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§ 0. Introduction.

Let K and K! be two centrally symmetric convex bodies in the 3-dimensional
Euclidean space E3 with their centers at the origin 0. The following problem
is still open:

Suppose that for each plane L through O in E3

Area( # Π L) < AreaCfiΓ Ή L)

holds. Then does the inequality Yo\(K)<Yo\(Kf) follow ?

This problem has a natural meaning for any dimension m^3 by taking a
hyperplane through the origin 0 of Em as L. Let K and Kr be centrally
symmetric convex bodies in Em with their centers at O. Then the following
are known.

( i ) Equality of (m—l)-dimensional volumes Yo\{KΓ\L)—Yo\{KfΓ\L) for
each L implies that K and Kr are congruent; in particular Yo\(K)—Yo\{Kf).
This is shown by the generalized Funk's spherical integration theorem, which
says that two even functions fx and f2 on the {m—l)-dimensional unit sphere
Sm"\l) are identical, if the integrals of /Ί and / 2 on each totally geodesic
(m-2)-sρhere are identical (cf. P. Funk [7], T. Bonnesen and W. Fenchel [2],
p. 136-138, A.L. Besse [1], p. 103-104, p. 124-125 for m=3. Generalization to
general m is not difficult).

(ii) If ϋf is an ellipsoid in Em and YoliKnLXYoKK'ΓΛL) holds for each
L, then VolCfiΓKVolCK"7) follows (H. Busemann [3]). However, if K' is an
ellipsoid then the question has not been answered yet.

(iii) By probabilistic arguments, D. G. Larman and C. A. Rogers [9] estab-
lished the existence of a centrally symmetric convex body K in Em, for m^l2,
such that for each hyperplane L, Yo\(Kr\L)<Yo\(BmΓλL) holds, nevertheless
Yo\(K)>Yo\(Bm), where Bm denotes the m-dimensional unit ball.

For a general survey on this problem and related subjects see an article
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by D. G. Larman [8] in the Proceedings of the International Congress of Mathe-
maticians in Helsinki, 1978.

Now we return to the 3-dimensional case, which seems to be most important
at present.

By B\R) we denote the ball of radius R with center O in E\ and by 52(1)
we denote the unit sphere in E3,

Let ε be a positive number and AT be a natural number. Then 2N points
±Pu ±p2> — , ±PN on S2(l) are called ε-properίy distributed on 52(1), if for any
two different elements x, y^{±pu ±p2, •••, ±PN\ two geodesic ε-disks on S2(l)
centered at x and y are disjoint. By θ = {±pu ±p2, mmm > ±PN\ we denote an
ε-proper distribution of 2N points on 52(1).

By K(ε, N, Θ) we denote a centrally symmetric convex body obtained from
B\l) by removing 2N spherical caps of B\l) of angular radius ε corresponding
to 0. K(ε, N, Θ) is a natural object as a centrally symmetric convex body
which enables us to calculate various quantities and was studied in [9] for
General dimension m.

For each ε-proper distribution θ of 2N points on S2(l), if one varies planes
L through O in Es, then the mean value of Area(ϋΓ(s, N, Θ)Γ\L) is independent
of θ , and so we denote it by M(ε, AT).

Let Λ(e, N) be a real number determined by

Vol(£3(/?(ε, ΛD))=Vol(ίΓ(6, N, θ)).

Then R{ε, N)<1. If one could define θ such that

(0.1) Area(X(ε, N, Θ)Γ\L)<πR{ε, Nf

holds for each L, then replacing R(ε, N) by a slightly smaller R', one would
get a counter example K(ε, N, Θ):

Area(/C(e, N, Θ)rλL)<Area{Bs(R/)Γ\L),

VoKK(ε, N, <9))>Vol(J33(i?0).

As Proposition 3.6 we prove the following.

THEOREM A. M(e, N)<πR(ε, N)2 holds.

This means that the mean value of the left hand side of (0.1) is always
smaller than the right hand side. Therefore, at a glance, it seems to be possible
to construct counter-examples to the question by distributing 2N points "homo-
geneously".

The purpose of this paper is to give some evidence that πR(ε, N)2—M(ε, N)
is too small to give Θ satisfying (0.1).

If iV is not so large and ε is so small, then one may find L which does
not meet any removed caps of K(εt N, Θ).

If N is not so large and ε is so big as possible, then the variation of
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Area(/f(ε, N, Θ)Γ\L) with respect to L is so big. In §9 we show two examples
related to an octahedron and icosahedron, and one additional example which is
not centrally symmetric.

