S. TANNO KODAI MATH. J. 10 (1987), 343-361

CENTRAL SECTIONS OF CENTRALLY SYMMETRIC CONVEX BODIES

Dedicated to Professor T. Otsuki on his 70th birthday

By Shukichi Tanno

§0. Introduction.

Let K and K' be two centrally symmetric convex bodies in the 3-dimensional Euclidean space E^3 with their centers at the origin O. The following problem is still open:

Suppose that for each plane L through O in E^3

 $\operatorname{Area}(K \cap L) < \operatorname{Area}(K' \cap L)$

holds. Then does the inequality Vol(K) < Vol(K') follow?

This problem has a natural meaning for any dimension $m \ge 3$ by taking a hyperplane through the origin O of E^m as L. Let K and K' be centrally symmetric convex bodies in E^m with their centers at O. Then the following are known.

(i) Equality of (m-1)-dimensional volumes $Vol(K \cap L) = Vol(K' \cap L)$ for each L implies that K and K' are congruent; in particular Vol(K) = Vol(K'). This is shown by the generalized Funk's spherical integration theorem, which says that two even functions f_1 and f_2 on the (m-1)-dimensional unit sphere $S^{m-1}(1)$ are identical, if the integrals of f_1 and f_2 on each totally geodesic (m-2)-sphere are identical (cf. P. Funk [7], T. Bonnesen and W. Fenchel [2], p. 136-138, A.L. Besse [1], p. 103-104, p. 124-125 for m=3. Generalization to general m is not difficult.).

(ii) If K is an ellipsoid in E^m and $Vol(K \cap L) < Vol(K' \cap L)$ holds for each L, then Vol(K) < Vol(K') follows (H. Busemann [3]). However, if K' is an ellipsoid then the question has not been answered yet.

(iii) By probabilistic arguments, D.G. Larman and C.A. Rogers [9] established the existence of a centrally symmetric convex body K in E^m , for $m \ge 12$, such that for each hyperplane L, $Vol(K \cap L) < Vol(B^m \cap L)$ holds, nevertheless $Vol(K) > Vol(B^m)$, where B^m denotes the *m*-dimensional unit ball.

For a general survey on this problem and related subjects see an article

Received May 2, 1987.

by D.G. Larman [8] in the Proceedings of the International Congress of Mathematicians in Helsinki, 1978.

Now we return to the 3-dimensional case, which seems to be most important at present.

By $B^{\mathfrak{g}}(R)$ we denote the ball of radius R with center O in $E^{\mathfrak{g}}$, and by $S^{\mathfrak{g}}(1)$ we denote the unit sphere in $E^{\mathfrak{g}}$.

Let ε be a positive number and N be a natural number. Then 2N points $\pm p_1, \pm p_2, \dots, \pm p_N$ on $S^2(1)$ are called ε -properly distributed on $S^2(1)$, if for any two different elements $x, y \in \{\pm p_1, \pm p_2, \dots, \pm p_N\}$ two geodesic ε -disks on $S^2(1)$ centered at x and y are disjoint. By $\Theta = \{\pm p_1, \pm p_2, \dots, \pm p_N\}$ we denote an ε -proper distribution of 2N points on $S^2(1)$.

By $K(\varepsilon, N, \Theta)$ we denote a centrally symmetric convex body obtained from $B^{s}(1)$ by removing 2N spherical caps of $B^{s}(1)$ of angular radius ε corresponding to Θ . $K(\varepsilon, N, \Theta)$ is a natural object as a centrally symmetric convex body which enables us to calculate various quantities and was studied in [9] for Seneral dimension m.

For each ε -proper distribution Θ of 2N points on $S^2(1)$, if one varies planes L through O in E^3 , then the mean value of $\operatorname{Area}(K(\varepsilon, N, \Theta) \cap L)$ is independent of Θ , and so we denote it by $M(\varepsilon, N)$.

Let $R(\varepsilon, N)$ be a real number determined by

 $\operatorname{Vol}(B^{\mathfrak{s}}(R(\varepsilon, N))) = \operatorname{Vol}(K(\varepsilon, N, \Theta)).$

Then $R(\varepsilon, N) < 1$. If one could define Θ such that

(0.1) $\operatorname{Area}(K(\varepsilon, N, \Theta) \cap L) < \pi R(\varepsilon, N)^2$

holds for each L, then replacing $R(\varepsilon, N)$ by a slightly smaller R', one would get a counter example $K(\varepsilon, N, \Theta)$:

Area($K(\varepsilon, N, \Theta) \cap L$) < Area($B^{3}(R') \cap L$),

 $\operatorname{Vol}(K(\varepsilon, N, \Theta)) > \operatorname{Vol}(B^{3}(R')).$

As Proposition 3.6 we prove the following.

THEOREM A. $M(\varepsilon, N) < \pi R(\varepsilon, N)^2$ holds.

This means that the mean value of the left hand side of (0.1) is always smaller than the right hand side. Therefore, at a glance, it seems to be possible to construct counter-examples to the question by distributing 2N points "homogeneously".

The purpose of this paper is to give some evidence that $\pi R(\varepsilon, N)^2 - M(\varepsilon, N)$ is too small to give Θ satisfying (0.1).

