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THE CHARACTERISTICS OF BMOA ON
RIEMANN SURFACES

BY ZHAO RUHAN

In this paper we give a John-Nirenberg type theorem for BMOA on
general open Riemann surfaces. Using Ba spaces we give a new charac-
teristic for BMOA on Riemann surfaces in this paper too.

1. Introduction.

In [7], T. A. Metzger asked whether the John-Nirenberg theorem for BMOA
on the unit disk is true on Riemann surfaces. We have given a positive answer
for compact bordered Riemann surfaces in [4]. In this paper we will give a
John-Nirenberg type theorem for BMOA on general open Riemann surfaces.
Some new characteristics of BMOA on Riemann surfaces will be given in this
paper too.

2. John-Nirenberg type theorem for BMOA on Riemann surfaces.

Let R be an open Riemann surface which possesses a Green's function, i.e.,
R£OG. Let GR{w, a) be the Green's function of R with logarithmic singularity
at a^R. We firstly give an important lemma as follows:

LEMMA 2.1. Let 7?i C i?2 C ••• C /?* -> R be an exhaustion of the Riemann
surface R, where Rk are compact bordered Riemann surfaces (l<k<e°). F is
an analytic function on R. Let the least harmonic majorant of the subharmonic
function \F(w)\v on R(or Rk) be H(w) (or Hk(w)). Then

/ / F(w) has no harmonic majorant on R {or Rk) we denote H(w)—^ {or Hk(w)
= oo).

Proof. It is easy to verify that {Hk(w)} is an increasing sequence. By
Hanack theorem we get that lim Hk(w)=H0(w) is a harmonic function, or H0(w)
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Because {Rk} is an exhaustion of R, there is a k^l such that wEίRk for
given w^R, then H0(w)^Hk(w)^\F(w)\p. So H0(w) is a harmonic majorant
of \F{w)\p on #.

In the next step we will prove that H0(w) is the least harmonic majorant
of \F(w)\p on R, i.e., if H(w) is another harmonic majorant of \F(w)\p on R,
we must show that H(w)izH0(w) for each w^R.

Suppose there is a ζ e i ? such that H(ζ)<H0(ζ). Because {Rk} is the exhaus-
tion of R we know there is a kλ>0 such that ζ(^Rkι. Because H0(ζ)=\imHk(ζ),

there is a £ 2 ^ 1 such that H(ζ)<Hk2(ζ). Taking jfeo=max(*1, &2), then ζ e t f ^ C
Rko and H(ζ)<Hk2(ζ)£HkQ(ζ). Thus #(w) is a harmonic majorant of | ^ ( ^ ) | p

on RkQ and H(ζ)<Hko(ζ) on ζ^Rko. This conclusion contradicts to the fact
that Hko(w) is the least harmonic majorant of \F(w)\p on i?*0.

Thus //o(w) is the least harmonic majorant of \F(w)\p on R, i.e., H(W)ΞΞ
Ho(w)=supHk(w)=\imHk(w). This completes the proof.

For the BMOA on the above Riemann surfaces, T.A. Metzger has given
the definition as follows [6] : Let F be an analytic function on R. We say
FΪΞBMOA(R) if

B2

R(F)= ~sup[[ \F'{w)\2GR{w, a)dwdw<oo.
π αe/ί JJR

We have the next lemma:

LEMMA 2.2. Let RiCZRzd'- CZRk-^R be an exhaustion of R, where Rk

are compact bordered Riemann surfaces, then

BRk(F)£BR(F).

Proof. Let Gk(w, a) be the Green's function on R with logarithmic singu-
larity at a^Rk. Let

G(w)^=GR(w, a)—Gk{w, a).

It is easy to verify that G(w) is a harmonic function on Rk, and G(w)\dRk=
GR(w, a)\dRk>0. Using the maximum principle of harmonic function we have
G(w)>0 for each w<=Rk} i.e.,

Gk(w, a)<GR(w, a).
Thus

Jf \F'(w)\*Gk(w, a)dwdw^R\F'(w)\zGR(w, a)dwdϊϋ.