To study the cases where 100^Λ/'<oo, we define an ideal homogeneous
model θ'o called the //-model of ε-proper distribution of 2N points on S2(l) in
§ 4. ΘQ is not concrete, but it is an abstract model which is nearly homogene-
ous and which allows us to calculate necessary quantities for ε-»0, iV-*oo.

THEOREM B. Let Λf l̂OO. For the H-model ΘΌ, there exists some plane L
through O such that

Area(#(e, N, Θf,)ΓΛL)>πR{ε, N)

§ 1. Volumes of spherical caps.

Let Bm(l) be the unit ball with center O in the m-dimensional Euclidean
space Em. For a positive number ε and a point p in the boundary of Bm(l),
ε-spherical cap Cm(p, ε) of Bm(l) is defined by

CM{p, ε)={x^Bm(l);(x, p)>cosε},

where (x, p) denotes the inner product of x and p, as position vectors. Then
the volume of Cm(p, ε) is given by (cf. [9], p. 166).

LEMMA 1.1. For m=2 and 3 we get

(1.1) Area(C2(ί, e ) ) = e — ^

(1.2) Vol(C3(/>, ε))=-|(cos 3ε-3cosε+2).

§2. Mean value of Area (K(ε, N, Θ)Γ\L).

In this section we give the expression of the mean value M(ε, N) of
Area(ϋΓ(ε, N, Θ)Γ\L) for an ε-proper distribution θ of 2N points on S2(l).

Define a point A in E3 by A=(0, 0, 1), where coordinates of a point or
components of a vector are ones with respect to the standard basis of E3. Let
K0(ε) denote the unit ball removed one spherical cap C3(A, ε); K0(ε)=B3(l)—
C3(A, ε). Let g be a great circle on the unit sphere S2(l) in E3. Suppose that
g meets the geodesic circle on S2(l) of radius ε centered at A at two points V
and Z. Let M be the middle point of the (shorter) geodesic segments VZ of
g. The length of the geodesic segment MV is denoted by ε~ and the distance
on 52(1) between A and M is denoted by t. Then we get
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(2.1) cosε=cosε~cosί.

The set of all planes through O is identified with a 2-dimensional real
projective space RP2 by considering to each plane L its normal line through 0.
We identify RP2 with S|(l), which denotes the closed upper hemisphere removed
one half of the equator. RP2 is also identified with the set of all great circles
on S2(l) by identifying L with LnS2(l)=g. For xeS&l), g(x) or L(x) means
the great circle on S2(l) or plane through O corresponding to x with respect
to the above identification.

By P(ε) we denote the mean value of π—Area(Zfo(ε)ΠL) with respect to
{L}—RP2. Then, the mean value M(ε, N) of Area(ϋΓ(e, N, Θ)Γ\L) with respect
to {L} is given by π—2N-P(ε).

LEMMA 2.1. Let ε~=ε~(ε, t) be a function defined by (2.1). Then P(ε) is
given by

(2.2) P(s)=£(6~"Sin 2ε~))cos t dt.

Proof. Let (5, θ) be a polar coordinate system of S|(l) centered at A (For
a point x in 5|(1), s=s(x) is the distance between x and ̂ 4, and ^ is zero for
the geodesic segment AX where X=(l, 0, 0).) Then the volume element of
S|(l) is given by sin sdsdθ.

For X G S | ( 1 ) such that π/2—ε^s(x)^π/2, g(x) meets the spherical cap
C3(Λ ε) of B\l). For %eSJ(l) the distance t=t(x) between A and g{x) is
equal to π/2—s(x). So, ε"(ε, ί) is determined and

where M is the point of g(x) nearest to A. By Lemma 1.1 we get

1 C2πCε/ 1 \
P(ε)=-7r- \ ( ε ~ - ~ sin2ε~)co$t dtdθ,

Zπ Jo Jo\ Z /

where we have used No\{RP2)—2π. Thus, proof is completed.
Later we need the following relations among ε~, ε and t. By [ε*] we

denote the higher order (^k) terms with respect to ε, ε~ and t. This is
reasonable, because ε"^ε and ί^ε.

LEMMA 2.2. ε" is expanded as follows:

(2.3) ε - 2 - ( ε 2 -

(2.4) ε-=Vε^=

Proof. Expanding cosε, cosε~ and cosί in each variable and using (2.1)
we obtain
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and hence we get (2.3). (2.4) follows from (2.3).