If N is not so large and ε is so small, then one may find L which does not meet any removed caps of $K(\varepsilon, N, \Theta)$.

If N is not so large and ε is so big as possible, then the variation of

Area $(K(\varepsilon, N, \Theta) \cap L)$ with respect to L is so big. In §9 we show two examples related to an octahedron and icosahedron, and one additional example which is not centrally symmetric.

To study the cases where $100 \le N < \infty$, we define an ideal homogeneous model Θ'_0 called the *H*-model of ε -proper distribution of 2N points on $S^2(1)$ in §4. Θ'_0 is not concrete, but it is an abstract model which is nearly homogeneous and which allows us to calculate necessary quantities for $\varepsilon \to 0$, $N \to \infty$.

THEOREM B. Let $N \ge 100$. For the H-model Θ'_0 , there exists some plane L through O such that

Area(
$$K(\varepsilon, N, \Theta'_0) \cap L$$
)> $\pi R(\varepsilon, N)^2$.

§1. Volumes of spherical caps.

Let $B^m(1)$ be the unit ball with center O in the *m*-dimensional Euclidean space E^m . For a positive number ε and a point p in the boundary of $B^m(1)$, ε -spherical cap $C^m(p, \varepsilon)$ of $B^m(1)$ is defined by

$$C^{m}(p, \varepsilon) = \{x \in B^{m}(1); (x, p) > \cos \varepsilon\},\$$

where (x, p) denotes the inner product of x and p, as position vectors. Then the volume of $C^{m}(p, \varepsilon)$ is given by (cf. [9], p. 166).

$$\operatorname{Vol}(C^{m}(p, \varepsilon)) = \frac{\pi^{(m-1)/2}}{\Gamma((m+1)/2)} \int_{0}^{\varepsilon} \sin^{m}\theta \, d\theta.$$

LEMMA 1.1. For m=2 and 3 we get

(1.1)
$$\operatorname{Area}(C^{2}(p, \varepsilon)) = \varepsilon - \frac{1}{2} \sin 2\varepsilon,$$

(1.2)
$$\operatorname{Vol}(C^{\mathfrak{s}}(p, \varepsilon)) = \frac{\pi}{3} (\cos^{\mathfrak{s}} \varepsilon - 3\cos \varepsilon + 2).$$

§2. Mean value of Area $(K(\varepsilon, N, \Theta) \cap L)$.

In this section we give the expression of the mean value $M(\varepsilon, N)$ of $\operatorname{Area}(K(\varepsilon, N, \Theta) \cap L)$ for an ε -proper distribution Θ of 2N points on $S^2(1)$.

Define a point A in E^3 by A=(0, 0, 1), where coordinates of a point or components of a vector are ones with respect to the standard basis of E^3 . Let $K_0(\varepsilon)$ denote the unit ball removed one spherical cap $C^3(A, \varepsilon)$; $K_0(\varepsilon)=B^3(1)-C^3(A, \varepsilon)$. Let g be a great circle on the unit sphere $S^2(1)$ in E^3 . Suppose that g meets the geodesic circle on $S^2(1)$ of radius ε centered at A at two points Vand Z. Let M be the middle point of the (shorter) geodesic segments VZ of g. The length of the geodesic segment MV is denoted by ε^{\sim} and the distance on $S^2(1)$ between A and M is denoted by t. Then we get

(2.1)
$$\cos \varepsilon = \cos \varepsilon^{2} \cos t$$
.

The set of all planes through O is identified with a 2-dimensional real projective space RP^2 by considering to each plane L its normal line through O. We identify RP^2 with $S_*^2(1)$, which denotes the closed upper hemisphere removed one half of the equator. RP^2 is also identified with the set of all great circles on $S^2(1)$ by identifying L with $L \cap S^2(1) = g$. For $x \in S_*^2(1)$, g(x) or L(x) means the great circle on $S^2(1)$ or plane through O corresponding to x with respect to the above identification.

By $P(\varepsilon)$ we denote the mean value of π -Area $(K_0(\varepsilon)\cap L)$ with respect to $\{L\}=RP^2$. Then, the mean value $M(\varepsilon, N)$ of Area $(K(\varepsilon, N, \Theta)\cap L)$ with respect to $\{L\}$ is given by $\pi-2N\cdot P(\varepsilon)$.

LEMMA 2.1. Let $\varepsilon^{\sim} = \varepsilon^{\sim}(\varepsilon, t)$ be a function defined by (2.1). Then $P(\varepsilon)$ is given by

(2.2)
$$P(\varepsilon) = \int_0^{\varepsilon} \left(\varepsilon^2 - \frac{1}{2}\sin 2\varepsilon^2\right) \cos t \, dt \, .$$

Proof. Let (s, θ) be a polar coordinate system of $S_*^2(1)$ centered at A. (For a point x in $S_*^2(1)$, s=s(x) is the distance between x and A, and θ is zero for the geodesic segment AX where X=(1, 0, 0).) Then the volume element of $S_*^2(1)$ is given by $\sin s \, ds \, d\theta$.

