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§1. Introduction.

Throughout this note, all spaces, maps and homotopies are assumed to be
based, and we will not distinguish the map and its homotopy class.

For two topological spaces X and Y, we denote by [X, Y] the set of
homotopy classes of maps from X to Y.

If X=Y, then the set [ X, X] becomes a monoid with its multiplication
induced from the composition of maps and we put M(X)=[X, X].

Let &(X) be the group consisting of all invertible elements of M(X) and
we call it the group of self-homotopy equivalences of X.

The group &(X) has been studied by several authors since the paper of
W.D. Barcus and M.G. Barratt [1] appeared.

However, we have not yet obtained an effective method for calculating it
except classical ones, and its structure also has not been clarified sufficiently.
Furthermore, very little is known about it even when X is a simply connected
CW complex with three cells which is not a H-space.

Then the purpose of this note is to study the multiplicative structure of
M(XZ*CP?®) and determine the group &2*CP?®) for k=1, where CP™ is the
complex n dimensional projective space and 2* denotes the k-times iterated
suspension.

We denote by Z, (resp. Z/n) the multiplicative (resp. additive) cyclic group
of order n.

Our main results are stated as follows:

THEOREM A. (The case k=1)
(1) There is an exact sequence

v )y
0—>Z—>E2CP3—> Z,XZ,XZy—> 1.
(2) (X CP)N=ZX(ZyXZ,) (semidirect product).

Next we consider the case k=2.
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Then X*CP® is a double suspension space and it will be proved that
M(Z*CP®) becomes a ring whose addition and multiplication are induced from
the track addition and the composition of maps.

THEOREM B. (The case k=2, 3)

(1)  The suspension homomorphism 3 . M(2?C P*)—M(2*C P?) is an isomorphism
as a ring.

(2) As an abelian group,

M(Z*CP)=Z{id}DZ{Z p} DZ{ 2 1.} DZ/2{Z s},
M3 CPH=Z{id}PZ{2* u,} DZ{Z* 1o} BZ/2{ 2 s} .
(3) Let ¢ and ¢ be two elements of M(Z*CP?®) of the following forms:
e=a(id)+b(Z )+ (X po)+u(Z ps),
Oo=d@d)+e(3 p)+ F(S po)+ (3 py),
where a, b, ¢, d, e, fEZ, and u, veZ/2. Then
pe¢p=(ad)id+(ae+bd+2be)3 p,+(af+cd+6cf)2 ps
+(av+ud)X y,.
(4) &(2*CP*)=E(X*CPN=2Z,XZ:XZ,.

THEOREM C. (The case k=4). We assume k=4.
(1) As an abelian group,
ME*CPHY=Z{id}PBZ{E*  u,} PZ{Z* pp} .

(2) Let ¢ and ¢ be two elements of M(Z*CP?®) of the following forms -
o=a(id)+b(Z* " py)-+c(X* 7 o),
P=d@d)+e(3* )+ f( 2+ p),

where a, b, ¢, d, e, fEZ. Then
pe¢p=(ad)id+(ae+bd+2be)3**y,
+(af4cd+6cf)ZF  py.

(3) &(X*CP¥N=2Z,XZ,.

COROLLARY D. Let k=4. Then the homomorphism D : M(X*CP*)—~D(3, Z)

is an isomorphism of rings, where the ring D(3, Z) and the homomorphism D are
defined in (5.8) and (5.10).

This paper is organized as follows:

In section 2, we will calculate the homotopy groups =nx(2*CP? and
wx(Z¥FCP?) for 1<k<4. In section 3, we will determine the additive structure
of M(Z*CP?®), and in section 4, we will study the multiplicative structure of
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M(XY*CP?®). In section 5, we will consider the natural representation
O=deg: M(Z*CP™) —> End(H«(Z*CP", Z))=Z" (k=2n—2)

which is defined by @(0)=H(0, Z) for 6 M(Z*CP™).

Finally the author would like to take this opportunity to thank Professors
S. Sasao and J. Mgller for their sincere advices and suggestions. He would
also like to thank the referee who pointed out several mistakes in the original
version of this paper and gave many valuable suggestions.

§2. Homotopy Groups.