§ 3. R(ε, N) and P(ε).

Let K(ε, N, θ) be a centrally symmetric convex body obtained from B%1)
by removing 2N spherical caps as before. By Lemma 1.1 and

Vol(#(6, N, β))=-y—2ΛΓ Vol(C3(Λ ε))

we see that R(ε, N) satisfying

(3.1) Vol(/f(e, N, Θ))=Yo\(B\R(ε, N)))

is given by

(3.2) R(ε, N)3=l—^(cos3ε-3cosε+2).

Then Area(#(ε, N, Θ)Γ\L)<πR(ε, Nf is equivalent to

(3.3) Area(if(ε, N, Θ)Γ\L)<Area(53(i?(ε, N))Γ\L).

We define A(ε, N) by

(3.4) A(ε, N)=π(l—R(ε, N)2).

A(ε, N) is the lower bound of the sum of areas of spherical caps removed in
K(ε, N, Θ)Γ\L for K(ε, N, Θ) to satisfy (3.1) and (3.3).

For some pairs (ε, N) we calculate values of P(ε) and A(ε, N) showing the
inequality 2Λf P(ε)>.Λ(ε, N). The difference 2N-P(ε)-A{ε, N) may be helpful
to understand the situation.

Table 3.1. For pairs (e, N) such that Nε*=l:

ε
0.1

0.075

0.05

0.025

N
100

177

400

1600

2N P(ε)

7.8409-

4.3944-

1.9626-

4.9082-

• io- 3

• io- 3

-10" 3

• io- 4

7.

4.

1.

4.

A{ε,

8327-

3918-

9621-

9079-

N)
• io- 3

•-10"3

•-10-3

• io- 4

2N-P(ε)-A(ε, N)
8.2-10-6

2.6-10-6

5.1-10"7

3.2-10-8
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N

100

200

300

500

Table

2N-

4.9066

9.8133

1.4720

2.4533

3.2.

P(*)

- 1 0 -

- 1 0 "

- 1 0 -

- 1 0 -

SHUKICHI TANNO

For pairs (ε, N)

A(ε,
4 4.9048-
4 9.8100-
3 1.4715-

2.4528-

) such that

N)

• io-4

- 1 0 " 4

•-10"3

-10-3

ε=0.05:

2N P(ε)-A(ε, N)

1.9-10-7

3.3-10-7

4.4-10"7

5.4-10-'

In the table 3.1, Nε2=l corresponds to the fact that the sum of areas of
2N geodesic ε-disks in S2(l) is about one half of the total area of S2(l). In the
table 3.2, we notice that the number N is limitted by (3.8) below.

LEMMA 3.3. For ε<0.136, P(ε) is estimated by

(3.5) Ξ ? i L E
ε e < P ( ε ) < e g .

Proof. Expanding sin2ε~ and using (2.3) and (2.4) we obtain

Expanding cost we get

)=P(V--—sm2εJ)cost dt
Jo\ 2 /

Jo

On the other hand, for each even integer k, we have

(3.6)

and so we get

For ε< 0.136 by numerical calculation (by computer) we can verify (3.5). For
example, if ε=0.136, then
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P(ε)/ε4=0.3914 ,

π/8-π68/60=0.3917 .

The meaning of the value 0.136 is explained later in §5.

LEMMA 3.4. For ε<π/2, Nε2 is estimated by

(3.8) Nε2<2+^rε\
o

Proof. The area of a geodesic disk of radius ε on S2(l) is 2ττ(l—cosε).
So the total area of 2N geodesic disks is 4τrΛ/χi—cosε), which is smaller than
the area 4π of S2(l). Expanding cosε we get the inequality.

LEMMA 3.5. For ε<0.136, A(ε, N) is estimated by

(3.9) π

Proof. Since

c o s 3 ε - 3 c o s ε + 2 — | ε 4 - j ε

by (3.2) we obtain the expansion of R(ε, N)3 and hence

Λ=3

Furthermore we get

N_ 4 N 6 /13./V

+Λ/Tε l o]+iV2[ε l o]+ Σ iVΛ[ε4 Λ].