For $x \in S^2_*(1)$ such that $\pi/2 - \varepsilon \leq s(x) \leq \pi/2$, g(x) meets the spherical cap $C^3(A, \varepsilon)$ of $B^3(1)$. For $x \in S^2_*(1)$ the distance t = t(x) between A and g(x) is equal to $\pi/2 - s(x)$. So, $\varepsilon^{-}(\varepsilon, t)$ is determined and

Area
$$(B^{2}(1))$$
-Area $(K_{0}(\varepsilon) \cap L(x))$ =Area $(C^{2}(M, \varepsilon^{\sim}))$,

where M is the point of g(x) nearest to A. By Lemma 1.1 we get

$$P(\varepsilon) = \frac{1}{2\pi} \int_0^{\varepsilon} \int_0^{\varepsilon} \left(\varepsilon^{\sim} - \frac{1}{2} \sin 2\varepsilon^{\sim} \right) \cos t \, dt \, d\theta ,$$

where we have used $Vol(RP^2)=2\pi$. Thus, proof is completed.

Later we need the following relations among ε^{\sim} , ε and t. By $[\varepsilon^k]$ we denote the higher order $(\geq k)$ terms with respect to ε , ε^{\sim} and t. This is reasonable, because $\varepsilon^{\sim} \leq \varepsilon$ and $t \leq \varepsilon$.

LEMMA 2.2. ε^{\sim} is expanded as follows:

(2.3)
$$\varepsilon^{2} = (\varepsilon^{2} - t^{2}) \left(1 + \frac{1}{3} t^{2} \right) + \left[\varepsilon^{6} \right].$$

(2.4)
$$\varepsilon^{\sim} = \sqrt{\varepsilon^{2} - t^{2}} \left(1 + \frac{1}{6} t^{2} \right) + \left[\varepsilon^{5} \right].$$

Proof. Expanding $\cos \varepsilon$, $\cos \varepsilon^{\sim}$ and $\cos t$ in each variable and using (2.1) we obtain

$$\boldsymbol{\varepsilon}^{\sim 2} = \boldsymbol{\varepsilon}^2 - t^2 + \frac{1}{2}t^2\boldsymbol{\varepsilon}^{\sim 2} + \frac{1}{12}(\boldsymbol{\varepsilon}^{\sim 4} + t^4 - \boldsymbol{\varepsilon}^4) + [\boldsymbol{\varepsilon}^6],$$

and hence we get (2.3). (2.4) follows from (2.3).

§3. $R(\varepsilon, N)$ and $P(\varepsilon)$.

Let $K(\varepsilon, N, \Theta)$ be a centrally symmetric convex body obtained from $B^{3}(1)$ by removing 2N spherical caps as before. By Lemma 1.1 and

$$\operatorname{Vol}(K(\varepsilon, N, \Theta)) = \frac{4\pi}{3} - 2N \cdot \operatorname{Vol}(C^{3}(A, \varepsilon))$$

we see that $R(\varepsilon, N)$ satisfying

(3.1)
$$\operatorname{Vol}(K(\varepsilon, N, \Theta)) = \operatorname{Vol}(B^{\mathfrak{s}}(R(\varepsilon, N)))$$

is given by

(3.2)
$$R(\varepsilon, N)^{3} = 1 - \frac{N}{2} (\cos^{3}\varepsilon - 3\cos\varepsilon + 2).$$

Then Area($K(\varepsilon, N, \Theta) \cap L$) $< \pi R(\varepsilon, N)^2$ is equivalent to

(3.3)
$$\operatorname{Area}(K(\varepsilon, N, \Theta) \cap L) < \operatorname{Area}(B^{\mathfrak{g}}(R(\varepsilon, N)) \cap L).$$

We define $A(\varepsilon, N)$ by

(3.4)
$$A(\varepsilon, N) = \pi (1 - R(\varepsilon, N)^2)$$

 $A(\varepsilon, N)$ is the lower bound of the sum of areas of spherical caps removed in $K(\varepsilon, N, \Theta) \cap L$ for $K(\varepsilon, N, \Theta)$ to satisfy (3.1) and (3.3).

For some pairs (ε, N) we calculate values of $P(\varepsilon)$ and $A(\varepsilon, N)$ showing the inequality $2N \cdot P(\varepsilon) > A(\varepsilon, N)$. The difference $2N \cdot P(\varepsilon) - A(\varepsilon, N)$ may be helpful to understand the situation.

