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1. The aim of this article is to discuss geometry of the moduli space of
Yang-Mills connections over a 4-manifold with quaternion structure.

Let (M, h) be a compact, connected Riemannian 4-manifold with covariantly
constant almost complex structures {I,, I,, I} satisfying I,[,=—1I,[,=I;,. We
call such almost complex structures covariantly constant quaternion structure.
Note that only complex flat two-tori and Ricci flat K3 surfaces are such spaces.

Each almost complex structure I, given on the base space M defines a 2-
form 6, on M which is covariantly constant; 6,X, Y)=h(.X,Y), i=1, 2, 3.
The manifold M carries the canonical orientation compatible with the quaternion
structure. The base metric 2 together with this orientation gives the Hodge
operator x; A*(M)—A*(M), which is involutive. So the bundle A*=A%* M) splits
into A*=A*+A-(A* and A~ are subbundles of self-dual 2-forms and of anti-
self-dual 2-forms, respectively). Then over the manifold M A+ becomes trivial.
We have indeed the decomposition;

A*=R6, B RO.DRY, (1.1)

Let P be a smooth principal bundle over the manifold M with a compact
simple Lie group G.

Fix a positive number />4 in order that analysis on gauge fields works
well and denote by A=dJp the set of all L} connections on P. The set A is
an affine space with model vector space £2%(gp);,, the space of L} 1-forms over
M taking values in the adjoint bundle gp=P X 448(g is the Lie algebra of G).
Then A=A+Q'(gp), for some fixed smooth connection A. The subset A,, in
J consisting of irreducible connections is dense and open relative to the L}-
topology. A connection is said to be irreducible if the centralizer of its holonomy
group in G reduces to the center Z4 of G.

The group ¢=gp of L%, gauge transformations of P acts on A smoothly
as g(A)=g 'dg+g™*-A-g. Remark that ¢/,, acts freely on A,, so that by
the slice argument ,, has a fibration over the orbit space _@Irzd,r/(g,z(})

with fibre G/g,.
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A connection A is ASD(anti-self-dual) if and only if its curvature F=F(A)
=dA+1/2[ AN A] sati-sfies the anti-self-duality equations

F(A)+*F(A)=0. (1.2)

Since F(g(A)=g*-F(A)-g, g=G/Z; the solution space A~ of (1.2) is
invariant under the gauge action. Hence we have the quotient M=A"/(2/z,)
which parametrizes the set of gauge equivalence classes of solutions. The
quotient space is called the moduli space of ASD connections on P.

Relative to geometrical structure of the moduli space over a general compact,
oriented Riemannian 4-manifold (M, h) we have the following finite dimensional
space theorem.

THEOREM ([1]). The moduli space M of ASD connections on a principal
bundle P=P(M, G) s a smooth Hausdorff mamfold possibly with singularities
provided M is not empty. The dimension of the generic part dimg M is p,(3,QC)
[M1—dimg G(1—b,+b*), where b, is the first Bett: number of M and b*=
dimgp H*(M), H*(M)={self-dual harmomc 2-forms}.

Remark that b* in the dimension formula is a topological invariant of M
since b*=1/2(b,+7), where b, is the second Betti number and z is the Hirzebruch
index of M.

The Pontrjagin number p,=p,(,QC)[M] is calculated for each simple Lie
group as follows; p,=4nk, G=SU(n); 4n—2)k, G=Spin(n); 4(n+1)k, G=Sp(n);
16k, G=G,; 36k, G=F,; 48k, G=F,; T2k, G=E,; 120k, G=FE;, where k is an
integer called the index of the bundle P([1], §8).

On the moduli space < of ASD connections a Riemannian metric is defined
by a gauge invariant L, inner product. To investigate geometrical properties
of this Riemannian metric is an important matter. It seems indeed one of
interesting problems to examine geometry of the moduli space from the view-
point of holonomy group. The examination is available in the special case
where the base space (M, h) has as its holonomy group a unitary or symplectic
group, that is, (M, h) is Kéahler or endowed with a covariantly constant qua-
ternion structure. In fact, the holonomy group of the Riemannian metric on
the moduli space is unitary, when (M, h) is a complex Kéihler surface. A
similar statement holds for the symplectic case. Namely, applying the mo-
mentum map method developed in §3 we deduce Theorem 2.1 which states that
the moduli space holonomy is symplectic when the base space holonomy is Sp(1).

This holonomy group argument is also valid for the moduli space of Einstein-
Hermitian connections on a fixed complex vector bundle and further for the
moduli space M. of based anti-instantons over the 4-sphere S* with the standard
metric.

Of course, to get the Riemannian curvature tensor of the Riemannian metric
on the moduli space is a subject of great interest. The Riemannian curvature
tensor is actually expressed in terms of the Green operators of the Laplace
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operators associated to an ASD connection (formula (4.1) in §4). If the base
space M carries a covariantly constant quaternion structure (we say such a
space hyperkdhler 4-manifold), then an identity relating on the curvature holds
(Theorem 4.1) and as a consequence of this identity it is shown that the Rie-
mannian metric on the moduli space is Ricci flat. This identity asserts moreover
that the quaternionic bisectional curvature vanishes. The notion of quaternionic
bisectional curvature appears in §4 and is regarded as a quaternionic version
of the holomorphic bisectional curvature of a K&dhler manifold.