Λ=3

Since iVε2 is bounded, we can put AΓΛ[ε4Λ]=iV[ε2Λ+2] and so

2 _ N ± N 6 N2

Therefore

(3.10) 4(6, i V ) - π 7 V ( ^ ε 4 - ^ Γ ε 6 + - ^ - £

We use (3.8) to obtain the upper estimate of A(ε, N) and we replace iVε8/β4 in
(3.10) by ε6/32. Then, (3.9) is verified by numerical calculation. For each
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value of ε the range of N is limited by (3.8).
For example, if ε=0.13β (in this case l^iV^108) and if ΛΓ=100, then

A(ε, N)/ε4=78.22~ ,

;riV(l/4-ε720)=78.24 ..

Now we prove the following.

PROPOSITION 3.6. 2N>P(ε)>A(ε, N) holds for each pair (ε, N) such that 2N
points can be ε-properly distributed on S2(l).

Proof. For ε<0.136 we see that 2N-P(ε)>A(ε, N) by the first inequality
of (3.5) and the second inequality of (3.9).

For ε^0.136 we can verify 2N-P(ε)>A(ε, N) by numerical calculation.
For each value of ε, the range of N is limitted by (3.8). If ε gets larger, then
the maximum of N gets smaller.

§ 4. tf-model.

From now on we show some evidence that

πR{ε, iV)2-M(ε, N)=2N'P(ε)-A(ε, N)

is too small to construct concrete examples K(ε, N, θ) satisfying (3.1) and (3.3).

We define θ'ύ={±qu ±q2, •••, ±QN} somewhat abstractly. First we define
qu q2 and g3 in the following setting.

<4-l> Setting.
( i ) {Qu Qι> Qz) makes an equilateral (geodesic) triangle on S2(l).
(ii) The center of the triangle qιqzqz is i4=(0, 0, 1).
(iii) For each i {i—l, 2, 3), q% represents a hexagon Ht on S2(l) and qτ is

the center of Ht.
(iv) The area of H% is equal to iπ/2N.
(v) Hlf H2 and Hz are placed naturally so that two edges of each Ht

coincide with respective one edge of the other hexagons.
<4-2> Definition of hexagon H {=HX)=ABCDEF.
( i ) A} D and the center Q ( = ^ ) of H are in the (%2, x3)-ρlane.
(ii) The lengths of the geodesic segments AB, BQ, QC, CD, DE, EQ, QF,

FA are all equal to a.
(iii) <BAQ=<FAQ=<CDQ=<EDQ=π/3.

Coordinate expressions of these points are as follows:

i l=(0,0 f 1),

B=((VT/2)sma, (1/2) sin a, cosα),
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C=(c\ c\ c3)/2(3cos2α+l),

c2=(13 cos2α—1) sin a,

c3=H cos3α—β cos a,

D=φ, d\ ^ 3)/(3cos 2α+l) 2,

d2=z8(5cos2α—1) cos a sin a,

ds=41cos4a-26cos2a+l,

Q=(0, 4cosαsinα, 5cos2α—l)/(3cos2α+l).

<4-3> Area of H.

We denote the lengths of geodesic segments AQ and BC by λ and μ,
respectively. Then we get

=(B, C)=(cos 2α+l)/2.

With respect to the triangles ABQ and BCQ we get the classical relations:

(4.1) sin a sin < ABQ—sin λ sin (τr/3)

(4.2) sin a sin (ar/3)=sin μ sm<QBC

and we can calculate <ABQ and <QBC. Further, we obtain

(4.3) Area(H)=4:KABQ+<QBC)-8π/3.

For a given value of a, we can calculate <ABQ and <QBC by (4.1) and
(4.2). Next by (4.3) we obtain the area Area(//) corresponding to a. Con-
versely, for a given natural number N we can find the (approximated) value of
a so that Area(H)=Aπ/2N.

Example. ( i ) For #=100, α=0.1551 •••.
(ii) For iV=400, we get the following values:

α=0.0777 -

Λ=0.0778 /£=0.0776

<ABQ=1M98- <QBC=

LEMMA 4.1. Area(//)=2π /AΓ is expanded as follows:

2π 3 V I 2 | 5 V I 4 | Γ 6 Ί- a 2 - \ 4 + [ 6 ]
TV " 2 ' 16



352 SHUKICHI TANNO

Proof. Expanding cosΛ and cos// with respect to a, we get

and using relations (4.1) and (4.2) we obtain

cos<ΛBQ and cos<QBC are obtained from these. We put 4Z—Area(i/).
Expanding sm«ABQ+<QBC)=sm(Z+2π/3), we obtain

from which we obtain the relation in Lemma 4.1.
By Lemma 4.1 we get

(4.4)

and by numerical calculation we can verify a2N>A\/~3π/9—πa2/5 for α<0.156.
Then a2N>2Λ for α<0.156, and hence we get the following.