Table 3.1. For pairs (ε, N) such that $N\varepsilon^2 \doteq 1$:

ε	N	$2N \cdot P(\varepsilon)$	$A(\varepsilon, N)$	$2N \cdot P(\varepsilon) - A(\varepsilon, N)$
0.1	100	$7.8409 \cdots 10^{-3}$	$7.8327 \cdots 10^{-3}$	8.2·10 ⁻⁶
0.075	177	$4.3944 \cdots 10^{-3}$	$4.3918 \cdots 10^{-3}$	$2.6 \cdot 10^{-6}$
0.05	400	$1.9626 \cdots 10^{-3}$	$1.9621 \cdots 10^{-3}$	5. $1 \cdot 10^{-7}$
0.025	1600	$4.9082 \cdots 10^{-4}$	$4.9079 \cdots 10^{-4}$	$3.2 \cdot 10^{-8}$

Table 3.2. For pairs (ε, N) such that $\varepsilon = 0.05$:

Ν	$2N \cdot P(\varepsilon)$	$A(\varepsilon, N)$	$2N \cdot P(\varepsilon) - A(\varepsilon, N)$
100	$4.9066 \cdots 10^{-4}$	4.9048 10-4	$1.9 \cdot 10^{-7}$
200	9. 8133 ··· 10-4	9.8100 10-4	3.3.10-7
300	$1.4720 \cdots 10^{-3}$	$1.4715 \cdots 10^{-3}$	4.4.10-7
500	$2.4533 \cdots 10^{-3}$	$2.4528 \cdots 10^{-3}$	5.4.10-7

In the table 3.1, $N\varepsilon^2 = 1$ corresponds to the fact that the sum of areas of 2N geodesic ε -disks in $S^2(1)$ is about one half of the total area of $S^2(1)$. In the table 3.2, we notice that the number N is limitted by (3.8) below.

LEMMA 3.3. For $\varepsilon < 0.136$, $P(\varepsilon)$ is estimated by

(3.5)
$$\frac{\pi}{8}\varepsilon^4 - \frac{\pi}{40}\varepsilon^6 < P(\varepsilon) < \frac{\pi}{8}\varepsilon^4 - \frac{\pi}{60}\varepsilon^6.$$

Proof. Expanding $\sin 2\varepsilon^{\sim}$ and using (2.3) and (2.4) we obtain

$$\varepsilon^{-} - \frac{1}{2} \sin 2\varepsilon^{-} = \frac{2}{3} \varepsilon^{-} \left(\varepsilon^{-2} - \frac{1}{5} \varepsilon^{-4} + [\varepsilon^{6}] \right)$$
$$= \frac{2}{3} \sqrt{\varepsilon^{2} - t^{2}} \left(\varepsilon^{2} - t^{2} - \frac{1}{5} \varepsilon^{4} + \frac{9}{10} \varepsilon^{2} t^{2} - \frac{7}{10} t^{4} \right) + [\varepsilon^{7}].$$

Expanding $\cos t$ we get

$$P(\varepsilon) = \int_{0}^{\varepsilon} \left(\varepsilon^{2} - \frac{1}{2}\sin 2\varepsilon^{2}\right) \cos t \, dt$$

$$= \frac{2}{3} \left(\varepsilon^{2} - \frac{1}{5}\varepsilon^{4}\right) \int_{0}^{\varepsilon} \sqrt{\varepsilon^{2} - t^{2}} \, dt - \frac{2}{3} \left(1 - \frac{2}{5}\varepsilon^{2}\right) \int_{0}^{\varepsilon} \sqrt{\varepsilon^{2} - t^{2}} \, t^{2} \, dt$$

$$- \frac{2}{15} \int_{0}^{\varepsilon} \sqrt{\varepsilon^{2} - t^{2}} \, t^{4} \, dt + [\varepsilon^{8}].$$

On the other hand, for each even integer k, we have

(3.6)
$$\int_0^{\varepsilon} \sqrt{\varepsilon^2 - t^2} t^k dt = \frac{\pi (k-1)!!}{2(k+2)!!} \varepsilon^{k+2}$$

and so we get

$$P(\varepsilon) = \frac{\pi}{8} \varepsilon^4 - \frac{\pi}{48} \varepsilon^6 + [\varepsilon^8].$$

For $\varepsilon < 0.136$ by numerical calculation (by computer) we can verify (3.5). For example, if $\varepsilon = 0.136$, then

$$\pi/8 - \pi \varepsilon^2/40 = 0.3912 \cdots$$
,

$$P(\varepsilon)/\varepsilon^4 = 0.3914\cdots,$$

$$\pi/8 - \pi \varepsilon^2/60 = 0.3917\cdots.$$

The meaning of the value 0.136 is explained later in §5.

LEMMA 3.4. For $\varepsilon < \pi/2$, $N\varepsilon^2$ is estimated by

$$(3.8) N\varepsilon^2 < 2 + \frac{1}{5}\varepsilon^2.$$

Proof. The area of a geodesic disk of radius ε on $S^2(1)$ is $2\pi(1-\cos\varepsilon)$. So the total area of 2N geodesic disks is $4\pi N(1-\cos\varepsilon)$, which is smaller than the area 4π of $S^2(1)$. Expanding $\cos\varepsilon$ we get the inequality.