The Poincaré bundle and the index bundles present in a geometrical way
finite dimensional vector bundles over the moduli space of ASD connections.
A principal bundle P with structure group G over the product space MX 8,,,
or MX M,en, is defined by the G-quotient of the product PXA,,, or PXAZen,
where Az.,={generic ASD connections on P}. We call this bundle Poincaré
bundle. The restriction of P to {x}X ... can be considered as the framed
moduli space H, at x& M.

As the tangent bundle of the moduli space H,., is one of typical index
bundles, an index bundle is defined in terms of elliptic operators parametrized
by connections on P. For a given elliptic operator @; I''—I" associated to a
connection V on certain vector bundle V, coupling this connection V to connec-
tions on P we get infinitely many gauge equivariant elliptic operators 9,4, A= A
so that the formal differences (Ker 9,)—(Coker 9,) well define a (virtual) vector
bundle over the orbit space B,,, or HM,.,. These bundles are associated to the
natural fibration A,,—3,, with the fibre G/, or its restriction over Mg,
which is equipped with a naturally defined connection w. So, as is explained
in §5, if the base space is endowed with a covariantly constant quaternion
structure, these bundles admit in a canonical sense a holomorphic structure
together with an Einstein-Hermitian structure of zero trace, Ricci curvature (g
is the Riemannian metric on the moduli space).

Finally we can make additional arguments on the compactness of the moduli
space of SO(3)-ASD connections over a hyperkdhler 4-manifold M. Compared
to the SU(2)-ASD connection case, the moduli space of SO(3)-ASD connections
has a different aspect. Actually a phenomenon that the moduli space is com-
pact occurs, when the first Pontrjagin number of the SO(3)-bundle P is small
(Theorem 6.2).

2. The Riemannian metric on the moduli space.

Since the Hodge operator depends on the base metric, the moduli space
must reflect primarily geometrical properties of the base space (M, h).

We can actually define a natural Riemannian metric on the moduli space as
follows. Since A is affine, the tangent space T ,A,, is isomorphic to £2%gzr);.
On this tangent space an inner product is well defined by
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<8 r>=§M(—tr®h)<ﬁ, T)dv=SM(—tr)(19 Axy) @1
B, reQger  for G=SUn).

For general G we must replace —tr by some adjoint invariant inner product.
We see easily that this inner product is gauge invariant. Hence the inner
product descends to B,.=4,./(4/z,), the orbit space of irreducible connections
on P and its restriction on the generic part M,., of H# lying smoothly in B,,
provides a Riemannian metric there.

When the base space is Kdhler, we have the following Ké&hler structure
theorem.

THEOREM ([15], [17]). Let (M, h) be a compact connected Kihler surface and
G a compact simple Lie group. Let Mge, be the generic part of the moduli
space M of ASD connections on P=P(M, G). Then it admits naturally an in-
tegrable almost complex structure with respect to which thus defined Riemannian
metric becomes Kdhler. Its complex dimension is dime M zen=1/2p:(gpQC)[M]—
dimp G(1—q(M)+p (M) provided that M,e, 15 not empty, where q(M) is the
irregularity of M and p(M) is the geometric genus, dim¢ H'(M; O(Ky)) for the
line bundle Ky of holomorphic 2-forms.

Remarks. (i) We call an ASD connection A generic if it is irreducible
and its second cohomology H} associated to the Atiyah-Hitchin-Singer complex
0-0Q%gp)—R2%(gp)—2*(gp)—0 vanishes.

(ii) Another definition of the Riemannian metric is given by S. Kobayashi
([20]) and investigations of the Riemannian metric over special base spaces (for
example the 4-sphere) are proceeded ([6], [12]). A Riemannian metric of another
type is also discussed in [25].

(iii) If a Ké&hler surface (M, h) has positive scalar curvature or the canonical
line bundle K, is holomorphically trivial, then H,., coincides with HN B,,,
the moduli space of irreducible ASD connections so that the singularities of 1
arise exactly from reducible ASD connections ([14], Remark 2.1).

(iv) The anti-self-duality of connections is equivalent to the stability of
holomorphic vector bundles over an algebraic surface. So HNSB,. is in one-
to-one correspondence with the moduli ¥, of stable vector bundles with cor-
responding rank and Chern classes.

This theorem says that if the base holonomy is unitary, then the moduli
space holonomy is also unitary. Thus, we can pose the problem:

Suppose that (M, h) has holonomy in group SU(2)=Sp(1). Is the holonomy
of the Riemannian metric on the moduli space M of ASD connections symplectic ?

This problem can be rewritten as

Suppose that the base space is hyperkdhler. Is it true that the moduli
space is also hyperkihler ?
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DEFINITION. A Riemannian manifold (N, g) is hyperkidhler if there exists
on N a quaternion structure which is covariantly constant with respect to the
Levi-Civita connection.

