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§0. Introduction.

Let K and K’ be two centrally symmetric convex bodies in the 3-dimensional
Euclidean space E*® with their centers at the origin O. The following problem
is still open:

Suppose that for each plane L through O in E®
Area(KNL)<Area(K’'NL)
holds. Then does the inequality Vol(K)<Vol(K’) follow ?

This problem has a natural meaning for any dimension m=3 by taking a
hyperplane through the origin O of E™ as L. Let K and K’ be centrally
symmetric convex bodies in E™ with their centers at O. Then the following
are known.

(i) Equality of (m—1)-dimensional volumes Vol(KNL)=Vol(K'"N\L) for
each L implies that K and K’ are congruent; in particular Vol(K)=Vol(K’).
This is shown by the generalized Funk’s spherical integration theorem, which
says that two even functions f; and f, on the (m—I1)-dimensional unit sphere
Sm-%(1) are identical, if the integrals of f, and f, on each totally geodesic
(m—2)-sphere are identical (cf. P. Funk [7], T. Bonnesen and W. Fenchel [2],
p. 136-138, A.L. Besse [1], p. 103-104, p. 124-125 for m=3. Generalization to
general m is not difficult.).

(ii) If K is an ellipsoid in E™ and Vol(KNL)<Vol(K’'NL) holds for each
L, then Vol(K)<Vol(K’) follows (H. Busemann [3]). However, if K’ is an
ellipsoid then the question has not been answered yet.

(iii) By probabilistic arguments, D.G. Larman and C. A. Rogers [9] estab-
lished the existence of a centrally symmetric convex body K in E™, for m=12,
such that for each hyperplane L, Vol(KNL)<Vol(B™NL) holds, nevertheless
Vol(K)>Vol(B™), where B™ denotes the m-dimensional unit ball.

For a general survey on this problem and related subjects see an article
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by D.G. Larman [8] in the Proceedings of the International Congress of Mathe-
maticians in Helsinki, 1978.

Now we return to the 3-dimensional case, which seems to be most important
at present.

By B*R) we denote the ball of radius R with center O in E® and by S*(1)
we denote the unit sphere in E3.

Let ¢ be a positive number and N be a natural number. Then 2N points
+p1, £pPs, -, =px on S¥1) are called e-properly distributed on S¥%1), if for any
two different elements x, yE{=£p,, =P, ---, =Py} two geodesic e-disks on S*(1)
centered at x and y are disjoint. By @={=xp,, £p,, ---, = pxy} we denote an
e-proper distribution of 2NV points on S%1).

By K(e, N, @) we denote a centrally symmetric convex body obtained from
B*(1) by removing 2N spherical caps of B%1) of angular radius ¢ corresponding
to ©. Kle, N, ©) is a natural object as a centrally symmetric convex body
which enables us to calculate various quantities and was studied in [9] for
Beneral dimension m.

For each e-proper distribution ® of 2N points on S%*1), if one varies planes
L through O in E?®, then the mean value of Area(K(e, N, ®)N\L) is independent
of @, and so we denote it by M(e, N).

Let R(e, N) be a real number determined by

Vol(B*R(e, N)))=Vol(K(e, N, ©)).
Then R(e, N)<1. If one could define ® such that
0.1) Area(K(e, N, ©)NL)<rmR(e, N)?

holds for each L, then replacing R(e, N) by a slightly smaller R’, one would
get a counter example K(e, N, ©):

Area(K(e, N, ©)N\L)<Area(B*R")NL),
Vol(K(e, N, 0))>Vol(B*R")).

As Proposition 3.6 we prove the following.

THEOREM A. M(e, N)<mR(e, N)* holds.

This means that the mean value of the left hand side of (0.1) is always
smaller than the right hand side. Therefore, at a glance, it seems to be possible
to construct counter-examples to the question by distributing 2N points “homo-
geneously”.

The purpose of this paper is to give some evidence that = R(e, N)*—M(e, N)
is too small to give @ satisfying (0.1).

If N is not so large and & is so small, then one may find L which does
not meet any removed caps of K(e, N, O).

If N is not so large and ¢ is so big as possible, then the variation of
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Area(K(e, N, @)N\ L) with respect to L is so big. In §9 we show two examples
related to an octahedron and icosahedron, and one additional example which is
not centrally symmetric.

To study the cases where 100<N<oco, we define an ideal homogeneous
model 6 called the H-model of e-proper distribution of 2N points on S%(1) in
§4. O} is not concrete, but it is an abstract model which is nearly homogene-
ous and which allows us to calculate necessary quantities for é—0, N—co.