LEMMA 3.5. For $\varepsilon < 0.136$, $A(\varepsilon, N)$ is estimated by

(3.9)
$$\pi N \Big(\frac{1}{4} \varepsilon^4 - \frac{1}{12} \varepsilon^6 \Big) < A(\varepsilon, N) < \pi N \Big(\frac{1}{4} \varepsilon^4 - \frac{1}{20} \varepsilon^6 \Big).$$

Proof. Since

$$\cos^{3}\varepsilon - 3\cos\varepsilon + 2 = \frac{3}{4}\varepsilon^{4} - \frac{1}{4}\varepsilon^{6} + \frac{13}{320}\varepsilon^{8} + [\varepsilon^{10}],$$

by (3.2) we obtain the expansion of $R(\varepsilon, N)^3$ and hence

$$R(\varepsilon, N) = 1 - \frac{N}{8} \varepsilon^4 + \frac{N}{24} \varepsilon^6 - \left(\frac{13N}{1920} + \frac{N^2}{64}\right) \varepsilon^8$$
$$+ N[\varepsilon^{10}] + N^2[\varepsilon^{10}] + \sum_{h=3}^{\infty} N^h[\varepsilon^{4h}].$$

Furthermore we get

$$R(\varepsilon, N)^{2} = 1 - \frac{N}{4} \varepsilon^{4} + \frac{N}{12} \varepsilon^{6} - \left(\frac{13N}{960} + \frac{N^{2}}{64}\right) \varepsilon^{8}$$
$$+ N[\varepsilon^{10}] + N^{2}[\varepsilon^{10}] + \sum_{h=3}^{\infty} N^{h}[\varepsilon^{4h}].$$

Since $N\varepsilon^2$ is bounded, we can put $N^{h}[\varepsilon^{4h}] = N[\varepsilon^{2h+2}]$ and so

$$R(\varepsilon, N)^2 = 1 - \frac{N}{4} \varepsilon^4 + \frac{N}{12} \varepsilon^6 - \frac{N^2}{64} \varepsilon^8 + N[\varepsilon^8].$$

Therefore

(3.10)
$$A(\varepsilon, N) = \pi N \Big(\frac{1}{4} \varepsilon^4 - \frac{1}{12} \varepsilon^6 + \frac{N}{64} \varepsilon^8 + [\varepsilon^8] \Big).$$

We use (3.8) to obtain the upper estimate of $A(\varepsilon, N)$ and we replace $N\varepsilon^8/64$ in (3.10) by $\varepsilon^6/32$. Then, (3.9) is verified by numerical calculation. For each

value of ε the range of N is limited by (3.8).

For example, if $\varepsilon = 0.136$ (in this case $1 \le N \le 108$) and if N = 100, then

$$\pi N(1/4 - \varepsilon^2/12) = 78.05 \cdots,$$

$$A(\varepsilon, N)/\varepsilon^4 = 78.22 \cdots,$$

$$\pi N(1/4 - \varepsilon^2/20) = 78.24 \cdots.$$

Now we prove the following.

PROPOSITION 3.6. $2N \cdot P(\varepsilon) > A(\varepsilon, N)$ holds for each pair (ε, N) such that 2N points can be ε -properly distributed on $S^2(1)$.

Proof. For $\varepsilon < 0.136$ we see that $2N \cdot P(\varepsilon) > A(\varepsilon, N)$ by the first inequality of (3.5) and the second inequality of (3.9).

For $\varepsilon \ge 0.136$ we can verify $2N \cdot P(\varepsilon) > A(\varepsilon, N)$ by numerical calculation. For each value of ε , the range of N is limitted by (3.8). If ε gets larger, then the maximum of N gets smaller.

§4. *H*-model.

From now on we show some evidence that

$$\pi R(\varepsilon, N)^2 - M(\varepsilon, N) = 2N \cdot P(\varepsilon) - A(\varepsilon, N)$$

is too small to construct concrete examples $K(\varepsilon, N, \Theta)$ satisfying (3.1) and (3.3).

We define $\Theta'_0 = \{\pm q_1, \pm q_2, \dots, \pm q_N\}$ somewhat abstractly. First we define q_1, q_2 and q_3 in the following setting.

 $\langle 4-1 \rangle$ Setting.

(i) $\{q_1, q_2, q_3\}$ makes an equilateral (geodesic) triangle on $S^2(1)$.

(ii) The center of the triangle $q_1q_2q_3$ is A=(0, 0, 1).

(iii) For each i (i=1, 2, 3), q_i represents a hexagon H_i on $S^2(1)$ and q_i is the center of H_i .

(iv) The area of H_i is equal to $4\pi/2N$.

(v) H_1 , H_2 and H_3 are placed naturally so that two edges of each H_1 coincide with respective one edge of the other hexagons.

 $\langle 4-2 \rangle$ Definition of hexagon $H (=H_1) = ABCDEF$.

(i) A, D and the center Q (=q₁) of H are in the (x^2 , x^3)-plane.

(ii) The lengths of the geodesic segments AB, BQ, QC, CD, DE, EQ, QF, FA are all equal to α .