We can easily observe from this definition that a hyperkdhler manifold
has a symplectic group as its holonomy group and hence is Ricci flat Kéhler
and further has a holomorphic symplectic structure so that Ky is trivial (see
for example [22], IX, Theorem 4.6 and [3]).

Over a compact hyperkdhler 4-manifold the dimension of the moduli space
of ASD connections is p,(gpQC)[M]—4e(M)XdimgG where e(torus)=0 and
(K3 surface)=1. So, the dimension is divisible by four. On the other hand
we have another circumstantial evidence to this problem;

THEOREM ([26]). Let M be a complex 2-torus or a K3 surface. If M is
algebraic, then the moduli space of stable sheaves has a holomorphic symplectic
Structure.

We are able to exhibit actually the following affirmative answer.

THEOREM 2.1 ([15]). Let P=P(M, G) be a principal bundle over a compact
hyperkdhler 4-manifold M with a compact simple Lie group G. Then the generic
part Mgen 0f the moduli space M of ASD connections on P carries a hyperkihler
structure.

Remarks. (i) This theorem holds for an arbitrary compact simple group,
for example, a special orthogonal group SO(n).

(ii) Since Ky is holomorphically trivial, an ASD connection is generic if
and only if it is irreducible. Thus the singular part of the moduli space
comes from reducible connections.

(iii) Over a compact Kidhler manifold (&, g) an Einstein-Hermitian structure
is defined on a holomorphic vector bundle V—N. A Hermitian fibre metric ¢
on V is said to be Einstein-Hermitian if its curvature satisfies tr,R?=2idz for
constant A where tr, means the trace with respect to the Ké&hler metric g.
The fibre metric ¢ defines in a certain way the principal bundle P with group
U(n), n=rank(V). In terminology of gauge fields we can formulate an Einstein-
Hermitian connection on P being equivalent to the Einstein-Hermitian structure
on the vector bundle V. For more details, refer to [15]. It is shown in [15]
that the moduli space of irreducible Einstein-Hermitian connections over a
compact hyperkdhler 4-manifold inherits a hyperkédhler structure in a similar
way to the anti-self-dual case.

(iv) The framed moduli space i of anti-instantons over the standard 4-
sphere S* is investigated in [7] with respect to the Penrose twistor approach.
On the other hand there is a one-to-one correspondence between . and the
moduli space of based anti-instantons over S* at the north pole co. Since the
ASD equations (1.2) are conformally invariant and S*=R*U{c} is the con-
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formal compactification of the Euclidean 4-space, we obtain the following fact:
the moduli space M. of based anti-instantons over S* carries a quaternion
structure which is induced naturally from R* and yields a hyperkahler structure
on M. (Theorem ([197)). The space M. (or equivalently #) has a bundle
structure over ¥ with group G. We observe that this fibration is just the
restriction of the so-called Poincaré bundle P—S*X B,, to {co} X Mzea(see §5
for the definition of the Poincaré bundle).

(v) Besides the Euclidean 4-space there are nontrivial examples of complete
open hyperkihler 4-manifolds, Eguchi-Hanson metric, Taub-Nut metric, Multi-
center Taub-Nut metrics and spaces which are recently discovered by Kronheimer
by using the momentum map ([23]). We can argue also over such spaces the
moduli space of ASD connections modulo based gauge actions. These moduli
spaces carry similarly a hyperkidhler structure ([19]).

3. The momentum map.

There are two ways for the proof of Theorem 2.1 which is our main
theorem. One is the momentum map method due to primarily Marsden-Weinstein
([24]). Another one is the Hodge decomposition method with the Kuranishi
map. In [15] we completed a proof of the theorem by using the latter way.
While in the latter case due to the calculation, which is not so easy, we can
get explicitly the Riemannian curvature tensor by the aid of the Green operators
associated to the Laplacians of the Atiyah-Hitchin-Singer complex. Actually,
if we denote by I, an almost complex structure on £2%(gp), induced from the
corresponding almost complex structure on the base space M of the same symbol,
7=1, 2, 3, then each tangent space of the moduli space #, being identified with
the first cohomology group H}, is invariant under the operation of any /[, in
such a way that these I,’s define a quaternion structure on . That this
quaternion structure is parallel with respect to the Levi-Civita connection is
derived from an argument on the Hodge theory and the Kuranishi map.

We will give here an alternative proof of the theorem using the momentum
map.

Each almost complex structure I, of M induces naturally an endomorphism
on the bundle A*' of 1-forms and hence an endomorphism on the tensor product
A*Qgp for which we use the same symbol I,. So, the space A,, of irreducible
connections carries almost complex structures {[,, [,, I5}, since T 4A,,=82%gp),.

Define skew symmetric bilinear forms w;, 1=1, 2, 3 on £2'(gp), by

wi(a) ﬁ):<[la) B>} a, ‘BE‘Ql(gP)l (3'1)

Note that every gauge transformation commutes with I,’s and hence is sym-

plectic with respect to each w,.
Let A be an irreducible connection on the principal bundle P. The self-

dual curvature F*(A) belongs to 2+(gp)=M_1(2%gr)RE,) (we abbreviate /).
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This decomposition of £2+(gp) corresponds to the decomposition (1.1). Denote by
F,=Fi(A)€Q%gp) the @;-component of F*(A), F*(A)=X3_,.F;R0, here F,=
10,1 2h(F*(A), §,) and h; (A*Qgp)X A*—gp is the bilinear map given by con-
traction with the base metric 4.