THEOREM B. Let N=100. For the H-model O}, there exists some plane L
through O such that

Area(K(e, N, O)NL)>nR(e, N)*.

§1. Volumes of spherical caps.

Let B™(1) be the unit ball with center O in the m-dimensional Euclidean
space E™. For a positive number ¢ and a point p in the boundary of B™(1),
e-spherical cap C™(p, ¢) of B™(1) is defined by

C™p, e)={x=B™1); (x, p)>cose},

where (x, p) denotes the inner product of x and p, as position vectors. Then
the volume of C™(p, ¢) is given by (cf. [9], p. 166).

Vol(C™ A [ inme do

ol(C™(p, &)= Tm+1)/2) Sosm .
LEMMA 1.1. For m=2 and 3 we get

(L.1) Area(C¥(p, e)):s-%sinZs,

1.2) Vol(C3(p, e))=%(cos3s——3cose+2)‘

§2. Mean value of Area (K(e, N, ©)N\L).

In this section we give the expression of the mean value M(e, N) of
Area(K(e, N, ®)N\L) for an e-proper distribution @ of 2N points on S?%(1).

Define a point A in E® by A=(0, 0, 1), where coordinates of a point or
components of a vector are ones with respect to the standard basis of E® Let
K,(e) denote the unit ball removed one spherical cap C*(A4, ¢); K (¢)=B3*1)—
C3*A, &). Let g be a great circle on the unit sphere S%1) in E3 Suppose that
g meets the geodesic circle on S%(1) of radius ¢ centered at A at two points V
and Z. Let M be the middle point of the (shorter) geodesic segments VZ of
g. The length of the geodesic segment MV is denoted by ¢~ and the distance
on S*1) between A and M is denoted by ¢t. Then we get
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2.1) Ccose=cos¢” cost.

The set of all planes through O is identified with a 2-dimensional real
projective space RP? by considering to each plane L its normal line through O.
We identify RP? with Si(1), which denotes the closed upper hemisphere removed
one half of the equator. RP? is also identified- with the set of all great circles
on S¥1) by identifying L with LNS*1)=g. For x=Si(l), g(x) or L(x) means
the great circle on S*1) or plane through O corresponding to x with respect
to the above identification.

By P(s) we denote the mean value of =—Area(K,(¢)N\L) with respect to
{L}=RP2 Then, the mean value M(s, N) of Area(K(e, N, O)N\L) with respect
to {L} is given by #—2N-P(e).

LEMMA 2.1. Let e~=¢e~(e, t) be a function defined by (2.1). Then P(e) is
given by

2.2) P(e)=SZ(e~—%sin 26~)cos £ dt..

Proof. Let (s, 8) be a polar coordinate system of Si(1) centered at A. (For
a point x in Si(l), s=s(x) is the distance between x and A, and @ is zero for
the geodesic segment AX where X=(1, 0, 0).) Then the volume element of
Si(1) is given by sinsdsd@.

For x=Si(1) such that z/2—e<s(x)<r/2, g(x) meets the spherical cap
C3¥A, &) of B*(1). For x=S}(1) the distance ¢=i(x) between A and g(x) is
equal to n/2—s(x). So, &¢~(e, t) is determined and

Area(B%(1))—Area(K,(e)N\L(x))=Area(C¥M, &™),

where M is the point of g(x) nearest to A. By Lemma 1.1 we get

P(e):—zl’r—Sj”S:(v——é—sin 25*)cost dtd@,

where we have used Vol(RP?%=2r. Thus, proof is completed.

Later we need the following relations among ¢~, ¢ and . By [e*] we
denote the higher order (=%) terms with respect to ¢, &~ and t. This is
reasonable, because ¢~<¢ and i<Ze.

LEMMA 2.2. &~ is expanded as follows:
@.3) a~2=(sz—t2)(l+%z‘2)+[e"’].
N 1
(2.4) N <l+€t2>+[s5].

Proof. Expanding cose, cose™ and cost in each variable and using (2.1)
we obtain
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e~2=e2_t2+lt28~2+_1_<6~4+t4__84)+[66]
2 12 ’
and hence we get (2.3). (2.4) follows from (2.3).

§3. R(e, N) and P(e).

Let K(e, N, ©) be a centrally symmetric convex body obtained from B3(l)
by removing 2N spherical caps as before. By Lemma 1.1 and

Vol(K(e, N, @))=4Tﬂ—2N-V01(C"(A, e))

we see that R(e, N) satisfying

(3.1) Vol(K(e, N, ©))=Vol(B*R(e, N)))
is given by
3.2) R(e, N)szl—%(cos%—% cose+2).