Taking supremum we have

which is the conclusion of the lemma.
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We will give an equivalent definition of BMOA on Riemann surfaces by
the exhaustion process in the following theorem.

T H E O R E M 2.3. Let R be a Riemann surface which possesses a Green's func-
tion. For each a^R we possess an exhaustion Ral(Z Ra2a •- a Ra,k-^ R such
that flGi?α>1. Where Ra,k are compact bordered Riemann surfaces, l^k<^.
F is an analytic function on R. Thus we have

B'%(F)=sup sup Ha. *(α),

where Ha,k(w) is the least harmonic majorant of \F(w)—F(a)\2 on Ra,k.

Proof. Suppoae Ha(w) be the least harmonic majorant of \F(w)—F(a)\2

on R. From lemma 2.1 we have Ha(w)=limHa k(w). So Ha(a)=limHa *(#)=

supHa k(a). Following lemma 1 of [5] we have

Thus

The proof of theorem 2.3 is completed.
As an application of lemma 2.1 we can give an equivalent definition of

VMOA on Riemann surfaces. Firstly let us recall the definition of VMOΛ(R).
Let R be a Riemann surface which possesses a Green's function GR(w, a). F
is analytic on R. We say F^VMOA(R) if

lim ίί \F'(w)\2GR{w, a)dwdw=0,
a-*dRjJR

where dR is the ideal border of R.
Using lemma 2.1 and the lemma 1 of [5] we have the following conclusion

immediately:

PROPOSITION 2.4. Let F be an analytic function on Riemann surface R,
then FΪΞVMOA(R) if and only if

lim lunHa k(a)—0.
a-dR k-*oo

The meaning of Ha,k(w) is the same as that of theorem 2.3.
Next we will give a John-Nirenberg type theorem for BMOA on Riemann

surfaces.

THEOREM 2.5. Let R be a Riemann surface which possesses a Green's func-
tion GR(w, a). For each a^R we possess an exhaustion Ra,iClRa,2Cl ~CZRa,k—>R,
where Rak (1^!&<°°) are compact bordered Riemann surfaces and αei? α > 1 . F
is an analytic function on R. Then F^BMOA(R) if and only if for every
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and every

f

JEatk>λ

g_βλt

Where Ea.k,x = {z^dRa,k, \F(w)—F(a)\>λ). d/dn is the inner normal derivative
with respect to Ra,k. K is an absolute constant. When F^BMOA(R), /?=
c/BR{F), c is another absolute constant.

Proof. Suppose F(=BMOA(R). For a<=R and the exhaustion
i?α,2C Ci?α,i->i?, because Ra,k are compact bordered Riemann surfaces, by
lemma 2.2 we know F(=BMOA(Ra>k). From theorem 1 of [4] we know for
every k^l and every

f Mf>4dsίίK.-β», (2.2)

where βk = c/BRa>k(F). From lemma 2.2 we know BRak(F)<BR(F). So βk^
c/BR(F)=β, therefore e-βkλg.e~βλ, so we have

k
To see the converse we suppose that for every a^R and every k^l (2.1)

is true. Let

, a)
Λa,k{λ)-\ ^ as,

j E a k λ on

then if Ha>k(w) is the least harmonic majorant of \F(w)—F(a)\2 on Ra,k, we
have

i EV \ rv s]2dGk(w, a) ,

\F{w)-F(a)\2 = -ds

a> k on

2K

so
O Ύζ

SUP 5y

From theorem 2.3 we have F<=BMOA(R) and the proof is completed.
It is analogous to the corollary of [4], using theorem 2.3 and theorem 2.5,

noting the next equation [8] :

a k

on
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we have the corollary as follows:

COROLLARY 2.6. Let R be a Riemann surface which possesses a Green's
function. For each a^R we possess an exhaustion i ? α l C i ? α > 2 C ••• aRa,k-> R,
where Rak ( l5 j£<oo) are compact bordered Riemann surfaces and a^Ra,ι
Thus F(EΞBMOA(R) if and only if

i jdRaι

supsup
a ( = R k ^ i j d R ι k

and Mv^BvR(F). When FCΞBMOA(R), Mp^(K/Cp)Γ(p+iχBR(F))p.