We would like to define a momentum map p=(tt;, ts, ts); A.,—P(R°(gp))*

by
fo; A —> (2%gp))*, the dual space of 2°gp),

{pi(A), §>=10.| 2SM(—tr)(l"“isii)dv (3.2)

o= 2%Qgp), i=1, 2, 3, where <, > in the left hand side denotes the dual pairing.

Since {¢:(g(A)), ¢>=<uA), g-¢-g~*> for any g€ g, the moduli space HNB,,
of irreducible ASD connections on P is then described as SHN B, =p"1(0)/(G/z4),
the gauge quotient of the zero locus of the map .

THEOREM 3.1. (a) The map p is actually a momentum map, namely it
satisfies

d(p)a(B), o>=wi(B, V.40), 3.3)
o=82%{gp), B2 (gp).

(b) Moreover (i) p is @/z4-equivariant,
p(g(A)=ad(g " Y*(n«(A), g€2/ 24, (3.4)

and (i) the zero set p~*(0) is a submanifold of A.. and at each Acp™'(0) the
tangent space to p~'(0) coincides with Ker(d(u)s) and (iii) the group of gauge
transformations G/z, acts freely on p='(0) and at each A in p='(0) there exists a
slice S,Cp~'(0) for this action.

(c) There exist symplectic forms {@i, @, @3} on the quotient of the zero locus
©N0)/(8/z,) satisfying n*e;=j*w;, i=1, 2, 3, where j; p~'(0)—A,, is the canonical
embedding and m; u'(0)—p~(0)/(G/z,) is the natural projection.

It is derived from this theorem that M,.,=HNB,, is a hyperkdhler
manifold. In fact if we let ¥ be the Levi-Civita connection of the canonical
Riemannian metric on H,., then each &; is covariantly constant (V@;=0),
since we see that @y (-, -)=<[;-, -> holds for the almost complex structure [,
on HMNB,, induced from I, and we have that each I, is integrable ([17], §4).

Now we have to show Theorem 3.1. We will first prove (3.3). For any
BET 4oh., <(dp)a(B), §> iseq ual by the definition to SM(——tr@h)(dAﬁ, $R6,)dv.
The integrand is further calculated as

(—tr@h)(d 4B, pRb.)dv=(—tr)(d 4x($R8.))

=d(—tr(BAPR0.)+(—trXBAV .$48.).
Hence
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Ldp)«(B), ¢>=—SM(—tr®h)(ﬂ, #(V4946.))dv.

Using the following formula, which is available by a straightforward calcula-
tion, we obtain (3.3)

FORMULA. x(add)=—1a, ac A'Qgp, (3.5)

The gauge equivariance of g is seen from the formula

pi(g(A), ¢>=<pi(A), g-p-g7">.

To prove (ii) and (iii) we can make use of the slice lemma argument ([17],
Proposition 2.3) and also the fact that the second cohomology group Hj vanishes
for each irreducible ASD connection A(see Remark (ii) in §2).

The statement (c) is a direct consequence of [21], Chapter VII, §5.

4. Quaternionic bisectional curvature.

The Riemannian curvature tensor of the canonical Riemannian metric on
the moduli space is calculated in [17], §5.
For tangent vectors X, Y T 1M,., the value of the tensor (R(X, Y)Y, X

is given by
(R(X, Y)Y, Xp=3({X, Y}, Gi{X, Y})—<[XAY ], G,LXAY]*)
HAXAXT*, GALY AY T 4.1)

Here <-, -> denotes the inner product given at (2.1) and G, are the Green
operators of the Laplacians A,. The bilinear map {-, -} is defined by {X, Y}
=X3h"[X,, Y,] and [XAY]* denotes the self-dual part of adjoint bundle valued
2-form [XAY] for X=3Xdx* and Y=V ;dx"

The above formula applies to any compact Riemannian 4-manifold. But we
assume now that the base space (M, h) is hyperkdhler. In the hyperkdhler case
we derive from (4.1) the following

THEOREM 4.1 ([15]). Let (M, h) be a compact hyperkihler 4-manifold and P
a principal bundle over M with a compact simple Lie group G. Let My, be the
modult stace of generic ASD connections on P. Then the curvature tensor of the
Riemannian metric on Myen Satisfies

(R(X, Y)Y, XD+Z3-KR(X, LY)L.Y, X>=0, 4.2)
X: Ye T[Almgen EHA

This is verified in a direct way by the aid of the following formulae which
hold for the hyperkidhler case (see [15], §5)
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FORMULAE. [aAB1*+33.[LiaAl;8]+=0, 4.3)
and LadB]*=32.10.]"{a, I.8}®86., (4.4)
GAdR0.)=16.] "G 1)RE., (4.5)

a, BE2'(gp), =2%gp).