Then Area(K(e, N, O)NL)<mR(e, N)* is equivalent to

3.3) Area(K(e, N, ©)NL)<Area(B*R(e, N))NL).
We define A(e, N) by
3.4) A(e, N)=n(1—R(e, N)?).

A(e, N) is the lower bound of the sum of areas of spherical caps removed in
K(e, N, ©)NL for K(e, N, O) to satisfy (3.1) and (3.3).

For some pairs (¢, N) we calculate values of P(e) and A(e, N) showing the
inequality 2N-P(e)>A(e, N). The difference 2N-P(¢)—A(e, N) may be helpful
to understand the situation.

Table 3.1. For pairs (¢, N) such that Ne®=1:

€ N 2N-P(e) A(e, N) 2N-P(e)—A(e, N)
0.1 100 7.8409-..-10-3 7.8327..-10°% 8.2-10°¢
0.075 177 4.3944-.-10-3 4.3918---10°® 2.6-10°°
0.05 400 1.9626---1073 1.9621.--10°° 5.1-10°7

0.025 1600 4.9082.--10~* 4.9079.--10™* 3.2-10°8
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Table 3.2. For pairs (¢, N) such that ¢=0.05:

N 2N-P(e) A(e, N) 2N-P(e)—A(e, N)
100 4.9066---10~* 4.9048..-10™* 1.9-107"
200 9.8133---107* 9.8100---10~* 3.3-1077
300 1.4720..-10°3 1.4715---102 4.4-1077
500 2.4533---10°° 2.4528..-107® 5.4-1077

In the table 3.1, Ne?>=1 corresponds to the fact that the sum of areas of
2N geodesic e-disks in S%(1) is about one half of the total area of S*(1). In the
table 3.2, we notice that the number N is limitted by (3.8) below.

LEMMA 3.3. For £<0.136, P(e) is estimated by

_£ 4__ T 6 _E 4___ T 6
3.5) 3¢ a0 <P(e)< 8¢ 60"

Proof. Expanding sin2¢™ and using (2.3) and (2.4) we obtain

~___i f ~_£~ ~2__£ ~4 6
€ 2811’126 =3¢ (e 5¢ +[e ])

__2_ 212 2_2_l4 _9_22_L4 7
—3\/5 t(e t 5€+10$t 10t>+[e].

Expanding cost we get

P(e):S:(r——%—sin 25”) cost dt

=2 (e—ge)|vemr a2 (1-Lo)[ver

2 S:«/ez—tz 14 dt+-[e].

15
On the other hand, for each even integer %k, we have
L — k=]
(3.6) SO'\/{-:Z—I2 tk dt:%ek”
and so we get
3.7) P(e)=%54~— 4"8 e*+[e*].

For £<0.136 by numerical calculation (by computer) we can verify (3.5). For
example, if ¢=0.136, then

n/8—me?/40=0.3912 -,
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P(e)/e*=0.3914 ---,
n/8—me?/60=0.3917 ---.

The meaning of the value 0.136 is explained later in §5.

LEMMA 3.4. For e<m/2, Ne® is estimated by
(3.8) N52<2+%52.

Proof. The area of a geodesic disk of radius & on S%*1) is 2z(1—cose).
So the total area of 2N geodesic disks is 4rN(1—cos¢), which is smaller than

the area 47 of S%1). Expanding cose we get the inequality.

LEMMA 3.5. For £<0.136, A(e, N) is estimated by

1, . 1 1
3.9 ﬂN(—4E 7 )<A(s, N)<7L‘N(—4$ T e)
Proof. Since
3
3e— = &8 10
cos’e—3cose+2 ) —}-320 +[e¥],

by (3.2) we obtain the expansion of R(e, N)* and hence
N N o ( 13N N 2)

Re, N)=1——g=¢'+—5"~(7o20 T 61

+N[510]+N2[510]+ his Nh'[54h].
Furthermore we get

N

N 13N | N?
2 8
R(e, N) =1—————4 e“—l————lz 56—( )

%60 64
+N[510]+N2[510]+ hi;s Nh[$4h]-

Since Ne? is bounded, we can put N*[e**]=N[e****] and so

N N N2
2__1__ 4
R(e, N)*=1 1 etd— 12 ~ 6l 8.
Therefore
1 1 N
(3.10) Ae, N)—nN(Z-s4——12—s"+ & 58+[58]>.

We use (3.8) to obtain the upper estimate of A(e, N) and we replace Ne®/64 in
(3.10) by e°%/32. Then, (3.9) is verified by numerical calculation. For each
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value of ¢ the range of N is limited by (3.8).
For example, if ¢=0.136 (in this case 1<N<108) and if N=100, then

aN(1/4—¢*/12)=78.05--,
Ae, N)/et=T78.22 -,
aN(1/4—e%/20)=78.24 --
Now we prove the following.