3. BMOA on regular Riemann surfaces.

Let R be a Riemann surface. RψOG- We call R be regular if for each
w^R, \imGR(w, a)—0. A simple example of regular Riemann surface is the

a-*dR

unit disk. For the regular Riemann surface R, John-Nirenberg type theorem
for BMOA(R) has a much simple form. We firstly give two lemmas:

LEMMA 3.1. [1] If R is a regular Riemann surface. Then for a given
compact set R0CR and ε>0, there is a compact set SodR such that w^R\S0

implies GR{w, a)<ε for every a^R0. Especially for each a^R, we can take
Ro={a}.

From lemma 3.1 it is easy to know that if 7? is a regular Riemann surface,
then for every α e i ? and every t>0 Γa,t—{w^R, GR{w, a)=t\ is constructed
by a finite number of analytic Jordan curves.

L E M M A 3.2. Let R be a regular Riemann surface. For every a^R and
every t>0, Ra>t={w^R, GR{wy a)^t} is a compact bordered Riemann surface
whose border is Γa<t. GRat(w, a)—GR(w, a)—t is the Green's function on Rat

with logarithmic singularity at a, and {Ra,t} is an exhaustion of R when t de-
creases to zero.

Proof. Fix a^R. Suppose {wn}cRa,t, wn->wo. From lemma 3.1, there
is a compact set SodR such that every w^R\S0 implies GR{wy a)<t. So
Ra,tClSo, i.e., {wn}dS0. Because So is compact we know Wo^So(ZR, thus
GR(wo, a)=\imGR(wn, a)>t. Equivalently, wo(ΞRa t. So Ra t is a closed sub-

n->oo

domain of the compact set SodR, then we have Ra,t is a compact domain.
Let w^R such that GR(w, a)>t>0. From the continuity of GR(wf a) we

know there is a sufficient small parametric disk Uε which contains w such that
every ζ e ί / s implies GR(ζ, a)>t. Thus U£<Z.Ra,t. So w can not be the border
point of Ra,t, and the border of Ra,t is constructed by Γa>t, i.e., Rat is a
compact bordered Riemann surface.

By direct verification we can know GRa>t(w, a)—GR{w} a)—t is the Green's
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function of Ra,t with logarithmic singularity at a.
For each w<=R, there is a ti>0 such that GR{w, α)>ίi>0. So v

and we conclude that {i?α>t} is an exhaustion of R when t decreases to zero.
The proof is completed.

From lemma 3.2, for the regular Riemann surface R, we have

dGRa t(w, a) _ dGR(w, a)

dn -~fa~' (3>1)

Where d/dn is the inner normal derivative with respect to the compact bordered
Riemann surface Ra,t>

From (3.1), we can conclude immediately that for every α e i ? and every
ί>0,

( d^±lds=2π. (3.2)

Let F(w) be an analytic function on R. H(w) is the least harmonic majorant
of \F(w)\v, from lemma 2.1 and (3.1) we have

Zπ ί>o jra> t on

If \F(w)\p has no harmonic majorant on R we denote //(u/)=oo.
From this, corresponding to theorem 2.3 and noting (3.3) we have

THEOREM 3.3. Let F be an analytic function on a regular Riemann surface
R, then

BA(F)=^-supsup( \F(w)-F(a)\*dGiW>a)ds.
ΔTZ αei? ί>o jΓat On

Corresponding to proposition 2.4 we have

PROPOSITION 3.4. Let F be an analytic function on a regular Riemann
surface R, then FΪΞVMOA(R) if and only if

lim lim f \F(w)-F(a)\>?£φ-^ds=0.
a->dR t-0+ }Γatt On

From theorem 2.5 we can easily deduce John-Nirenberg type theorem on
regular Riemann surfaces. It has a much simple form.