Let ¢,€7,(S") be the identity map of S”, and 7.=x4(S?) and v,&x,(S*) be
the Hopf maps.
We put 9,=2""%9;, 9i=902"Nn+1, P2=7nNn+1°Yns+a for n=2 and va=
2m4y, for m=4.
Let weny(S*) be the Blakers-Massey element, and p: S*—RP*=S0(3) be
the double covering projection.
Then the following is well-known :
LEMMA 2.1. (H. Toda, [16])
(1) 7(SM=Z{¢es}, and 7 ,(S™)=0 for n>m.
(2) 7(SH=Z{ns}, and mn4(S")=Z/2{n.} for n=3.
(3) Tr4o(S™M)=Z/2{n%} for n=2.
@) 7((S)=2Z/2{n3}, n(S*)=Z/12{w},
7(SN=Z{v,} DZ/12{Zw}, and 7,.«(S™)=2Z/24{v,} for n=5.
() w(SH=Z/12{n: 0}, 7SH=Z/2{w>7s},
(SN=Z/2{vso0:} PDZ/2{Zw°71},
wo(S*)=2Z/2{vs° s}, and 7,+,(S™)=0 for n=6.
(6) J(p)==xw, where ] : n(SO3))=Z{p}—m«S®) denotes the J-homomorphism.

(7 [ew, ea]=2v,— 2w and 7govi=wen, where [ ,] denotes the Whitehead
product.

Consider the following three cofibre sequences :

; i )
(2.2) S8 7 sty CPz—p>S4—773>SS——>Z’CP2-—p>SS
J q 2y
(2.3) CP*—>CP*—>S*—> YCP*—>3CP*—> §"

Jei P Xl
2.4) S2—» CP*—> CP%/S*=5*VS* — S* ——— YCP?®
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Since the order of %, is two, there exists a coextension of 2¢,, 2, en(ICP?)
such that,
(2.5) Spe2=2;.

We recall the following two results:

LEmMMA 2.6. ([19]; J. Mukai, [8]). There exists some element B=n(3CP?)
satisfying the following conditions:

(1) SU@R)=2CP2Ue’.

(2) YjoB=las, ¢s1,, where assx(2CP? S*) denotes the characteristic map
of the 5-cell in YCP? and the [, ], the relative Whitehead product.

(3) 2ﬂ=22i°v4°7}7.

4) Xp-p=0.
Proof. The assertions (1), (2) and (4) follow from (16) in [19] and (3)
follows from (8.5) in [8]. Q.E.D.

LEMMA 2.7. ([19], (1.7))

(1) 7 ECPY»=0 for k=1,2, 4.
2) r(ZCP*=2z{Zi}.

(3) n(ZCPY)=Z{%.}.

@) n(ECP=Z/6{Zi-w).

(5) m(ZCP)=Z{B}.

Next, we compute m«(X*CP?) for 2<k<4.

LEMMA 2.8.

(1) m(22CP*»=0 for k=1, 2, 3, 5.

(2) m(2*CPH=Z{Z%]}.

() 7 Z:CPH=Z{32,).

4) mA2*CPY)=Z{2%-v,}PZ/6{2%-Zw}.
(5) w2 CPY)=Z/2{2%vs°7.}.

Proof. Consider the homotopy exact sequence of the pair (X*CP? S*).
Since the pair (J?CP2?, S*) is 5-connected, m.(2*CP*)=0 for 1<k<3,
n(2*CP*=27{2%} and we have the exact sequence:

) 05
(2.9) rmy(2*CP? S — 75(S*) —> ny(2*CP%) —> ny(2*CP? S*)-——
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0,
T(SY) —> 7 (22C P?) —> 7w (22CP?, S*) —> 14(S*) —> n(22C P?)

0;
—> 7 (2:C P2, S*) — 75(S*) — 7 (22CP%) —> 0.

Let a;cn(2?CP? S*) be the characteristic map of the 6-cell in 22C P2.
Then using the excision theorem and [2], it is easy to see the following:

(2.10) (1) =(2*CP? SY)=Z{as} and 04as)="7s.
(2) m(2PCP?, SH)=agm(D°, S)=Z/2.
(3) my(2ECP?, SHY=agunmy(D®, SP)=Z/2.
(4) wy(2*CP?, SH=Z{[as, t.]-}Dasny(D®, S°)=ZDZ/24.