PROPOSITION 3.6. 2N-P(e)>A(e, N) holds for each pair (¢, N) such that 2N
points can be e-properly distributed on S?*(1).

Proof. For £<0.136 we see that 2N:P(e)>A(e, N) by the first inequality
of (3.5) and the second inequality of (3.9).

For £=0.136 we can verify 2N:-P(e)>A(e, N) by numerical calculation.
For each value of &, the range of N is limitted by (3.8). If & gets larger, then
the maximum of N gets smaller.

§4. H-model.
From now on we show some evidence that
nR(e, N)*—M (s, N)=2N-P(e)—A(e, N)

is too small to construct concrete examples K (e, N, 0) satisfying (3.1) and (3.3).

We define @{={+q;, *q,, -, =qn} somewhat abstractly. First we define
g1, g» and ¢; in the following setting.

{4-1) Setting.

(1) {q1, ¢s, gs} makes an equilateral (geodesic) triangle on S*(1).

(ii) The center of the triangle ¢.¢.q; is A=(0, 0, 1).

(ili) For each : (#=1, 2, 3), ¢, represents a hexagon H, on S%*(1) and g, is
the center of H,.

(iv) The area of H, is equal to 4z /2N.

(v) H,, H, and H, are placed naturally so that two edges of each H,
coincide with respective one edge of the other hexagons.

{4-2> Definition of hexagon H (=H,)=ABCDEF.

(i) A, D and the center Q (=¢q;) of H are in the (x?, x®-plane.

(ii) The lengths of the geodesic segments AB, BQ, QC, CD, DE, EQ, QF,
FA are all equal to a.

(ili) <BAQ=<FAQ=<CDQ=<EDQ==/3.
Coordinate expressions of these points are as follows:

A=, 0, 1),
B=((+3/2)sina, (1/2)sina, cosa),
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C=(ct, c%, c*)/2(3cos’*a+1),
c'=+/3(3cos’a+1)sina,
c*=(13cos®’a—1)sina,
c*=14cos’a—6cos
D=(0, d?, d*)/(3cos’a+1)?,
d*=8(5cos’a—1)cosasina,
d*=41cos*a—26 cos*a+1,
Q=(0, 4cosasina, 5cos*a—1)/(3cos*a+1).

{4-3> Area of H.
We denote the lengths of geodesic segments AQ and BC by 2 and g,

respectively. Then we get
cosi=(A4, Q)=(Bcos’a—1)/(3cos’a+1),
cos p=(B, C)=(cos*a+1)/2.
With respect to the triangles ABQ and BCQ we get the classical relations:
4.1) sin @ sin< ABQ=sin Asin (x/3)
4.2) sinasin (r/3)=sin #sin<@QBC
and we can calculate <ABQ and <QBC. Further, we obtain
4.3) Area(H)=4<ABQ+<QBC)—8r/3.

For a given value of a, we can calculate <ABQ and <@QBC by (4.1) and
(4.2). Next by (4.3) we obtain the area Area(H) corresponding to a. Con-
versely, for a given natural number N we can find the (approximated) value of
a so that Area(H)=4n/2N.

Example. (i) For N=100, a=0.1551"--.
(ii) For N=400, we get the following values:

Area(H)=2n/N=0.0157 --- a=0.0777 ---
2=0.0778--- ¢=0.0776 .-
< ABQ=1.0498.-- <QBC=1.0485---

LEmMMA 4.1. Area(H)=2r/N is expanded as follows:

2 _3V3 o 5«/3 2T
I A B R T +[af].
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Proof. Expanding cosd and cosp with respect to @, we get

ST SV BV (e
cosi=1 YR Yy T/ +[af],

— _l 2 l 4___ 8
cosp=l—Fa+oa'——x 1,
and using relations (4.1) and (4.2) we obtain
V3 1
sin< ABQ=-"-= (1+Z ———4—8—a +[a“])
; V31 e T i
sin<@QBC= 3 (l+ 3 a 384 +[a ])

co0s<ABQ and cos<@BC are obtained from these. We put 4Z=Area(H).
Expanding sin(<ABQ+<QBC)=sin(Z+2x/3), we obtain

V33 o UL o)1 «/ 3 s

. ( ata +[a]) z4Y3 704170,

from which we obtain the relation in Lemma 4.1.
By Lemma 4.1 we get

4«/3 _ 543
9 54

and by numerical calculation we can verify a®?N>4+/37n/9—na?/5 for a<0.156.
Then a*N>2.4 for «<0.156, and hence we get the following.