From this we can immediately show that the Ricci curvature identically
vanishes, since Ric(X, V)= ;(R(X, e;)e,, Y> for an orthonormal basis {e;} and
we are able to choose

{Xh LX, LX, ,LX,}(G=1, ---, 1/4 dimRMgen) as {ej}'

The formula (4.2) asserts moreover that the left hand side represents a
“quaternionic” bisectional curvature of one-dimensional H-linear subspaces V x=
span{X, I, X, X, [,X} and Vy=span{Y, I,Y, I,Y, I.Y}, likewise the holomor-
phic bisectional curvature of a Kdhler manifold ([11]). Actually we can define
the quaternionic bisectional curvature of a hyperkdhler manifold in the follow-
ing way

DEFINITION. Let (N, g) be a hyperkdhler manifold. For any given one-
dimensional H-linear subspaces V and V’ at x&N the quaternionic bisectional
curvature Q(V, V’) is defined by

QV, Vh=g(R(X, Y)Y, X)+33-g(R(X, I.LY)L.Y, X) (4.6)
where X and Y are unit vectors in V and V’, respectively.

It is a simple fact that (4.6) depends only on H-invariant subspaces V, V’.
Theorem 4.1 says then that the quaternionic bisectional curvature of the
moduli space vanishes so that this bisectional curvature phenomenon must give
a further restriction to the moduli space. We can therefore pose the question:

Does every hyperkdhler manifold satisfy this curvature identity ?

All hyperkdhler 4-manifolds do certainly satisfy it, since they are Ricci flat.
With respect to this problem we have a result of M. Obata. He obtained in
[27], Theorem 3.1 the following fact which says that the Riemannian curvature
tensor of a hyperkdhler manifold is completely determined in terms of almost
complex structures. Let (N, g) be a hyperkidhler manifold with a quaternion
structure {I, J, K=I]}. Let (z*) be a complex coordinate system associated to
the first almost complex structure I. Then I, J and g take the forms

- V=185 0 ) ]_( 0 ]5)
0 —v=IH g 0 )

i R O 8k
J(0/0z)=33,J50/0zF and g= 0/
5P
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The Levi-Civita connection of the metric g whose coefficients are
I'51=332(0/02" g 2a)8 ™ (4.6)
coincides with an affine connection V given by
Fya=—3%40/02"] )] % 4.7

so that the Riemannian curvature tensor of a hyperkdhler manifold can be ex-
pressed in terms of the derivatives of the components of J with respect to
(z%). This theorem might give a clue to solve the problem.

5. Poincaré bundle and index bundles.

In [18] we investigate the naturally defined connections and their curvature
forms on the so-called Poincaré bundle and also on the index bundles.

The Poincaré bundle P is a principal bundle with group G over MX 3.,
defined for a given bundle P=P(M, G) by taking the &/z,-quotient as P=
(PXA)/(G/26) = MX By =GN(PX Ay)/(G/z,), Where we regard &/z, as the
group of automorphisms of P covering the identity of M so that it acts on
PX ., as (u, A)y—(g(u), g(A)([18]).

The index bundle is defined over B,, as follows (see for the precise defini-
tion [18]).

Let 9; 2'(V)—(2°PR+)V) be a first order elliptic operator associated with
a Hermitian vector bundle V over M with an Einstein-Hermitian connection V.
Tensoring V with an associated vector bundle E to P and also coupling V to
V., AE4,,, we have a family of elliptic operators {9,; 2'(VQE)—(2°D2+)
(VQE)} over the space A,,.

We assume that Coker 9,=0 for each A. Then the dimension of Ker 94
is constant because of the Atiyah-Singer index theorem and thus we get the
family of linear subspaces of the same finite dimension in Q'(V®E). Since
9, is gauge equivariant, {Ker 9,} defines a vector bundle over 4,, which we
call the index bundle.

These bundles are related to an infinite dimensional principal bundle A,,—
B r =AM /(9/25) With structure group ¢/z,. On this bundle we are able to
define in a natural way a connection @ giving a distribution of horizontal spaces.

In virtue of this connection and its curvature form £¢ we can equip the
Poincaré bundle P with a connection 4 and also any index bundle Ind 9 with
a connection V ([18]).

Relative to the product structure M X @,, the curvature ¥ on P decomposes
into F=F*°+F"*+F®% where F*°=F(A), the curvature of A on P at MX
[A], F**=cv,(R2°) at {x} X B,,, evaluation at x of 2¢ which takes values in
2°(gp), the Lie algebra of ¢/z, and F*'(V, a)=—i(Y)a for (Y, a)ET (,ran(MX
B, YT .M, a is a tangent vector to the slice at A) (see [2] and also [18], § 2).

On the other hand on the index bundle Ind @ the curvature Q=27 of V is
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written in the form of Gauss equation;
(2x.v8, 7])=(~Q-X.Y§» 7)—(ox§, oy7)
+(oy€, ox7) (GRY)

Here (-, -) is the L,-inner product on 2(VQ®E) and 2 is the curvature of the
ambient vector bundle J,,XQ’/ZGQ‘(V@E) induced from the principal bundle
curvature ¢, and o x& denotes the second fundamental form.