Since 0(as)=17., it follows from (2.1) that z,(X*CP*)=0. It is easy to see that
the diagram

RSP, 9 — s s (59
(2.11) lae* 5 l N IS commutative.
wi(D, S ——— 7w, (SP)
Hence, using (2.1), (2.10) and (2.11), we have
(2.12) (1) 0, is an isomorphism.
(2) 0, is a monomorphism and its image is equal to
Im[0s: wo(3*C P2, S*) —> n(SY)]=Z/2{n}}=2Z/2{62Zw}.
) Oul@exms(D®, S*)={nsovs}=Z/2{Zwe7.}.
Here we remark
(2.13) O([as, tolr)=2wen,.
In fact,
ds(Las, e2]r)=—[0(as), c.d=[14, t.]=[tsoZ N, t4o2;]
=lts, 6412 (P Ns)=2u,— @) ;=2 wo7,.

Hence it follows from (2.1), (2.9), (2.10), (2.12), (2.13) and the excision theorem
that we have

(2.14) (1) 2%py: wg(Z2CP?) —> w(S®) is a monomorphism and Im(Z2p,)=2Z{2¢}.
(2) mA2CP)=Z{2%v,}DZ/6{Z%-Zw}.
(3) w(ZECP®)=Z/2{Z%vso4}.

Furthermore, using (2.5) we have 2X?%p (X 2.)=2¢,. Hence (2 CPY)=

Z{Z%,).
This completes the proof. Q.E.D.
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Similar calculations show the following three results and we will omit the

proofs.

LEMMA 2.15.

@
)
®)
4
®)

7x(ZCPY)=0 for 1<k<4 or k=86.
72 C P)=Z{3%}.

1S CPY=Z{2°24,}.

7 Z°C PY)=Z/12{3% v;}.

1(Z°C PY)=2Z/2{Z% 5o ns}.

LEMMA 2.16.

@
2)
®
4
®)

w(2*CP?»=0 for 1=k<5 or k=T.
n(Z*CPH)=Z{2*}.

7 S*CPH)=Z{2"2,}.

n( Z*CPY)=2Z/12{ 2% v,}.

m1o(2*C P%)=0.

COROLLARY 2.17.

@
@)
&)
4)
®)

x§(S°U,et)=Z{i}.
75(S°U e*)=0.
2§(S°U,et)=2{ 2t}
75(S°U,e*)=2Z/12{i-v}.
75(S°U,e*)=0.

Now we will compute the groups nx(2*CP?) for 1<k<4. First we need the
following :

LEMMA 2.18. Let Be=ns(CP*) be the attaching map of the 6-cell in CP°.
Then 2B=+23i-w.

Proof. Since the space CP?® is the total space of the S®bundle over S*
with its characteristic element pEry(SO(3))=Z{p}, it follows from (3.1) in [4]
and (6) of (2.1) that ¥B,=2i- J(p)=+x2i-w. Q.E.D.

PROPOSITION 2.19.
(1) 7 (XCP*=0 for k=1, 2,4, 6.

)

n(XCPH=Z{37-2i}.

(3) n(SCP)=Z{3j2.}.
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4) 71'7(Z'CP3)=Z{Z']'°,B}EBZ{EZ}, where the 6 satisfies the condition
(2.20) Zqe 60=6¢,.

Proof. Since the pair (XCP3?, YCP?) is 6-connected, the induced homo-
morphism Xjx: 7 (ZCP*)—r (XCP*) is an isomorphism for 1<k<5 and
epimorphism for £=6. Thus using (2.7), it suffices only to show the case k=6

or 7.
Consider the homotopy exact sequence

]
(2.21) n(2XCP?, SCP?) —> n(3CP?) —> a(2CP*) —

0
w(ZCP3 SCP? —> gy(XCP?%) — ng( ZCP%) —> 0.

Let a,cn,(ZCP?% 2CP?) be the characteristic map of the 7-cell in JCP3.
Then it is easy to see

(2.22) (1) =nA(2CP* 2CP*=Z{as}.
(2) wXCP?, SCP*)=an(D", S*)=Z/2.

Hence the boundary homomorphism § is trivial because z(XCP?=Z{B}.

Similarly, since d(a.,)=2fs=+2i-w and n(2CP*)=Z/6{2i-w}, the boundary
homomorphism @ is surjective.