LEMMA 4.2. For a < 0.156, aN is estimated by

12
(4.5) aN>

5a '

<4-4> Mean values.
Let Ω be the domain in S2(l) defined by three hexagons Hlf H2, and H3.

Since qx {—Q), q2 and qz are defined as centers of three hexagons, to define
ΘQ as a standard model we suppose that 2N—6 points {±qif •••, ±tfj\r} are dis-
tributed in S2(1)—Ω\J(—Ω) (abstractly and) nearly homogeneously.

Let {LA} be the set of all planes which contain the line AO. Planes LA

are parametrized by angles θ from the first axis; 0^θ<π. We want to
calculate the rotational mean value at A, that is, the mean value MJ(ε, N; A)
of Area(ϋΓ(ε, N, θ'ύ)Γ\LA) with respect to planes {LA}.

Let θ0 be an abstract ε-proper distribution of 2N points on S2(l), which is
nearly homogeneously distributed. Then the mean value M0(ε, N; A) of
Area(if(ε, N, Θ0)Γ\LA) with respect to {LA} is equal to M(ε, N)=π—2N P(ε).
Here we divide 2N- P(έ) into two factors:
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2JV P(ε)=2P(ε, N, Ω)+P(ε, N, S\l)

where P(ε, N, Ω) is defined as follows: Let 0<Ξ[TΓ/6, TΓ/2] and let {pβ(s)} be
the geodesic emanating from A such that the angle between dpβ(0)/ds and the
j^-axis is θ. By l(θ) we denote the length of the geodesic segment {pθ(s)}Γ\Ω.
Then the effect of the mean value of sum of areas of removed caps restricted
to {pθ(s)}Γ\Ω is 2N-P(ε)-l(θ)/2π, and

(4.6) P(β, N, Ω)=-'2N P(ε) ^ \
π Zπ Jπ/6

We denote the mean value of π—Area(ϋC(ε, N, Θ')Γ\LA) with respect to
{LA} by 2P{q1q2qz)f where θ'={±qu ±q2, ±qs}- To define ΘΌ we replace
P(β, iV, β) by P t o l M l ) .

DEFINITION, //-model ΘΌ of ε-proper distribution of 2N points on S2(l) is
{±tfi, ±02, ±03, ••• > ±0i\r} such that Mί(ε, iV; -Λ) is calculated by

(4.7) π-M'0(ε, N; A)=2N P(e)-2P(e, N, Ω)+2P(ςiq2q3).

Here we notice that the condition (i) of Setting <4-l> is related to the case
where N is not small. Since we are studying the case where Λ^lOO, this may
be natural.

§ 5. The range of ε with respect to a.

For a given value of N, a and H are determined. Let Mr be the middle
point of the geodesic segment AB. Let v be the distance between M' and Q.
Then the range of ε is estimated by 0<ε<v. The coordinates of Mr are given
by

(VTsinα, sinα, 2(cosα+l))/[8(cosα+l)]1/2.

Therefore

=(M', Q)

=(3cos3α+5cos2α+cosα-l)/(3cos2α+l)(2cosα+2)1/2

Furthermore we obtain

Consequently

(5.1)
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and hence

[ /

By numerical calculation we get the following.

LEMMA 5.1. For a< 0.156

(5.3) (_£_)'< 3 + 3

\ sin a / 4 5

(5.4) Γ 1 _ ( ^ _
L \ sin a

For ΛΓ=100, we get a^O.1551 ••• and p=0.1350 . Since we are studying
the case where Λf l̂OO, the ranges of a and ε may be set as follows:

0<α<0.156, 0<ε<0.136

§6. P{e,N,Ω).

By S=ABCD we denote the quadrangle on S2(l) defined by A, B, C and D.
Let S*=A*B*C*D* be the quadrangle on the tangent space TAS

2(1) to 52(1) at
A satisfying the following conditions.

( i ) | ^ * 5 * | = | 5 * C * | = | C * i ) * | = a , |^*D*|=-2α.
(ii) By the exponential map φ at A, φ(A*)=A, φ(B*) = B, and ̂ (Λ*D*) is

contained in the geodesic segment AD.
Then <D*A*B*=π/3 follows.

LEMMA 6.1. φ~\S) contains S*.