We apply these curvature formulae to our hyperkdhler 4-manifold case to
get the following

THEOREM b5.1. Let (M, h) be a compact hyperkdhler 4-manifold and P a
principal bundle over M with a compact simple Lie group G. Let Myen be the
moduli space of generic ASD connections on P. If we restrict P on HMgen, then
the connection A on P yields on any associated complex vector bundle an Einstein-
Hermitian structure with zero trace,-Ricci curvature (g is the canonical Rieman-

nian metric on Mgen)-

Proof. The curvature 2¢ of w is represented as
2% y=—2G,{X,Y}), (5.2)

X, YeT 18,., where G, denotes the inverse operator of the Laplace operator
ViV, on 2%gp)[18], Proposition 2.1).

We observe that the curvature F' on the Poincaré bundle P—M X M., and
hence on its associated complex vector bundle is of type (1.1) so that it induces
a holomorphic structure ([1], Proposition 5.2). To prove that the trace,-Ricci
curvature is zero it suffices to show that the trace of F*? vanishes with respect
to the Kdhler metric on M,.,, since the (2,0)-part F*° at [A] is just the cur-
vature of A and A is ASD.

LEMMA 5.2. The following equality holds
{X, LX}+{LX, I,X}=0, Xe2'(gp). (6.3

As {X, Y} is skew symmetric and [ XAY ]* is symmetric, it follows from
(4.4) that {X, ,Y}=—{I[.X,Y} and hence {-, -} is I;-invariant. Taking the
inner product of (4.3) and the covariantly constant 2-form @, and using (4.4),
we have (5.3).

We will return to the proof of Theorem 5.1. From (5.2) the trace,-Ricci
curvature is tr, F*:=—2G(3,{Z,, Z;}) for a unitary base {Z;} of T13HMen.
Since the real tangent space T4 M., carries a quaternion structure {I,, I, I,},
we can put Z;=1/,5Y;—~/=1LY;), Zns;=1/ LY j—+/=11LLY ), j=1, -,
n=1/4dimg T M 4., in such a way that the trace, vanishes from the lemma.

THEOREM 5.3. Let (M, h) and P be as in Theorem 5.1. Let 9; Q' (V)—
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(Q°DR+)V) be the elliptic operator associated to an Einstein-Hermitian vector
bundle (V,N) and 9D,’s elliptic operators coupled to connections A on P. We
assume that Coker 9,=0 for any A. Then the connection N of the index bundle
Ind 9={Ker 9,} restricted on the moduli space Men induces on the complexifica-
tion of Ind @ the holomorphic structure and also an Einstein-Hermitian structure
with zero traceg-Ricci curvature. Further the ordinary Ricci form of the connec-
tion N, namely of the Einstein-Hermitian structure, 1s identically zero.

Proof. 1t is shown ([18], §5) that the curvature 2 of V is of type (1,1)
and hence gives the integrability of a holomorphic vector bundle structure.

We will compute the trace,-Ricci curvature. We have first for the second
fundamental form oy

(6x§, o1, xn)+(01,x8, 01,x7)=0, 6.4)

&, neKer 94, because the second fundamental form commutes with each I,(see
[18], (6.1) and (5.2) and notice the operation of each I, on gp-valued 1-form X)
and also the following holds (see (5.4) in [18]);

(ox1:&, UY]ﬁ?):(O'I,XE, UIiYﬂ) (5.5)

Then, observing that the curvature 2 of the ambient space is £2° in a certain
sense and applying the Gauss equation (5.1), we see that the trace, must vanish.

To show that the Ricci form @ is zero we make use of the Gauss equation
again and have

O(Z, 2)=%1R2229,, ,)=—22{2x.1,x&, 1&)
+221{(0'X[1§p 0‘11XE]')—(0'I‘X11$}; Uxfj)}

for a unitary basis {¢;=1/,3(&i—+/—11,&)} and a tangent vector Z=X—
~=1I,X of type (1.0). Like tangent spaces of the moduli space M., €ach
Ker 9,, fibre of Ind 9 over [A] enjoys the quaternion structure induced from
the I.’s. Further each I, defined on 2'(V®E) commutes with the action of
infinitesimal gauge transformation G,({X, Y}). So, we get

(Qx,v8 Lip)+(2 x.vL,E, I;9)=0. (5.6)

In a similar way to (5.3) and (5.6) we have by using the fact that ¢ y commutes
with each I,.

(0x&, ovl &)+ (o x16, avl:£)=0. 6.7)
Therefore the Ricci form @ is identically zero.

Remark. The moduli space M, of framed ASD connections at x on P=
P(M, G) has a bundle structure over M and of structure group G. In this
case the bundle M.~ M., has moreover a connection whose curvature is of



356 MITSUHIRO ITOH

type (1,1) and gives an Einstein-Hermitian structure with zero trace,-Ricci
curvature. In fact, the space ¥, is exactly the Poincaré bundle P restricted
over {x}X M and the connection is A restricted over there so that Theorem

5.1 applies.