4.9 a*N= ~—=—na’+[a'],

LEMMA 4.2. For a<0.156, aN is estimated by

4.5 aN>—2.

S5a

<{4-4) Mean values.

Let 2 be the domain in S%(1) defined by three hexagons H,, H,, and H,.
Since ¢; (=Q), ¢, and ¢; are defined as centers of three hexagons, to define
O} as a standard model we suppose that 2N—6 points {+gq., ---, +qx} are dis-
tributed in S%(1)—Q2\U(—£) (abstractly and) nearly homogeneously.

Let {L,} be the set of all planes which contain the line AQ. Planes L,
are parametrized by angles 6 from the first axis; 0<f0<=zx. We want to
calculate the rotational mean value at A, that is, the mean value M{(e, N; A)
of Area(K(e, N, O))NL,) with respect to planes {L4}.

Let @, be an abstract e-proper distribution of 2N points on S%*(1), which is
nearly homogeneously distributed. Then the mean value M,(e, N; A) of
Area(K (e, N, @®,)N\L,) with respect to {L,} is equal to M(e, N)=n—2N- P(e).
Here we divide 2N- P(¢) into two factors:
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2N-P(e)=2P(e, N, 2)+P(e, N, S (1)—Q2U(—8)),

where P(e, N, 2) is defined as follows: Let <[x/6, n/2] and let {ps(s)} be
the geodesic emanating from A such that the angle between dps(0)/ds and the
xt-axis is §. By /(@) we denote the length of the geodesic segment {pg(s)}NE2.
Then the effect of the mean value of sum of areas of removed caps restricted
to {ps(s)}NR is 2N- P(e)-1(6)/2x, and

L
2

We denote the mean value of m—Area(K(e, N, ®)N\L,) with respect to
{L,} by 2P(qiq.qs), where ©@'={+gq,, +¢q., +¢;}. To define @ we replace
P(e, N, 2) by P(g19:45)-

(4.6) P(e, N, Q):%-zzv- P(e) S":zw)da.

DEFINITION. H-model @} of e-proper distribution of 2N points on S%(1) is
{£q1, =¢2, *gs, -+, qn} such that M{(e, N; A) is calculated by

4.7 x—Mie, N; A)=2N-P(e)—2P(e, N, 2)+2P(q:1q.q:) -

Here we notice that the condition (i) of Setting <4-1)> is related to the case
where N is not small. Since we are studying the case where N=100, this may
be natural.

§5. The range of ¢ with respect to a.

For a given value of N, @ and H are determined. Let M’ be the middle
point of the geodesic segment AB. Let v be the distance between M’ and Q.
Then the range of ¢ is estimated by 0<e<v. The coordinates of M’ are given
by

(+/ 3 sina, sina, 2(cosa+1))/[8(cos a+1)]2.

Therefore
cosv=(M"’, Q)
=(3cos’a+5cos’a+cosa—1)/(3cos?a+1)(2cosa+2)!?

13 e AT
=1 3% g ® +[a].
Furthermore we obtain
_V3 543 o s
V= 2 a-l—Ta +[a®].
Consequently
v 3,9 .
®.D ( sina ) —74_+ 16 a*+la'l,
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and hence

5.2) [1—( - )2]'”2=2+%a2+[a4j.

By numerical calculation we get the following.

LEMMA 5.1. For a<0.156

(5.3) () <t ia,
(5.4) [1—( = )2]"”2<2+3az.

For N=100, we get a«=0.1551-- and v=0.1350.--, Since we are studying
the case where N=100, the ranges of @ and ¢ may be set as follows:

0<a<0.156, 0<e<0.136

§6. P(e, N, 2).

By S=ABCD we denote the quadrangle on S%(1) defined by A, B, C and D.
Let S*=A*B*C*D* be the quadrangle on the tangent space T,S%*1) to S*(1) at
A satisfying the following conditions.

(i) |A*B*|=|B*C*|=|C*D*|=a, |A*D*|=2a.

(ii) By the exponential map ¢ at A, p(A*)=A, ¢(B*)=B, and ¢(A*D*) is
contained in the geodesic segment AD.

Then <D*A*B*=zx/3 follows.

LEMMA 6.1. @ X(S) contains S*.