Hence, 7(2CP?*)=0 and we have the exact sequence

(2.23) 0 —> 7(3CP?) —> n(3CP*) —> Z{ba,} — 0.

Here the induced homomorphism (Xq)s: n(2ZCP? YCP*»—r,(S") is an
isomorphism.

Therefore, there exists some element EZEM(Z'CPS) such that
(2.24) (1) g 6:=6¢,, and
©2) T{ECPY=Z{5j-BIDZ{6c}. Q.E.D.

Similar calculation shows the following three results and the proofs are
left to the reader.

PROPOSITION 2.25.

(1) = (2*CP*)=0 for 1<k<3 or k=5.
(2) wm(2*CP*=Z{2%-2%}.

(3) mZCPH=Z{3%j-32,}.

4) m(2CP¥H=Z{2%j°2%y,}.

(5) wSICPY=Z/2{5%j %oy} DZ{Z61}.
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ProposITION 2.26.
(1) 7(2CP*»=0 for 1=k<4 or k=6.
(2) w(2CP*=2Z{2%j.3%}.
() T ZCPH=Z{3%j-3°2,}.
(4) m(ZCP¥=2Z/2{X%jc 3%0v;}.
(5) m(ZCPY)=Z/2{Z%j> 5 %ovs0 75} DZ{Z260}.
ProPOSITION 2.27.
(1) m(ZCP*)=0 for 1<k<5 or k=T.
(2) w2CPH=Z{Z4j-24}.
() 7w Z'CP)=Z{3*jo3°2u}.
(4) mZ*CP*)=2Z/2{Z*jo X% ovs}.
(5) m(2'CP*)=Z{2%6¢}.

§3. M(Z*CP?).

For a based topological space X, let M(X) be the monoid defined by
(3.1) MX)=[X, X].

where its multiplication is induced from the composition of maps and its
identity element 1 is the identity map id. If X=2XY (resp. 2?Y), M(X) becomes
a group (resp. abelian group) with the track addition and there is a right
distributive law

(3.2) a(p+P)=acp-t+a-¢p  for a, o, p=MX).
However, left distributive law
(3.3) (p+P)ra=g-a+g-a  for a, ¢, p&M(X),

is valid only when a is a co H-map, e.g. a suspension map.
In this section, we will study M(Z*CP?) for £=1.

First, consider the cofibre sequence

2(je1) 2
(3.4) S8 ——» JCP?—> JCP?/S*=55VvS" —>S*.
Applying [, ZCP?] to (3.4), we have the exact sequence
2k
(8.5) 7(JCP?*) —> n(SCP*)Pr(ECP*) —>

2(geiy*
M(ZCP?) —— n(JCP?).
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Since n(XCP*)=Z{2(ji)} and Z(j-i)*(:d)=2(j-7), the induced homomorphism
2(jei)* is surjective. Hence using 7, (XCP?*)=0, we have the following :

LEMMA 3.6. There is a split exact sequence of groups,
* S(fe1)*

2r
0 —> 7(2CPYPr(ECP?) —> M(ZCP3) ——— 7 (SCP3) —> 0.

Remark 3.7. The group M(ZCP?) is not necessarily commutative and it
seems difficult to solve the extension problem of (3.6).
However, we remark the following :

LEMMA 3.8. The group M(ZCP?®) is generated by the four elements id,, p,,
Yo and ps, where we put

(3.9 (@) m=2j-2%3m,,
(b) ps="623g,
(c) ps=2j°B2g.

Here, let pr: CP*/S?=S*VS*—>S* be the natural projection map to the first
factor and we define the map

7,:CP%— S*

by the following composition of maps,

T r
(3.10) my=prem: CP* —> CP3/S*=S*\/S* L St.

In particular, the orders of the above four generators are all infinite.

Proof. From (2.19), we have ns(Z’CP"):Z{Z'jo’ZZ} and #,(XCP%)=

Z{Zj-BYDZ{6c}.
Hence the assertion easily follows from (3.6). Q.E.D.