6. Remark on the moduli space of SO(3)-ASD connections.

We now suppose that a bundle P has the structure group SO(3) and in-
vestigate the moduli space of SO(3)-connections on P.

From the Atiyah-Singer index theorem the moduli space has the virtual
dimension —2/—3(1—b,+4b*) (I is the first Pontrjagin number p,(P)[M7]).

Unlike SU(2)-bundles we have two topological invariants on SO(3)-bundle
P. The second Stiefel-Whitney class w,(P)eH*(M; Z,) and the first Pontrjagin
class p,(P)eH*M; Z) characterize SO(3)-bundles. Two SO(3)-bundles P and
P’ are topologically equivalent when these invariants coincide for them. If
wy(P)=0, then P comes from an SU(2)-bundle and p,(P)=—4c.(P).

We remark that the adjoint bundle g, is equivalent with the oriented 3-
plane bundle S=PX,R® The bundle S is reducible when it splits into L(P1
with an SO(2)-bundle L and a trivial real line bundle 1. In this case w,(P)=
¢, (L) mod2 and p,(P)=c,(L)*(=(w,(P))* mod 2).

A connection A on P defines a covariant derivative VY=V, on S satisfying
dl¢, §)=N¢, ¢)+(¢, VO) and (¢, A¢,A¢;)=0 for any oriented local orthonormal
frame {¢,, @, ¢s} of S. A connection A is reducible when it admits a nonzero
covariantly constant section ¢. So, S splits into S=R¢Dg*.

If a bundle P admits an ASD connection, then the first Pontrjagin number
[ is nonpositive because of the Chern-Weil theorem lz—%ﬂzgtr FAF.

While the moduli space of SU(2)-ASD connections has ends, we observe in
our SO(3) case with a small / a phenomenon that the moduli space must be
compact. See [9] and [10] for the standard references on SO(3)-bundles and
the moduli space of SO(3)-connections.

Since the base space is hyperkdhler, the quaternion structure {I,, I,, I;}
on M acts in a natural way on the tangent spaces of the moduli space of SO(3)-
connections.

The following theorem gives an obstruction against the existence of SO(3)-

ASD connections.

THEOREM 6.1. Let M be a complex 2-torus or a K3 surface and P be an
SO3)-bundle over M with nonzero w,. If the first Pontrjagin number [ 1s odd,
then there exist no ASD connections on P with respect to an arbitrary hyperkdhler

base metric.

Proof. Assume that there is an ASD connection on P with respect to
some hyperkdhler base metric h. Then A must be irreducible, otherwise the
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intersection form I, of the space M must odd. Therefore, A is generic from
[14], Proposition 2.3 and Remark 2.1. So, the dimension of the moduli space
of generic ASD connections is —2/—12¢(M), whereas from Theorem 2.1 it
carries a hyperkéhler structure and hence its dimension is divisible by four.

Remark. This theorem might suggest that there exist on M no SO(3)-
bundles with odd /.

Let P be an SO(3)-bundle with w, and / over a compact Kidhler surface.

That P admits ASD connection if and only if there exists a holomorphic
line bundle L satisfying the following conditions;

c(L)=w, mod2 and c¢,(L)*={ (6.1)
c(L)Alwr]=0 (6.2)

First two conditions say that the Whitney sum L1 gives an SO(3)-bundle
equivalent to P and (6.2) asserts that L1 carries a reducible ASD connection.
If (6.2) fails for any holomorphic line bundle L satisfying (6.1), then there
exist no reducible ASD connections on P with respect to the base metric A.
For an SO(3)-bundle with a small / we have the following compactness
argument.

THEOREM 6.2. (i) Let P be an SO(3)-bundle with w,+#0 and [=—2 over a
compact 2-torus M. Choose a flat base Kdhler metric h in such a way that
(L) ALwr]#0 for any holomorphic line bundle L with ¢,(L)=w, mod2 and ¢,(L)*=
—2. Let Mgen be the moduli space of irreducible h-ASD connections on P. Then
each connected component of Mgen 1S a complex flat torus, provided Myen+ 9.

(ii) Let P be an SO(3)-bundle with w,=0 and [=—8 over a K3 surface.
Choose a Ricci flat base Kdhler metric h so that ¢,(L)ALw,]+0 for any holomor-
phic line bundle L with ¢,(L)=w, mod2 and c¢,(L*=—4 or —8. Then each of
connected component of the moduli space Mgen 0f irreducible h-ASD connections
on P is a compact hyperkdhler 4-manifold provided Mgen is not empty.

We remark on the existence of the base Kéihler metrics. It is actually
possible to choose them because, since the condition that (6.2) fails is open and
dense, we can perturb the metrics A4 in a suitable way.

Proof. (i) Since the metric & is flat Kéhler, the moduli space is endowed
with a 4-dimensional hyperkihler structure. We claim that the moduli space
is smooth and compact.