(iii) $\langle BAQ = \langle FAQ = \langle CDQ = \langle EDQ = \pi/3.$

Coordinate expressions of these points are as follows:

$$A = (0, 0, 1),$$

$$B = ((\sqrt{3}/2) \sin \alpha, (1/2) \sin \alpha, \cos \alpha),$$

 $C = (c^{1}, c^{2}, c^{3})/2(3\cos^{2}\alpha + 1),$ $c^{1} = \sqrt{3}(3\cos^{2}\alpha + 1)\sin\alpha,$ $c^{2} = (13\cos^{2}\alpha - 1)\sin\alpha,$ $c^{3} = 14\cos^{3}\alpha - 6\cos\alpha,$ $D = (0, d^{2}, d^{3})/(3\cos^{2}\alpha + 1)^{2},$ $d^{2} = 8(5\cos^{2}\alpha - 1)\cos\alpha\sin\alpha,$ $d^{3} = 41\cos^{4}\alpha - 26\cos^{2}\alpha + 1,$ $Q = (0, 4\cos^{2}\alpha + 2\cos^{2}\alpha, -1)/(2\cos^{2}\alpha)$

 $Q = (0, 4\cos\alpha\sin\alpha, 5\cos^2\alpha - 1)/(3\cos^2\alpha + 1).$

 $\langle 4-3 \rangle$ Area of *H*.

We denote the lengths of geodesic segments AQ and BC by λ and μ , respectively. Then we get

$$\cos \lambda = (A, Q) = (5\cos^2 \alpha - 1)/(3\cos^2 \alpha + 1),$$

 $\cos \mu = (B, C) = (\cos^2 \alpha + 1)/2.$

With respect to the triangles ABQ and BCQ we get the classical relations:

(4.1) $\sin \alpha \sin \langle ABQ = \sin \lambda \sin (\pi/3)$

(4.2)
$$\sin \alpha \sin (\pi/3) = \sin \mu \sin \langle QBC \rangle$$

and we can calculate $\langle ABQ \rangle$ and $\langle QBC \rangle$. Further, we obtain

(4.3)
$$\operatorname{Area}(H) = 4(\langle ABQ + \langle QBC \rangle - 8\pi/3.$$

For a given value of α , we can calculate $\langle ABQ \rangle$ and $\langle QBC \rangle$ by (4.1) and (4.2). Next by (4.3) we obtain the area Area(H) corresponding to α . Conversely, for a given natural number N we can find the (approximated) value of α so that $Area(H)=4\pi/2N$.

Example. (i) For N=100, $\alpha=0.1551\cdots$. (ii) For N=400, we get the following values:

$Area(H) = \frac{2\pi}{N} = 0.0157 \cdots$	$\alpha = 0.0777 \cdots$
<i>λ</i> =0.0778…	$\mu = 0.0776 \cdots$
$<\!ABQ\!=\!1.0498\cdots$	$< QBC = 1.0485 \cdots$

LEMMA 4.1. Area(H)= $2\pi/N$ is expanded as follows:

$$\frac{2\pi}{N} = \frac{3\sqrt{3}}{2}\alpha^2 + \frac{5\sqrt{3}}{16}\alpha^4 + [\alpha^6].$$

Proof. Expanding $\cos \lambda$ and $\cos \mu$ with respect to α , we get

$$\cos \lambda = 1 - \frac{1}{2}\alpha^{2} - \frac{5}{24}\alpha^{4} - \frac{77}{1440}\alpha^{6} + [\alpha^{8}],$$

$$\cos \mu = 1 - \frac{1}{2}\alpha^{2} + \frac{1}{6}\alpha^{4} - \frac{1}{45}\alpha^{6} + [\alpha^{8}],$$

and using relations (4.1) and (4.2) we obtain

$$\begin{aligned} \sin < &ABQ = \frac{\sqrt{3}}{2} \left(1 + \frac{1}{4} \alpha^2 - \frac{1}{48} \alpha^4 + [\alpha^6] \right), \\ \sin < &QBC = \frac{\sqrt{3}}{2} \left(1 + \frac{1}{8} \alpha^2 - \frac{7}{384} \alpha^4 + [\alpha^6] \right). \end{aligned}$$

 $\cos < ABQ$ and $\cos < QBC$ are obtained from these. We put 4Z = Area(H). Expanding $\sin (< ABQ + < QBC) = \sin (Z + 2\pi/3)$, we obtain

$$\frac{\sqrt{3}}{4} \left(\frac{3}{4} \alpha^2 + \frac{111}{192} \alpha^4 + [\alpha^6]\right) = \frac{1}{2} Z + \frac{\sqrt{3}}{4} Z^2 + [Z^3],$$

from which we obtain the relation in Lemma 4.1.

By Lemma 4.1 we get

(4.4)
$$\alpha^2 N = \frac{4\sqrt{3}}{9}\pi - \frac{5\sqrt{3}}{54}\pi\alpha^2 + [\alpha^4],$$

and by numerical calculation we can verify $\alpha^2 N > 4\sqrt{3}\pi/9 - \pi\alpha^2/5$ for $\alpha < 0.156$. Then $\alpha^2 N > 2.4$ for $\alpha < 0.156$, and hence we get the following.

LEMMA 4.2. For $\alpha < 0.156$, αN is estimated by

$$(4.5) \qquad \qquad \alpha N > \frac{12}{5\alpha}.$$

 $\langle 4-4 \rangle$ Mean values.

Let Ω be the domain in $S^2(1)$ defined by three hexagons H_1 , H_2 , and H_3 . Since q_1 (=Q), q_2 and q_3 are defined as centers of three hexagons, to define Θ'_0 as a standard model we suppose that 2N-6 points $\{\pm q_4, \dots, \pm q_N\}$ are distributed in $S^2(1)-\Omega \cup (-\Omega)$ (abstractly and) nearly homogeneously.