Proof. We define Cy and Dy by Cy=¢ '(C) and Dy=¢ (D). <CyA*D*
is calculated by the coordinates of C;

cos<CxA*D*=(13cos’a—1)/2(49 cos*a—2 cos®a+1)'/2.
Then cos®<CyxA*D*—3/4<0 is equivalent to
(11 cos?a+1)(cos’a—1)<0,

and so we see that <CyA*D*><C*A*D*=r /6.
Next we show that the orthogonal projection of Cy to the line A*C* lies
in the extension of A*C*. That is,

6.1) | A*Cxlcos (K Cx A*D*—1 /6)>+/3 .
By the expression of cos<CyA*D* we get
€08 (< Cyx A*D*—1 /6)=44/"3 cos®a /(49 cos*a—2 cos’a+1)1/2.
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Then (6.1) is equivalent to
(6.2) | A*Cy | > (49 cos*a—2 cos’a+1)2a /4 cos’a.

Since |A*Cy|=|AC|, and cos|AC| is known by the coordinates of C, (6.2) is
equivalent to

(6.3) (7cos’a—3cosa)/(3costa+1)<cos B,
where

B=(49cos*'a—2cos’a+1)""*a/4cos’a.
We expand the both sides of (6.3) and get

(7 cos®a—3 cos’a) /(3 cos?a+1) :1—%a2+%a4 +[a®]

<l—-§—a2+%a4 for a<0.156

_ __i 2 _3_ 4 6
cos f=1 2a+8a+[a]

>1—§a2+—i—a4 for «<0.156.

2
Therefore we get (6.1). Since ¢ *(BC) and ¢ *(CD) are convex in T,S*(1), we
see that ¢~!(S) contains S*. (q.e.d.)

By Lemma 6.1 we obtain

nl2 =3 /3« xl2 vV 3a
Sn-/sl(o)d0>Sn/s 2cos @ d0+Sz/acos(0—n-/3)d0'

Since

1 6 =«
S o0 d@=log tan(—2—+z>,
we obtain the following.

3«/3

P, N, 2)

(Iogtan 2 +logtan 3>
Therefore we get

LEMMA 6.2. P(e, N, Q) is estimated by

6.4) 2P, N, Q> 2 3‘/3 log (34+2+/3)-2N- P(e)- a>——— 98 2N-P(e).
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§7. Mean value U(b, ¢).

Let X=(1,0,0) and Y=(0,1, 0). Let T=(sinb, 0, cosb) where 0<b<=x/2.
Let L, be a plane in {L,} and let g=g(L,)=g(f) be the corresponding great
circle on S%*1), 0<6<x/2. The point of intersection of g and the equator is
(cos 8, sin @, 0).

The distance w=w(b, 0) between T and g is given by

(7.1) sinw=sinbsing.

Let e<b and let 8, be the value of parameter of L, for which g is tangent
to the geodesic circle C[T, ¢] of radius ¢ centered at T in S%(1). By putting
w=¢ in (7.1) we see that 8, is determined by

. sine
(72) Sin 00-——-5}11—1).
For #<[0, 6,], we denote the points of intersection of g(8) and C[T, ¢] by V
and Z. The half of the distance between V and Z is denoted by e*=¢e*(e, b, 0).

Then

(7.3) Ccose=cos e*cosw.

With respect to only one spherical cap C¥T, ¢), the mean value U(b, ¢) of areas
of removed caps with respect to {L,} is calculated by

_2(0 1.

(7.4) U, s)_n'So (s—3 sin2e*)d0 .

If one changes the variables, then (7.4) is rewritten as
_20f e Lo cos w

(7.5) U, s)—ngo(s 5 sin2e )m—\/m w

Next we obtain an estimate of Ul(a, ¢).

LEMMA 7.1.
, ¢ A/e2—w?
@0 S
! [w @-=D! /¢ )zz ﬂ(k+21—1)!!]k+2
T sinb LS 1128 \sinb /  2(k420+2)! ’
Proof. By

1 = @D,
Vir T A

and (3.6) we obtain
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5\/52——70_2[ > @=D"/ w )Zl]w"dw

Ss—ﬂ—wkdw—g
04/sin 26— w? “Jo sinb LS 1128 \sinb
L= @

TS 112tsin%tip

_g_ @D m(e2-DU
5 128sin® b 2(k+20+2)11 ’

& R—
S VeE—wiwktldy
0

from which we obtain (7.6).

Since ¢*, ¢ and w satisfy the relations satisfied by ¢~, ¢ and ¢, we have the
corresponding equalities as in Lemma 2.2. So as in the proof of Lemma 3.3
we obtain

(7.7 (e*———%sin 25*) cos w=-§—\/ez_—7§[52——é—s‘—(1——%—52)102——-;%0‘]+[s’] .