Assume that {[A4,]} be a sequence in H,., which does not converge. As
this can not go to any reducible ASD connection because of the base metric
condition, it follows that there are finitely many points {x, -=-, x,} in M so
that over M'=M>{x,, -, x,} (a) each A, has a gauge transformation g,
defined over M’ and (b) A;=g.(A,) converges to an h-ASD connection A.(see

the argument in the proof of [9], Theorem 7.3). Since S”’ ]F(Am)lzéngF(AJ|2
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=8r?, from the removability theorem due to K. Uhlenbeck A.. extends smoothly
over the whole space M to an ASD connection on an SO(3)-bundle P.. The
bundle P. has wy(P.)=wy(P). The first Pontrjagin number /. of P. is non-
positive and |/.|<2. Moreover /.=—2 mod4 by a topological argument ([5],
Theorem 2). So, this is a contradiction. Hence H,., is smooth and compact.

We now assert that ., is locally homogeneous and hence each of its
connected components becomes a complex 2-torus with a flat Kdhler metric.

In fact the identity component K of the isometry group of (M, h) acts on
the moduli space M,., through the horizontal lifting and this action induces
an infinitesimal deformation 7x(F(A)) of any ASD connection A, where X is a
Killing vector field ([4], §2). Since ixF satisfies the gauge fixing equations
V%@ x F)=0, the action is effective. Hence H,.. is locally homogeneous, because
dim M., coincides with the dimension of K.

(ii) Since the Ricci flat Kdhler metric 2 is hyperkdhler, the moduli space
Mgen is hyperkdhler. We assume that it has a sequence which does not con-
verge within it. So, as in the proof just above we have an SO(3)-bundle P.
with an ASD connection A. whose Pontrjagin number /. must be 0, —4 or —8.
The case /.=0 is eliminated since it then requires that P. must be the product
bundle, whereas w,(P.)#0. If [. is —4, then the connection A. must be ir-
reducible, otherwise there is a holomorphic line bundle L satisfying ¢,;(L)A[wx]
=0 and also ¢,(L)=w, mod2 and ¢,(L)*=—4 and this does not occur from the
base metric condition. Thus H® and H* vanishes for A. so that obviously
dim H4.,=0. However, the Atiyah-Singer index theorem computes the dimension
dim H'=—(dim H°—dim H'+4+dim H*)=—4. So, every sequence converges and
hence M., is compact.

Remark. 1t is easily seen from the structure of the intersection form Iy ;
H¥M; Z)XH¥M; Z)—Z that the SO(3)-bundles P with the values w, and /
appeared in Theorem 6.2 carry reducible ASD connections for some base hy-
perkdhler metric h,. We will discuss whether or not those bundles admit an
irreducible ASD connection with respect to a Ricci flat Kdhler metric.

Let A, be a reducible h,-ASD connection on P over a K3 surface. So,
dim H},=1 and according to (1.1) H%, is written as

H§0:{¢1®01+¢2®02+¢3®03, ¢.EHY L. (6.3)
Then the moduli space of ASD connections on P is around [A,] described as
{acH},; lal<e, O(@)=0}/G,,

where @ ;H} —H}, is a map given by the Kuranishi map and &,, denotes the
isotropy of A,, isomorphic to U(1) ([16], Theorem 1). Since @ is approximated
by the quadratic map¥; Hi—HY, a—pry+([adal*) and the formula (4.3)
holds, the primary part of <@, 6,>, i=1, 2, 3 is an indefinite quadratic form so
that Zero(®@) has really 5-dimension near the origin. Therefore there must
exist an irreducible Ah,-ASD connection A close to A, on P because there are
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at most finitely many reducible ASD connections when the base space is a K3
surface.

Let h be a Ricci flat Kdhler metric which satisfies the following; for any
Kéahler metric on the path hq,=(1—t)h+th ¢(L)A[wy,]1#0 where L is an
arbitrary holomorphic line bundle with ¢,(L)=w, mod2 and ¢,(L)*=-38.

We seek a solution a=2'(gp) to the equation

s F(A+a)+F(A+a)=0 (6.4)

By the well known theorem of Yau there exists a path A, of Ricci flat Kdhler
metrics from h, to h. To solve (6.4) use the continuity method with respect
to h,;

#1,F(A+a)+F(A+a)=0 (6.4,)
We reduce (6.4;) to
di‘ta+[adalt +1/2xn,—*1)F(A)=0 (6.5,

where di'‘a=1/2(da+*,,dsa) and [ada]™® is the x,-self-dual part. For
a=(dy'U, T=02+(gp) (6.5;) is written as

di (dE VU +[(dE VU AdE VT 41/ 2060, —#a)F(A) =0 (6.6)

Since A is irreducible and then the operator dj ‘(dj ")* is invertible for small
t, by applying Taubes’ iterating procedure ([13]) we get a solution ¥, for
sufficiently small ¢ in such a way that A+d} ¥, is an ASD connection with
respect to 4;. Note that P admit no reducible #4,-ASD connections because of
the Kéhler metric condition.

On the other hand there is another way to find an irreducible ASD con-
nection on an SO(3)-bundle. In fact for an SO(3)-bundle with /=—6 over a
K3 surface M Donaldson exhibits an irreducible ASD connection on P by pulling
back the holomorphic tangent bundle TP*(C) by n; M—P*C) the double cover-
ing P?*C) branched over a smooth curve. The moduli space consists only of
this single point ([87).
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