Next, consider the cofibre sequence

2H(jed) pXY -
(3.11) Sk S FECP3 s FE(CP3/S?)=Sk+4\/ Sk+e

—> SF+3, (k=2)
Then we have the following :
PROPOSITION 3.12.
(1) MEP*CP)=Z{id}DZ{Z .} DZ{Z pa}DZ/2{Z ps} .
(2) ME*CP*)=Z{id}DZ{2*u} DZ{ 2 1o} DZ/2{ 2% s} .
(3) M(Z*CPH=Z{id}PZ{Z* '} BZ{Z**y5} for k24.
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Here the following relation holds:
(3.13) pg=2"%70X%oy,0n,0 3% .

Proof. Let2<k=<4. If weapply [, 2*CP?] to (3.11), since mz4+s(Z*CP*)=0,
Treo( SECPHN=Z{X*j-X*{} and Z*(joi)*(id)=2*;°2*i, we have the split exact
sequence

Shp*
(3.14) 0 —> T+ s(ZFCPYPT 1o DFCP?) ——> M(Z*CP?)
2R(fed)*
———> Tp+( 2 *CP%¥) —> 0.

Hence we have

(3.15) M CPY=Z{id} DI *n* (7 1+ EFCP) D +o( 2 *CP?)).

Using (2.25), (2.26), (2.27) and (2.6), we have the desired results for 2< £ <4.

It follows from the Freudenthal suspension theorem that the suspension
homomorphism X : M(3*CP®)—M(Z*+'CP?) is an isomorphism for %.2=4. This
completes the proof. Q.E.D.

COROLLARY 3.16. The sequence

2
0—> Z{2ys} —> M(ZCP*)—> M(2*CP*)—> 0

s exact as a group.
Proof. This easily follows from (3.8) and (3.12). Q.E.D.
COROLLARY 3.17. The sequence
1— 14+Z{2ps} —> €(ZCP?) i &(2*CPY)—1
is exact as a multiplicative group, where we put
(3.18) 1+Z{2ps} ={id+2my,: meZ}.

Proof. It is easy to see that Ker[X:&(XCP*)-&(2*CP*)]=1+Z{2p,}.
Thus it suffices to show 2(&(ZCP?*)=&(Z?CP?). Clearly 2(&(XCP*)C&(2*CP?).

Conversely, let § =&£(2*CP?). Then using (3.16), there exists some element £
M(2CP?)satisfying the condition §=2¢. Since Hy(0, Z)=0+=Aut(H«(2*CP?, 7))
and 64 commutes the suspension isomorphism of homology groups, Hy(&, Z)=
&« Aut(H«(ICP?, Z)). Because the space JCP? is simply connected, it follows
from the Whitehead Theorem that £§=&(XCP?).

Hence &(22CP*)=3(&(ZCP?)). Q.E.D.

COROLLARY 3.19. The suspension homomorphism 2 : M(Z*CP?*)—M(3*CP?®)
is an isomorphism as a ring.
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Proof. This easily follows from (3.12). Q.E.D.

§4. The multiplicative structure.

In this section, we will investigate the multiplicative structure of M(Z*CP?)
for k=1.
First, we need the following :

LEMMA 4.1. (a(Gd)+mps)ps=ap, for a,m&Z.

Proof. Since ¢g-j=0, using (3.9) we have
!1302]':(2]'0ﬁqu)on:Z]‘cﬁoZ(qo]’).’“_‘O.
Hence,
(a(id)+mps)o prs=(a(id)+mps)o ZjoB2q
=(a(Z7)+m(pse 7)) B2q
=a(ZjB-2g)=aps. Q.E.D.
PROPOSITION 4.2. Let V: Z—1+Z{2ps} be the natural bijection defined by
4.3) NV(m)=id+2mp, for meZ.

Then, N : Z—1+4+Z{2ps} is an isomorphism of groups, where the multiplications
of 1+Z{2ps} and Z are induced from the composition of maps and the natural
addition, respectively.

Proof. It suffices only to show the following :

4.4) (Gd+mps)e(id+nps)=id+(m+n)p, for m, nsZ.
Then
(Gd+mps)o(id+nps)=(Gd+mps)oid +(Ed +mps)e(nps)

=id+mps+n{(id +mps) ps}

=id+mps+ny, (by (4.1))

=id+(m-+n)y;. Q.E.D.
LEMMA 4.5. 2z,052=0.

Proof. Since the order of 3 is two, the order of éZ,or;é' is at most two.
However, because it is contained in #(XCP?)=Z, we have

2o =0 Q.E.D.
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PROPOSITION 4.6.
1) pop=2p1.
(2)  prao pra=06p,.
(3)  pae pra=6us.