Let $\{L_A\}$ be the set of all planes which contain the line AO. Planes L_A are parametrized by angles θ from the first axis; $0 \leq \theta < \pi$. We want to calculate the rotational mean value at A, that is, the mean value $M'_0(\varepsilon, N; A)$ of Area $(K(\varepsilon, N, \Theta'_0) \cap L_A)$ with respect to planes $\{L_A\}$.

Let Θ_0 be an abstract ε -proper distribution of 2N points on $S^2(1)$, which is nearly homogeneously distributed. Then the mean value $M_0(\varepsilon, N; A)$ of Area $(K(\varepsilon, N, \Theta_0) \cap L_A)$ with respect to $\{L_A\}$ is equal to $M(\varepsilon, N) = \pi - 2N \cdot P(\varepsilon)$. Here we divide $2N \cdot P(\varepsilon)$ into two factors:

$$2N \cdot P(\varepsilon) = 2P(\varepsilon, N, \Omega) + P(\varepsilon, N, S^2(1) - \Omega \cup (-\Omega)),$$

where $P(\varepsilon, N, \Omega)$ is defined as follows: Let $\theta \in [\pi/6, \pi/2]$ and let $\{\rho_{\theta}(s)\}$ be the geodesic emanating from A such that the angle between $d\rho_{\theta}(0)/ds$ and the x^1 -axis is θ . By $l(\theta)$ we denote the length of the geodesic segment $\{\rho_{\theta}(s)\} \cap \Omega$. Then the effect of the mean value of sum of areas of removed caps restricted to $\{\rho_{\theta}(s)\} \cap \Omega$ is $2N \cdot P(\varepsilon) \cdot l(\theta)/2\pi$, and

(4.6)
$$P(\varepsilon, N, \Omega) = \frac{6}{\pi} \cdot 2N \cdot P(\varepsilon) \cdot \frac{1}{2\pi} \int_{\pi/6}^{\pi/2} l(\theta) d\theta.$$

We denote the mean value of π -Area $(K(\varepsilon, N, \Theta') \cap L_A)$ with respect to $\{L_A\}$ by $2P(q_1q_2q_3)$, where $\Theta' = \{\pm q_1, \pm q_2, \pm q_3\}$. To define Θ'_0 we replace $P(\varepsilon, N, \Omega)$ by $P(q_1q_2q_3)$.

DEFINITION. H-model Θ'_0 of ε -proper distribution of 2N points on $S^2(1)$ is $\{\pm q_1, \pm q_2, \pm q_3, \cdots, \pm q_N\}$ such that $M'_0(\varepsilon, N; A)$ is calculated by

(4.7)
$$\pi - M'_0(\varepsilon, N; A) = 2N \cdot P(\varepsilon) - 2P(\varepsilon, N, \Omega) + 2P(q_1q_2q_3)$$

Here we notice that the condition (i) of Setting $\langle 4-1 \rangle$ is related to the case where N is not small. Since we are studying the case where $N \ge 100$, this may be natural.

§ 5. The range of ε with respect to α .

For a given value of N, α and H are determined. Let M' be the middle point of the geodesic segment AB. Let ν be the distance between M' and Q. Then the range of ε is estimated by $0 < \varepsilon < \nu$. The coordinates of M' are given by

$$(\sqrt{3} \sin \alpha, \sin \alpha, 2(\cos \alpha + 1))/[8(\cos \alpha + 1)]^{1/2}$$

Therefore

$$\begin{aligned} \cos\nu &= (M', Q) \\ &= (3\cos^2\alpha + 5\cos^2\alpha + \cos\alpha - 1)/(3\cos^2\alpha + 1)(2\cos\alpha + 2)^{1/2} \\ &= 1 - \frac{3}{8}\alpha^2 - \frac{17}{128}\alpha^4 + [\alpha^6]. \end{aligned}$$

Furthermore we obtain

$$\nu = \frac{\sqrt{3}}{2}\alpha + \frac{5\sqrt{3}}{48}\alpha^3 + [\alpha^5].$$

Consequently

(5.1)
$$\left(\frac{\nu}{\sin\alpha}\right)^2 = \frac{3}{4} + \frac{9}{16}\alpha^2 + \left[\alpha^4\right],$$

and hence

(5.2)
$$\left[1 - \left(\frac{\nu}{\sin \alpha}\right)^2\right]^{-1/2} = 2 + \frac{9}{4}\alpha^2 + [\alpha^4].$$

By numerical calculation we get the following.

LEMMA 5.1. For $\alpha < 0.156$

(5.3)
$$\left(\frac{\varepsilon}{\sin\alpha}\right)^2 < \frac{3}{4} + \frac{3}{5}\alpha^2,$$

(5.4)
$$\left[1 - \left(\frac{\varepsilon}{\sin\alpha}\right)^2\right]^{-1/2} < 2 + 3\alpha^2.$$

For N=100, we get $\alpha=0.1551\cdots$ and $\nu=0.1350\cdots$. Since we are studying the case where $N\geq 100$, the ranges of α and ε may be set as follows:

$$0 < \alpha < 0.156$$
, $0 < \varepsilon < 0.136$

§6. $P(\varepsilon, N, \Omega)$.