THEOREM 3.5. Let R be a regular Riemann surface. F is an analytic func-
tion on R. Then F^BMOA(R) if and only if for every a^R and every t>0

r dG
JEa,t,x o

g_β

Where Ea,t,λ={w^Γa,t, \F(w)—F(ά)\>λ\. d/dn is the inner normal derivative
with respect to Ra,t. K is an absolute constant. When F<EΞBMOA(R), β—
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C/BR(F), C IS another constant.

Corresponding to corollary 2.6 we have

COROLLARY 3.6. Let R be a regular Riemann surface. F is an analytic
function on R. F^BMOA(R) if and only if

supsupf \F{w)-F{a)\v^
αei2 ί>0 JΓa> t On

and MP~BP

R(F), when F^BMOA(R), Mv<(K/Cv)Γ(pΛ~iXBR(F))v.

As an application of theorem 3.5, we point out that the distribuion function
on some area measure of BMOA on the regular Riemann surface R has ex-
ponential decay.

Let G%(w, a) be the conjugate function of GR(w, a), then P{w)—GR{w, a)+
ιG%(w, a) is an analytic function on R\{a}. We have

COROLLARY 3.7. Let R be a regular Riemann surface. If F^BMOA(R),
then

where k is an arbitrary positive integer. β = c/BR(F), K, c are absolute constants.
?, \F(ιv)-F(a)\>λ}.

Proof. Because GR(w, a) is a constant on Γa,t> we have

-Ό'f w dG%(w, a) dGR(w, a)
ιP\w)dw — ^ ds— -Λ ds

os on

along Γa.t, where ds is the arc length and d/dn is the inner normal derivative
with respect to Ra,t> Thus we have

along Γa.t Because GR(w, a)=t along Γa,t we have (dGR(w, a)/dn)dn — dt.
Thus

if \P'(w)\2e-kGR^' dwdw

Da<λ

0 JEa,t,λ

K Bλ
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Where β—c/BR(F), K, c are absolute constants, and the proof is completed.

4. BMOA and Ba spaces on Riemann surfaces.

Ba spaces was introduced by Ding Xiaxi and Luo Peizhu in [2]. In [4],
we have discussed a special class of Ba spaces HBa on compact bordered Riemann
surfaces and have given a new characteristic of BMOA on compact bordered
Riemann surfaces. Next we will show that on the general open Riemann surface
R which possesses a Green's function, the above conclusion is still true.

We firstly recall Hardy spaces HP(R) on the Riemann surface R(lg>p<oo).

HP(R)={F, F is analytic on R and \F(w)\p has a

harmonic majorant on R\.

We have known [3] if H(w) is the least harmonic majorant of the sub-
harmonic funtion \F(w)\p, the norm of HP(R) can be defined by

\\F\\p=\H(a)\ί<p, α e ί . (4.1)

If we exchange the reference point we get equivalent norms. Notice by lemma
2.1, for an arbitrary exhaustion R1dR2Cl- ClRk-J>'R, which a^Ru we have

| | F | | ^ l i m | / / , ( α ) | - s u p | f t ( α ) | , (4.2)

where Hk(w) is the least harmonic majorant of \F(w)\p on Rk.

Now let £(ζ)= Σ amζm be a finite order (p<°o) and mean type (<7<°°)

entire function, and α m ^ 0 . The sequence {pm} has the property I^pi<p2<
*tt and

For F(w)e Γ\HP™(R) we set
m = l

TΠ — ί

and use dF to denote the convergence radius of (4.3). Define

HBa(R)=\F, FEΞ Π HpHR), and dF>θ\.
{ m = i J

The norm of F in HBa(R) is defined by

(4.3)

Set
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| | | F | | | = sup{| |F(u;)-F(fl) | |Bα}.

Thus we have

THEOREM 4.1. Let F be an analytic function on the Riemann surface R,

then there is a constant c such that

The proof of this theorem is similar to that of theorem 2 in [4], so we omit

it here.
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