Proof. We define C* and D* by C*=ίP"1(C) and D*^φ-\D).
is calculated by the coordinates of C;

cos<C ; ί ίΛ* JD*=(13cos2α-l)/2(49cos4«-2cos2α+l)1 / 2.

Then cos2<C*.A*Z)*--3/4<0 is equivalent to

(l lcos 2 α+l)(cos 2 α-l)<0,

and so we see that
Next we show that the orthogonal projection of C* to the line Λ*C* lies

in the extension of ^4*C*. That is,

(6.1) \A*C*\cos«C*A*D*-π/6)>VΎa.

By the expression of cos<C*A*D* we get
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Then (6.1) is equivalent to

(6.2) | 4*C* | >(49cos 4α-2cos 2α+l) 1 / 2α/4cos 2α.

Since \A*C*\ = \AC\, and cos|^4C| is known by the coordinates of C, (6.2) is
equivalent to

(6.3) (7cos8α—3cosα)/(3cos8α+l)<cosj8,

where

j8=(49cos4α—2cos2α+l)1/8α:/4cos2α.

We expand the both sides of (6.3) and get

(7 cos3α-3 cos2α)/(3 cos2α+l)=l—|-α2+4-«4

Δ O

< l - | - « 2 + i « 4 for α<0.156

cos/3=l-|-«2+|-«4+C«δ]

Z o

>\-\c?+\ct for α<0.156.

Therefore we get (6.1). Since φ'\BC) and φ-\CD) are convex in T^S2(1), we
see that φ~\S) contains S*. (q. e. d.)

By Lemma 6.1 we obtain

Cπ/S /"T
l(θ)dθ>\ J 6 „ dθ+\

π/6 Jπ/6 2 COS ̂  J πJ π/3 COS (θ — 7Γ/3)

Since

we obtain the following.

P(ε, N, Ω) >^^-N' P(ε) α(log tan - | | -+log tan | ) .

Therefore we get

LEMMA 6.2. P(ε, N, Ω) is estimated by

(6.4) 2P(ε, N,
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§ 7. Mean value Uφ, ε).

Let Z=( l , 0, 0) and y=(0, 1, 0). Let T=(sinb, 0, cosfc) where
Let LA be a plane in {L^} and let g=g(LA)=g(θ) be the corresponding great
circle on 52(1), Q<Lθ<π/2. The point of intersection of g and the equator is
(cos θ, sin 0, 0).

The distance w=w(b, θ) between T and g is given by

(7.1) sinu/=sin&sin#.

Let ε<b and let θ0 be the value of parameter of LA for which g is tangent
to the geodesic circle C[T, ε] of radius ε centered at T in S2(l). By putting
w=ε in (7.1) we see that 0O is determined by

(7.2) sin 0O= S m β

sin 6

For 0e[O, 0O], we denote the points of intersection of g{θ) and C[T, ε] by F
and Z. The half of the distance between V and Z is denoted by ε*=ε*(ε, b, θ).
Then

(7.3) cos ε=cos ε* cos w.

With respect to only one spherical cap Cz(Tt ε), the mean value Uφ, ε) of areas
of removed caps with respect to {LA\ is calculated by

(7.4) Uφ, ε)=~\θ°(ε*-lrsm2ε*)dθ.
7Γ Jo \ I /

If one changes the variables, then (7.4) is rewritten as

(7.5) Uφ, «)=lfΎ,«-|sin2«*) , . ? " " . 2 dw.
πJo\ 2 /vsm26—sm2w;

Next we obtain an estimate of U(a, ε).

LEMMA 7.1.

(7.6) Γ Z' 1 " 1 "
Jovsin2/?—

2{k+2l+2)\\

By

1 _ ^ (2/—1)11 ,

v Ί = Γ ~ £ i /!2' X

and (3.6) we obtain
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(2/-D11
sinδ L « l\2ι Γ l

—1)11 ,
= f

ι=o H2ιsm2l+1b 2(&+2/+2)ϋ
from which we obtain (7.6).