4) If 1=n, k<3 and (n, k)#(1, 1), (2, 2) and (3.2), then

taopte=0.
Proof. 1t is easy to see the following :

4.7 Tej=p.

Then we have the following :

Q) prrop=(Zjo 200 Zmy)o(Zjo 2o Zmy)
=2]'°’274°2(7n°]')° :9:240 2w,
=3jo 20 S po 2t Sm,
=Z']'°§J:4°(Z'pn’2\24)027r1
=37 2o (25)° Zx,
=235 e Zm)=2pt; .

@) prae pra=(6222)(bc- Zg)
=6re(Zgqo60)03q
=6z0(6t)0 2q
=6(ao2q):6p2.

3) praop=(Zjef>Tq)+(bco Xq)
=3joB(2g60)° g
=J3jBe(6r)°3q
=6(2joBe2q)=6ps.

@) pops=(Zjo 240 Z7,)o(620 5q)
=2]’oz4°(2n1°§2)°2q.

Since 27:1»'67Gm<55)=2/2{ng}, we obtain

(by (4.7))

(by (2.5))

(by (2.20))

(by (2.20))

155
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(4.8) Sriebe=n¢ or 0.

2

If ano§E=O, then p,°¢,=0 and we may suppose that Z’nloa:m.

Then, pyopte=237(2tso7%)3q=0. (by (4.5))
Hence we have p,°p,=0.

Next, we have
prao 13 =800 29)o(Z o 240 Zmy)
=820 3(qe 7)o 2o S,
=0. (by using g-;j=0)
Similarly we have the following :
o pts=(Zjo 2go Zm1)o(Zje B 2q)
=370 240 3(m,05)° B 2q
=32 3poBo3g (by (4.7))
=0. (by (2.6))
prae 1 =(Zjo Bo3q)(Z e Zeyo Sy)
=3joBe2(gos)e 2t4o s
=0. (by using g-j=0)
e pr5=(820 2q)>(Zj - Zg)
=6:3(g°7)°B-2g
=0. (by using g-j=0)
oo pts=(ZjoBo2q):(25°B2q)
=ZjoBe2(ge/)B2q
=0. (by using go5=0)
This completes the proof. Q.E.D.

Next, it is easy to see the following :

LEMMA 4.9. Let a, b, ¢, d, e, f be six integers and u, v be two elements in
Z/2={0, 1}.
Suppose the following four conditions hold :
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(i) ad=l.

(ii) ae+bd-+2be=0.

(iii) af+cd+6cf=0.

(iv) av+du=0.

Then the following hold :

(1) a=d=1, b=e=0, —1, ¢=f=0 and u=v=0,1; or

(2) a=d=-1, b=e=0,1, ¢c=f=0 and u=v=0, 1.

Proof. It is easy to see that a=d==+1. Then, from the conditions (ii),
(iii) and (iv), we have

(1£2b)1£2e)=(146¢)X1£6f)=1 and wu+v=0.

Hence we have the desired results. Q.E.D.

Proof of Theorem B. The assertions (1) and (2) follow from (3.19) and
(3.12). First, we show the statement (3).
Let ¢ and ¢ be two elements of M(2*CP?®) of the following forms:

(4.10) p=a(id)+b(3 p)+c(Zpa)+u(Zpes),
P=dd)+e(Zp)+[(Zp)+u(Zps),

where a, b, ¢, d, ¢, f€Z and u, vEZ/2.

Since X : M(XCP®*)—M(Z*CP?) is surjective, the group M(Z?CP?®) becomes
a ring.