By (7.5) with b=a we get

Ccos w

200 o L . oy
Ula, &)< ﬂgo(e 5 sin2e )mdw
Applying (7.6) and (7.7) to the last inequality we obtain

v 9<3(1-5¢) s 72 (oma) ot e Cema) ot
2 2 4 3 3 I
30t G i ) ]
- 152s§;a [%%+%(?§E>2%:“+2—341('s?:?a_>4%+ -]
+arcsin( sixela )[e’]
2¢t 3.1 1 3 3
= SSisna [_8_+7( siria )2'W+§<si—;a_)4.—l2_8_+ ]
~Tosma 16 "2 Cama) 5 ot
&€

+arcsin( p )[57] .

1na

Since

{(21—1)!1 @+ }_{g 1 3 -}
@21 @+a /18 160 128”

is decreasing with respect to /, and
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Htron 1=t 1 )

is composed of positive numbers, we obtain

4

3 3 1 € 2/ 1 3
U, 9< 5| (5 125)+3 o) (G5 —125)
3 & @=DI/ e\ 28 5
s 2 1 Csna) ] 5ema 16 T
284[£+5/£~:>2i 3 ]
3sina L 128 ' 256\ sine / ' 1284/1—(¢/sina)®
8
24sma +Lel
For @<0.156 by Lemma 5.1 we obtain

54 /ﬂj 7 2 6
sina \512 128"‘) Fisma TLE-

&

Ula, )<

For a<0.156, a/sina is increasing, and so

1 0.156 1.004 ---
sina ~asin0.156 a
Therefore we obtain
28 .
Ula, E)< Oct &t —_24_618 +[3 ]:
and hence by numerical calculation we get
28 , 1
U@ &<50a ¢ 222"

Since a<|AQ| we see that
P(g.9:q:)<3U(a, ¢),
and hence we obtain

LEMMA 7.2. For a<0.156, 2P(q.9.q;) is estimated by

168 , 1
(7.8) 2P(g:9293) <=7 T00a 1o

§8. Proof of Theorem B.
ProrosITION 8.1. For N=100, A(e, N)>rn—M (e, N; A) holds.

Proof. By N=100 we obtain a<0.156 and ¢<0.136. Applying estimates

(3.5), (3.9) and (6.4) and (7.8) to (4.7), we obtain
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A(e, N —z+Me, N; Ay=A(e, N)—2N-P(e)+2P(e, N, 2)—2P(q1q:qs)

>aN(3¢ =17 4) =0T PV (557 )~ o0e =+ 2

B o(Fau_ T L o 168 1
=100 N (T~ 35) 55N e To0a ¢ aa <

By (3.8) and (4.5) we obtain

_ ’ . 8 12 8, = 1.\, 168
Ale, M=+ Mie, N; 4> 5505~ 30 (5= o0
183 , 32, 168
Z100a ¢ 1005 100a ©
= 1513(;330( e*>0. (g.e.d.)

Proof of Theorem B. By Proposition 8.1 we see that M{(s, N; A)>n—
A(e, N) holds. Since Mj(e, N; A) is the mean value, we have some plane L

through O and A such that
Area(K (e, N, @p)N\L)>n—A(e, N). (g.e.d.)

Let ® be an e-proper distribution of 2N points on S*1), and let ¢ be a
point of S%*1). By M(q)=M(e, N, @ ; q) we denote the rotational mean value
at g, i.e., the mean value of Area(K (e, N, O)N\L,) with respect to planes {L,}
which contain the line ¢O. If we consider M(g) as a function on S*(1),7—M(q)
takes big value at ¢ if relatively many points of @ are distributed near ¢, or
if ¢ is very near some p, of ©. Theorem B implies that even if © is nearly
homogeneous, the variation of M(g) with respect to ¢ is not so small.

Observations for the case where N is small and Theorem B lead us to the

following conjecture.

CONJECTURE. For an e-proper distribution @ of 2N points on S*1).
Area(K (e, N, O)NL)<Area(B*R)NL) for each L may imply

Vol(K (e, N, ©))<Vol(B*R)).
As a remark we prove the following.

PROPOSITION 8.2. Let € and N be given so that 2N points can be e-properly
distributed on S*(1). Then;

(i) There exists an s-proper distribution Oy of 2N points on S*(1) such that
the maximum value of the rotational mean value function My(q) is not greater
than the maximum value of M(q) for any other e-proper distribution @ of 2N
points on S*1).

(ii) There exists an e-proper distribution @* of 2N points on S*(1) such that
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the maximum value of Area(K(s, N, @*)N\L) with respect to {L}=RP* is not
greater than the maximum value of Area(K (e, N, @®)N\L) with respect to {L} for
any other e-proper distribution @ of 2N points on S*(1).