Since ε*, ε and w satisfy the relations satisfied by ε~, ε and t, we have the
corresponding equalities as in Lemma 2.2. So as in the proof of Lemma 3.3
we obtain

(7.7) ( s * - y s i n 2 £ * ) c o s u / = ! - V ? ^

By (7.5) with b=a we get

U(a, s)<lίVs*-lsin2s*) , .«? W

 tdw.
πJo\ 2 /vsm 2a-u; 2

Applying (7.6) and (7.7) to the last inequality we obtain

ι + 3 r g Y3 ! 1

6!! +

_ 1 Λ _!β.yJίί_Γ_L+!/_^_>ι2J!L+-J_r__i_V-^l.+ ...1
3 V 5 / sinα L 4!! 2 V sinα / 6!! ^ 2-4 V sinα / δϋ J

2s6 Γ 3!1 1/ ε y 511 3 / s y 711 1
15sinα L 6!! 2 \ s i n α / 8!! 2 4 \ s i n α ) 10!! + " J

2ε4 Γ3 1/ ε y 1 3/ ε y 3Γ3 1/ ε y 1 3/ ε y 3 Ί
3sinα L 8 ^ 2 \ s i n α / 1 6 ^ 8 \ s i n α / 128^ J

2s* Γ 5 1/ e y 5 3/ ε y 3 Ί
15sinα L 16 ^ 2 \ s i n « / 1 2 8 ^ 8 \ s i n α / 256^ J

+arcsin(— )[ε 7].
V sinα /

Since

f (2/—1)11 (2/+D11 i (3 _1 3_
I (2/+2)l! (2/+4)ϋ J \8' 16 ' 128'(2/+2)l! (2/+4)ϋ

is decreasing with respect to /, and
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f 1 5 ( 2 / - ! ) ! ! 1 ( 5 5 3 _ i
I (2/+β)ϋ i t 16 ' 128' 256' J

is composed of positive numbers, we obtain

+2\sma ) YW 128/
K 3sin« LU m)

_ 3 _ - (2/-D1I / ε y π 2s* 5
^ 128 i=o /!2( V sinα / J 15sϊnα 16 ^ L J

=

 2 s 4 Γ 45 5 / s y 3 I
3sinα L128 ^ 256 V sinα / ^ 128Vl-(s/sinα)2 J

8 I Γ.8-1

+ L J '24sinα

For «< 0.156 by Lemma 5.1 we obtain

I ? a*) g 1 Γ c "

+ 128 ^ 2 4 s i n α + L e -
( I a)

sin^V 512 + 128 ^ 24sinα

For α< 0.156, α/sinα is increasing, and so

1 0.156 1.004
sin a a sin 0.156

Therefore we obtain

x . 28 , 1

and hence by numerical calculation we get

OO 1

4

Since a<\ΛQ\ we see that

Ptorf«tfs)<3Σ7(α, ε),

and hence we obtain

LEMMA 7.2. For α<0.156, 2P(q1q2q3) is estimated by

(7.8) ^ ^ L

§ 8. Proof of Theorem B.

PROPOSITION 8.1. For ΛfelOO, A(ε, N)>π-Mf

0(ε, N; A) holds.

Proof. By ΛfelOO we obtain a< 0.156 and ε< 0.136. Applying estimates
(3.5), (3.9) and (6.4) and (7.8) to (4.7), we obtain
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A(ε, N)-π+M't(ε, N; A)=A(t, N)-2N-P(ε)+2P(ε, N, Ω)-2P{g1qtgι)

98 xτ/π Λ π A 1 *τ β 168

100a ' 4a

By (3.8) and (4.5) we obtain

_98_. J2_._78_
 4
 π_/ _1_ A

 4
 168

 4

100 5α ' 100
 ε
 20 \ 5

 ε
 / 100a

 ε

183 , 32 , 168 ,
> 100a ε 100 ε 100a

15-32α 4 ^ Λ

=-ϊ^e > o

Proof of Theorem B. By Proposition 8.1 we see that M£(e, TV;
i4(ε, N) holds. Since MJ(ε, iV; A) is the mean value, we have some plane L
through O and A such that

Area(/f(ε, N, Θ'ϋ)rλL)>π-A(ε, N). (q. e. d.)

Let Θ be an ε-proper distribution of 2N points on S2(l), and let g be a
point of S2(l). By M(q)=M(ε, N, Θ q) we denote the rotational mean value
at q, i.e., the mean value of Area(A"(ε, N, Θ)Γ\Lq) with respect to planes {Lq}
which contain the line qO. If we consider M(q) as a function on S2(l),π—M(q)
takes big value at q if relatively many points of Θ are distributed near q, or
if q is very near some pk of Θ. Theorem B implies that even if Θ is nearly
homogeneous, the variation of M(q) with respect to q is not so small.

Observations for the case where N is small and Theorem B lead us to the
following conjecture.