Hence, using (3.3) and (4.6) we have the following :

pop=d{a(id)+b(2' )+ (S ps)+u(S ps)}
+e{a(id)+-b(2 p)+c(Zpa)+u(Zps)t o 2y,
+ F{aGd)+b(Zpu)+ (S pa)+u(S pg)} o 3y
+o{a(d)+b(2 p)+c(Fpa)+u(Zps)} o Sps
={ad(id)+bd(Z p,)+cd(2 pa)+du(S ps)}
+e{a(S p)+b(Z(pre pa)+ c(Z(pao 1))+ u(E (s 1))}
FF{a(Z )+ 2 (prro 1))+ c(Z(ptao pra))+ u( S (s p2))}
Fv{a(2 pa)+ (2 (o pra))+ (oo pr))+u( (g0 p25))}
={ad(id)+bd(Z ) +cd(Z )+ du(E )}
+e{a(Zu)+26(Z p)} + f{a(Zpe)+6c(2 o)} + av(Sps)
=ad(id)+(ae+bd+2be) Xy +-(af+cd+6cf)2ps
+(av+du)Xp,.
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Next, we prove the statement (4).
Let 6= M(2Z*CP?®) be the element of the form

4.11) 0=a(d)+b(Zpu)+c(Fp)+u(Zps),

where a, b, c€Z and usZzZ/2.
Then using (3), it is easy to see the following:

(4.12) 0<=&(2*CP?) if and only if there are integers d, e, fEZ
and vEZ/2 satisfying the following :
(i) ad=l.

(ii) ae+bd+2be=0.
(iii) af4cd+6¢cf=0.
(iv) av+du=0.
Hence it follows from (4.9) that
(4.13) E(CPH={+id+u(Zps), +(Ed—Zp)+v(Zps): u, veZ/2} .
Since #-0=:id for any element §=&(2*CP?), we have
E(Z*CPN=2Z,XZ,X Z;. Q.E.D.
Proof of Theorem C. The assertions (1) and (2) follow from (3.19) and
(3‘125),.imilar method as above also shows the statement (3).
Now we suppose that k=4.
Then, it follows from the modified proof of (4) of Theorem B that

E(T*CP)={%id, +(id—2*'y,)} and @-0=id for any 6=&(X*CP?®). Thus
we have &I *CP*)=2Z,XZ,. Q.E.D.

Proof of Theorem A. It follows from (3.17) that the sequence

X
1— 14+Z{2us} —> &(ECP?) —> £(2*CP?*)—> 1

is exact.
Here, from (4.2) and Theorem B, there are isomorphisms of groups,

14+Z{2p,}=Z and &3°CP)=Z,XZ,XZs.

Hence we have the exact sequence

v b
0 —_—> Z"—> 8(2CP3) _— ZzXZzXZz —_— 1 .

Furthermore, since the suspension homomorphism 2 : M(XCP?*)—M(X*CP?)
induces the isomorphism M(XCP?®)/Z{ps}—M(2Z*CP?®), it is easy to construct
the splitting s: Z,XZ,—&(ZCP?) and we have the semidirect product &2 CP;)
=7ZX(Zy X Zy). Q.E.D.
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Remark 4.14. The statement (3) of Theorem C was already obtained by
S. Sasao [13] using the another method.

In fact, since the space CP? is the total space of the S%-bundle over S*, it
follows from Theorem A in [13] that the sequence

(4.15) 0 — 7{(S°U,e®) —> &(Z*CP?) —€D> E(X*FCP?) —>1
is exact if £=4.

Then it follows from (2.17) and (4.1) in [11] that &(X*CP?*)=e&(X*CP%)=
ZyXZ, if k=4, Q.E.D.

The following remark was suggested by the referee and the author would
like to thank him for his valuable advices.

Remark 4.16. Using the Barcus-Barratt method (e.g. (2.11) in [11]), there
are two exact sequences,

A
4.17) 0—>Z/2 —> &(Z*CP?) __gt; ZyXZy—> 1
for k=2 or 3, and

(4.18) 00— 7(2CP?) —X> &(XxCP?) —S‘; ZyXZy —> 1
where n(2CP*)=Z{B} and ¢ denotes the
restriction homomorphism
¢©: & Z*CP?) —> &(Z*CPY=2Z,XZ, for k=1,2,3.

Here we remark the following two viewpoints :

(a) If we only use the Barcus-Barratt method, we must consider the
extension problem of (4.17).

(b) At first sight, it seems that (4.18) contradicts the assertion of The-
orem A. However, they are equivalent. In fact, this follows from the following :

From the definition of the homomorphism 2 (e.g. (1.2) in [11]), it is easy
to see

(4.19) AmpB)=id+mpy, for meZ.

Hence, from (4.18) we have the exact sequence

(4.20) 00— 14+Z{ps} —>8(ch8)—¢)22><22‘—>1,
where we put
14+ Z{po} = {id+mps: meZ} .