Proof. Let ¥ be a subset of S*(1)XS*1)X -+ xS*1) (NN times) composed of
elements (p;, P, -+, py) such that |[p,(+p,)|=2¢ for ISk</SN. Then ¥ is
compact. The rotational mean value function M(e, N, @;¢) is a continuous
function on ¥'xS%1). We define A(e, N, @) by

A(sr N’ @)'—_maxqesz(D{M(e; Ny 9; Q)} .

Then A(e, N, @) is a continuous function on ¥. Therefore we have some
0.V, which attains the minimum of A(e, N, ®). This proves (i).
(ii) is easily proved.

§9. Appendix.

It is clear that if N is not so large and ¢ is very small then for any e-
proper distribution of 2N points on S%*1) we can find some L such that
K(e, N, ©)NL=B*1)NL.

Let ©® be an e-proper distribution of 2N points on S%1). Even if
Area(K (e, N, ®)NL)<rn holds for any L, we see that the variation of
Area(K(e, N, @®)N\L) is big, if N is not so large. To show this we give two
examples corresponding to the closest packings of equal circles on S2(1).

<{9-1) Octahedron.

Consider an octahedron inscribed in S*(1). Vertices define an e-proper
distribution of six points on S?*(1) with e=n/4. Let @={+X, Y, = A} where
X=(1,0,0), Y=(0,1,0) and A=(0, 0, 1). Let L, be the plane passing through
Y, —Y and (1/2/2,0, +/2/2). Then

Area(K(m/4, 3, @)NLy)=2.5707 -+,
nR(x/4, 3)°=2.3613---.

Therefore Area(K(z/4, 3, ®)NL)<nR(n/4, 3)* does not hold for L,.

Notice that @ corresponds to the closest packing of equal six circles on
S2?(1). As for closest packing, see for example [5] and [6] or references there.

{9-2> Icosahedron.

Consider an icosahedron inscribed in S?%(1). Vertices define an e-proper
distribution of @ of eleven points on S*1) with ¢=0.5535--. Let p,€0 and
let L, be the plane orthogonal to p,(—p;). Then

Area(K (s, 6, )N\ L,)=2.9389---,
nR(e, 6)2=2.7281 ---.
Therefore Area(K (s, 6, @)NL)<mR(e, 6)* does not hold for L,.
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@ corresponds to the closest packing of equal twelve circles on S*(1).

<{9-3> Non-symmetric closest packing.

Let p,=(sinb, 0, cosb) with sin®»v=(8—2+/2)/7. By =n/2-, n-, and 3n/2-
rotation of p, around the x3-axis, we define p,, ps, and p,. By =/4-rotation
of —pi, —ps, —ps, and —p, around the x*-axis, we define ¢y, ¢;, ¢5, and q,.
Then X={pi, ps, Ps, D1, q1, 2, s, qs} defines the closest packing of equal eight
circles on S%(1) with ¢ such that cos?¢e=(3++/2)/7, i.e., £€=0.6532---. 2% is not
centrally symmetric. By K(e, 2) we denote the convex body obtained from
B%1) by removing eight spherical caps of B3(1) of angular radius ¢ correspond-
ing to 2. Let L, be the plane passing through A4, ¢;, and ¢;. Then

Area(K(e, 2)N\L,)=2.8003---,
wR(e, 4)°=2.6234 ---.

REFERENCES

[1] A.L. Bessg, Manifolds all of whose geodesics are closed, Ergeb. Math., no. 93,
Springer, 1978

[2] T. BoNNESEN AND W. FENCHEL, Theorie der konvexen Korper, Berlin, 1934,

[3] H. BusemanNn, Volumes in terms of concurrent cross-sections, Pacific J. Math.,
3 (1953), 1-12.

[4] H. BuseMANN aND C.M. PeTTY, Problems on convex bodies, Math. Scand., 4
(1956), 88-94.

[5] B.W. CLare anD D.L. KeperT, The closest packing of equal circles on sphere,
Proc. R. Soc. London, A405 (1986), 329-344.

[6] L. Danzer, Finite point-sets on S? with minimum distance as large as possible,
Discrete Math., 60 (1986), 3-66.

[7] P. Funk, Uber eine geometrische Anwendung der Abelschen Integralgleichung,
Math. Ann., 77 (1916), 129-135.

[8] D.G. LarMaN, Recent results in convexity, Proc. Intl. Congress Math., Helsinki,
Vol. 1 (1978), 429-434.

[9] D.G. LarmaN anD C.A. Rocers, The existence of a centrally symmetric convex
body with central sections that are unexpectedly small, Mathematika, 22 (1975),
164-175.

DEPARTMENT OF MATHEMATICS
Tokyo INSTITUTE oF TECHNOLOGY
Tokyo, JAPAN