CONJECTURE. For an ε-proper distribution Θ of 2N points on S2(l).
Area(if (ε, N, θ)ΓλL)<Area(Bs(R)ΓλL) for each L may imply

Vol(K(ε, N, θ))<Vo\(B3(R)).

As a remark we prove the following.

PROPOSITION 8.2. Let ε and N be given so that 27V points can be ε-properly
distributed on S2(l). Then;

( i ) There exists an ε-proper distribution θ* of 2N points on S2(l) such that
the maximum value of the rotational mean value function M*(q) is not greater
than the maximum value of M{q) for any other ε-proper distribution θ of 2N
points on S2(l).

(ii) There exists an ε-proper distribution θ * of 2N points on S2(l) such that
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the maximum value of Area(/Γ(ε, N, Θ*)Γ\L) with respect to {L}—RP2 is not
greater than the maximum value of Area(K(ε, N, Θ)Γ\L) with respect to {L} for
any other ε-proper distribution θ of 2N points on S2(l).

Proof. Let Ψ be a subset of S 2 ( l ) x S 2 ( l ) X ••• x S 2 ( l ) (N times) composed of

elements (plt p2, •••, pN) such that \pk(±Pι)\^ε for l^k<l£N. Then ψ is
compact. The rotational mean value function M(ε, N, θ q) is a continuous
function on ΨxS\l). We define Λ(ε, N, θ) by

Λ(e, N, Θ)=maxαG52(i){M(ε, N, θ q)}.

Then Λ(ε, N, Θ) is a continuous function on Ψ. Therefore we have some
Θ*<^Ψ, which attains the minimum of Λ(ε, N, Θ). This proves (i).

(ii) is easily proved.

§ 9. Appendix.

It is clear that if N is not so large and ε is very small then for any e-
proper distribution of 2N points on S2(l) we can find some L such that
K{s, N, Θ)Γ\L=B\l)Γ\L.

Let Θ be an ε-proper distribution of 2N points on S2(l). Even if
AreaCfiΓ(e, N, Θ)Γ\L)<π holds for any L, we see that the variation of
Area(ϋΓ(ε, N, Θ)Γ\L) is big, if N is not so large. To show this we give two
examples corresponding to the closest packings of equal circles on S2(l).

<9-l> Octahedron.
Consider an octahedron inscribed in S2(l). Vertices define an ε-proper

distribution of six points on S2(l) with ε=ττ/4. Let Θ — {±X, ±Y, ±Λ} where
X=z(X, 0, 0), F=(0, 1, 0) and J 4 = ( 0 , 0, 1). Let Lo be the plane passing through
Y, -Y and (VT/2, 0, vT/2) . Then

Area(/ί(7r/4, 3,

πi?(ττ/4, 3)2=2.3βl3 .

Therefore Area(ϋ:(π/4, 3, θ)πL)<πi?(π/4, 3)2 does not hold for Lo.
Notice that Θ corresponds to the closest packing of equal six circles on

S2(l). As for closest packing, see for example [5] and [6] or references there.
<9-2> Icosahedron.
Consider an icosahedron inscribed in S2(l). Vertices define an ε-proper

distribution of Θ of eleven points on S2(l) with ε=0.5535 . Let p^Θ and
let Lo be the plane orthogonal to pι(—pi). Then

ε, 6, Θ)nL0)=2.9389 ,

?rί(e, 6)2=2.7281 .

Therefore Area(uT(s, 6, Θ)Γ\L)<πR(ε, 6)2 does not hold for LQ.
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Θ corresponds to the closest packing of equal twelve circles on 52(1).
<9-3> Non-symmetric closest packing.

Let p1=(sinb90,cosb) with sin 2&=(8-2V^)/7. B ^ π/2"> π~> a n d 3π/2-
rotation of px around the %3-axis, we define p2> p3, and pA. By π/4-rotation
of —pi, —p2, —pz, and —p4 around the %3-axis, we define qu q2, qs, and q4.
Then Σ—{pu p2, p3, p4, qu q2, q3, q4} defines the closest packing of equal eight
circles on S2(l) with ε such that cos2s=(3-hV~2~)/7, i.e., ε=0.6532—. Σ is not
centrally symmetric. By K(ε, Σ) we denote the convex body obtained from
J38(1) by removing eight spherical caps of B\l) of angular radius ε correspond-
ing to Σ. Let Lo be the plane passing through A, qu and qs. Then

Area(/f(e,

πR(ε, 4)
2
=2.β234 .
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