Furthermore, it follows from (4.4) that 1+Z{u,}=Z. Hence the exact sequence
of Theorem A and (4.18) are equivalent to the following two exact sequence:
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v ¢ Xproj
(4.21) 0—>Z—> 8 2CP?) ————> Z,XZ, X Z, —> 1,

P
0__)2'% 8(ZCP3)—(P—>Z2><22 ——> 1,
where
A2m)=N(m)=id+2mp, for meZ, and the

2 proj
sequence 0 —> Z —> Z ——> Z——> 1 is exact.

Hence the sequence given in Theorem A is equivalent to (4.18).

§5. The natural representation.

For a topological space X, let @: M(X)»End(H«(X, Z)) and @ :&X)—
Aut(Hy(X, Z)) be the natural representation defined by
(5.1) D(0)=H«(0, Z) for 6=MX) or &X).

In this section, we consider the represntation @ for X=X*CP". Let
X E Hymsn(Z*CP™, Z)=Z be the generator for 1I<m<n. For §=M(F*CP™) and
1<m=n, let dn(0)=Z be the m-th degree defined by
(5.2) Ox(xm)=dn(0)Xm.

Then we define the homomorphism deg: M(XY*CP™)—Z" (n-times product of Z)
by the following:

(5.3) deg(0)=(d(0), du(8), -, d(0)) for §=M(Z*CP™).
It is easy to see that we can identify @ with deg:
(5.4) D=deg: M(Z*CP™) — End(H«(X*CP™, Z)=Z".

LEMMA 5.5. The map deg is an additive and multiplicative homomorphism for k=1.
Proof. 1t is clear. Q.E.D.

PROPOSITION 5.6. (The case n=3)

(1) deg(id)=(1,1,1) for any k.

(2) deg(p)=(0, 2, 0).

(3) deg(ps)=(0, 0, 6).

4) deg(p)=(0, 0, 0).

Proof. The statement (1) is obvious. Since p;=2 ]'°Z4=Z’:r1, the assertion

(2) follows from (2.5). Similarly, the assertion (3) follows from (2.24). Since
2se ts=0, the statement (4) is clear. Q.E.D.
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COROLLARY 5.7. (The case n=3). Let k=4 and n=3. Then the following
holds :
dy(0)=a, dy(0)=a+2b and dy(0)=a+6¢ for

0=a(id)-+b(2* )+ (T p)E M(E*CP?).
Proof. This follows from (5.4) and (5.5). Q.E.D.
For each natural number n, let M,(Z) be the ring consisting of all (n, n)-

matrices with integer coefficients. Similarly, for each n, let D(n, Z) be the
subring of M,(Z) consisting of all diagonal matrices of the following form :

(5.8) D(n, Z)={diag(a,, a,+2a,, -+, a,+nla,): a;.€2Z},

where we put

X1
X2
(5.9) diag(xy, x5, -, X2)= Xs

Xa

Then we define the ring homomorphism D: M(X*CP™)—M,(Z) by the
following :

(5.10) D(0)=diag(d.(0), do(0), -+, da(8)) for O=M(I*CP™).

Proof of Corollary D. The assertion easily follows from (5.7) and Theorem
C. Q.E.D.

Problem 5.11. Let k=2n—2. Then, does the homomorphism D induce the
monomorphism of rings, D: M(Z*CP™)—»M,(Z)?

Remark 5.12. The above problem (5.11) and Im[D: M(Z*CP™)—»M,(Z)]=
D(n, Z) are true for 1=<n<3. In fact, the case n=1 is trivial and the case n=2
was proved by S. Oka in [10]. The case n=3 is obtained by Corollary D.

Now we define the subring of M,(Z), I(n), defined by

(5.13) I(n)=1S62nZ{diag(m, m?, md, .-, m™)}.
Then, the following is well-known :

PROPOSITION 5.14. (C.A. McGibbon, [7]). If k=2n—2, Im[D: M(Z*CP™)
—MZ)]=Ln).

Proof. This follows from Theorem 3.4 in [7]. Q.E.D.

Remark 5.15. It is easy to see that I(n)=D(n, Z) for 1<n<3 and I(4)#
D4, Z). Hence, in general, the ring I(n) is not always equal to D(n, Z).
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