (cf. [2]). Let M=E./(Spin(10)XT)/Z, (=EI simply) where
T is the one dimensional torus and Z, is the cyclic group of order 4. The
rank of M is two. Let A be a maximal flat torus in M and D a fundamental
cell of T,A. Take a fundamental root system {4,, .} such that the highest
root g is equal to 24,422.. Then we have the following:

a set of positive roots:
A+={21’ Azy 241, 24,422, Ay +2s, 22,+22:},

the multiplicity of positive roots: 8,6, 1, 1, 6, 8,
—u A A
the extended Dynkin diagram: 1010
the type of orbits M, of exp (v;)0) as symmetric spaces:

(v;) G°%(2,8) and (v,) DI(5),
the type of the orthogonal complement M_ to M., :
(v1) G°%(2,8) and (v,) S*XG°(l,5),
the cardinal number #(M . NA): () 1 and (v,) 5.

Hence
(M: M—}-):(Em’ GOR(Z, 8)) .

is a projective plane in the wider sense. In this plane L(0)N\A= {exp (v,)(0)}
holds, that is, S, consists of one point. Let R, be the set of positive roots
which satisfy ucU;. If ucANL(0), R,={2:, 24, 24:42:, 2, +24,}. If ue
ANDII(G5), Ry={A;+As, 24,+22;} or R,={A,, 22,} (but these sets are conjugate
to each other). We know that u ANDII(5) if and only if » is on a closed
geodesic in A with the minimal length. Then moreover u<A satisfies the
condition B, ,N\(4d—4,)# @. Thus o and u are in the singular position. After
all, we obtain that
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(1) for two points in the general position, there exists only one line which
passes through them,

(1)* two lines in the general position intersect at only one point.

(2) for two points in the singular position, the set of all lines passing
through them becomes CP, as a symmetric space.

(2)* the intersection of two lines in the singular position becomes CP,.

DEFINITION 3.11. Let p, g=M. We consider the two following statements
(a) and (b);

(a): p and ¢ are in the singular position in the sense of symmetric spaces
(cf. p. 295 [8]).

(b): p and ¢ are in the singular position in the sense of projective planes
in the wider sense.

Generally (b)=(a) holds but the converse does not always hold. So, if (a)=
(b), we call M of type 1 and, if not so, we call M of type II.

ExAMPLE 3.12. The usual projective planes M (i.e., being not in the wider
sense) are of type II since there does not exist two points in the singular
position.

Now we consider (EVI*, (T-EIV)/Z,) with the type 1. The rank of M is
three. Let A be a maximal flat torus in M and let D be a fundamental cell of
T,A. Take a fundamental root system {4, 4., 45} such that the highest root g
is equal to 21,4+21,+4s. Then we have the following:

— U 2. 22 23
the extended Dynkin diagram: ©=—=>0——Q&==0
the type of orbits M, of exp (v,)(0) as symmetric spaces :

(vy) El and (vy/2) (T-EN)/Z,

where v, and v, are conjugate to each other and the orbit of exp (vs/2)(0) is a
polar of o since o=exp (v;)(0).

the type of the orthogonal complement M_ to M,:
(v1) S®XGE2,10) and (v,/2) (T-EWN)/Z,

the cardinal number #(M,NA): (v;) 3 and (vs/2) 4
the Cartan matrix C for the set 4 of roots: C=(a,,),

2—-1 0
C=|—-1 2 —-1|.
0—-2 2

Define a basis {x;} of T,A by A;(x,)=a,,- Then the vertexes {v;} of D are
given by
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Vi=x/24%x:/24 x,/2,
V=%x,/2+4 X+ x3,
Ve=x,/24 x; +3x,/2.

Since #(L(0)NA)=4, we construct in A four conjugate points to exp (vs/2)(0)
explicitly. Let i={l, 2, 3,4}. Then {x=T,A|2(x)=0} is a wall in T,A.
Define a reflection map W, across this wall by x—x—2,(x)x,/zi. We can find
four conjugate points {exp(z,)(0)} to exp (vs/2)(0) when we operate {W.,} to
vs/2 repeatedly ;

z,= x,/4+x,/243x,/4 (z2,=vs/2),

2= X./4+x./24 x/4 (by Wez))=2),

z= x./4 + x/4 (by Waz)=2,),

z,=3x,/4 + x3/4 (by Wi(z5)=2,).
Let 4,={14|S,cU;} as before. Then it holds that

icd, = Nz)eniZ (=1, 2,3,4)
e Az)eriZ and Ax,/2)srwiZ (=1, 2, 3).

The last condition gives 4,=@. This means that M is of type 1 because 15,
if and only if 2e&,N\(4—4,).

In the following table we list the classification of projective planes (M, M.,)
in the wider sense where M’s are irreducible compact symmetric spaces. And
¢, (resp. ¢,) denotes the number of all conjugate points to the origin v, (resp.
v, or v;/2) in the fundamental cell. The suffix #(>0) corresponds to the vertex
v; or v;/2 such that M, is the orbit of exp(v;)0) or of exp(v,/2) o). #(M,)
denotes the cardinal number of the intersection L(0)N\A.

Classification of projective planes in the wider sense.

M M, (¢o, €1) #(M,) Type
(Exceptional spaces)
El S.G¢ (3, 3) (1, 1) 12 1
El GO%(2, 8) (1, 1) 1 I
Ev* Al1®)/Z, 2, 1) 36 I
Evi G°£(4, 8) (1, 1) 3 i
S2- DI (6) 1, 1) 12 I
Evi* (T-EN)/Z, 2, 1) 4 I
Evit G (8, 8)* (1, 1) 135 I
EXX St EVil 1,1 12 I
F1 S*-C1(3) (L, n 12 1
Fl S# 2,1 1 i
G1 SE. S® (1, 1) 3 1
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(Classical spaces)

Al G(2p, g) G(p, DIXG(p, g—p) (LD 5,Cp (2p<qg) 1

(2p+q, p=q) «Cp (2p>9q)
G2p, 2p)* G(p, p)-G(p, p) (2, 1) 2pCyp/2 il
G(p, p)* Up)/Z. 2, 1) 2r-1 1
(p=#1)
(2p#q, p=q, q: odd) «Co 2p>q)
Cl ClI(n* Uln)/Z, 2, 1) 2n-1 1
(n#1)
co  G@2p,q) G(p, P)XG(p, g—P) (LD 5Cp, (2p<g) it
(2p+q, p=q) «Cp (2p>q)
G(2p, 2p)* G(p, p)-G(p, P) (2, 1) 5pCy/2 i
2p+q, p<q, q: even) «Cp 2p>9q)
(The type of G(4, 2) is II)
Go®(@2p, 2py*  G(p, p)-G(p, ) 4, 1) 2pCy/2 I
DIl DI (2n)* Uld(2n)/Z, 2, 1) 2n-1 I
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