By S=ABCD we denote the quadrangle on $S^2(1)$ defined by A, B, C and D. Let $S^*=A^*B^*C^*D^*$ be the quadrangle on the tangent space $T_AS^2(1)$ to $S^2(1)$ at A satisfying the following conditions.

(i) $|A^*B^*| = |B^*C^*| = |C^*D^*| = \alpha$, $|A^*D^*| = 2\alpha$.

(ii) By the exponential map φ at A, $\varphi(A^*)=A$, $\varphi(B^*)=B$, and $\varphi(A^*D^*)$ is contained in the geodesic segment AD.

Then $< D^*A^*B^* = \pi/3$ follows.

LEMMA 6.1. $\varphi^{-1}(S)$ contains S^* .

Proof. We define C_* and D_* by $C_* = \varphi^{-1}(C)$ and $D_* = \varphi^{-1}(D)$. $< C_*A^*D^*$ is calculated by the coordinates of C;

$$\cos < C_* A^* D^* = (13\cos^2 \alpha - 1)/2(49\cos^4 \alpha - 2\cos^2 \alpha + 1)^{1/2}.$$

Then $\cos^2 < C_* A^* D^* - 3/4 < 0$ is equivalent to

$$(11\cos^2\alpha + 1)(\cos^2\alpha - 1) < 0$$
,

and so we see that $\langle C_*A^*D^* \rangle \langle C^*A^*D^* = \pi/6$.

Next we show that the orthogonal projection of C_* to the line A^*C^* lies in the extension of A^*C^* . That is,

(6.1)
$$|A^*C_*|\cos(\langle C_*A^*D^*-\pi/6\rangle) > \sqrt{3}\alpha.$$

By the expression of $\cos < C_*A^*D^*$ we get

$$\cos(\langle C_*A^*D^* - \pi/6 \rangle) = 4\sqrt{3}\cos^2\alpha/(49\cos^4\alpha - 2\cos^2\alpha + 1)^{1/2}$$

Then (6.1) is equivalent to

(6.2)
$$|A^*C_*| > (49\cos^4\alpha - 2\cos^2\alpha + 1)^{1/2}\alpha/4\cos^2\alpha$$
.

Since $|A^*C_*| = |AC|$, and $\cos |AC|$ is known by the coordinates of C, (6.2) is equivalent to

(6.3)
$$(7\cos^3\alpha - 3\cos\alpha)/(3\cos^2\alpha + 1) < \cos\beta,$$

where

$$\beta = (49\cos^4\alpha - 2\cos^2\alpha + 1)^{1/2}\alpha/4\cos^2\alpha$$

We expand the both sides of (6.3) and get

$$(7\cos^{3}\alpha - 3\cos^{2}\alpha)/(3\cos^{2}\alpha + 1) = 1 - \frac{3}{2}\alpha^{2} + \frac{1}{8}\alpha^{4} + [\alpha^{6}]$$

$$<1 - \frac{3}{2}\alpha^{2} + \frac{1}{4}\alpha^{4} \quad \text{for} \quad \alpha < 0.156$$

$$\cos\beta = 1 - \frac{3}{2}\alpha^{2} + \frac{3}{8}\alpha^{4} + [\alpha^{6}]$$

$$>1 - \frac{3}{2}\alpha^{2} + \frac{1}{4}\alpha^{4} \quad \text{for} \quad \alpha < 0.156.$$

Therefore we get (6.1). Since $\varphi^{-1}(BC)$ and $\varphi^{-1}(CD)$ are convex in $T_A S^2(1)$, we see that $\varphi^{-1}(S)$ contains S^* . (q. e. d.)

By Lemma 6.1 we obtain

$$\int_{\pi/6}^{\pi/2} l(\theta) d\theta > \int_{\pi/6}^{\pi/3} \frac{\sqrt{3}\,\alpha}{2\cos\theta} d\theta + \int_{\pi/3}^{\pi/2} \frac{\sqrt{3}\,\alpha}{\cos(\theta - \pi/3)} d\theta.$$

Since

$$\int \frac{1}{\cos\theta} d\theta = \log \tan \left(\frac{\theta}{2} + \frac{\pi}{4} \right),$$

we obtain the following.

$$P(\varepsilon, N, \Omega) > \frac{3\sqrt{3}}{\pi^2} N \cdot P(\varepsilon) \cdot \alpha \Big(\log \tan \frac{5\pi}{12} + \log \tan \frac{\pi}{3} \Big).$$

Therefore we get

LEMMA 6.2. $P(\varepsilon, N, \Omega)$ is estimated by

(6.4)
$$2P(\varepsilon, N, \Omega) > \frac{3\sqrt{3}}{\pi^2} \log (3 + 2\sqrt{3}) \cdot 2N \cdot P(\varepsilon) \cdot \alpha > \frac{98\alpha}{100} \cdot 2N \cdot P(\varepsilon).$$

§7. Mean value $U(b, \varepsilon)$.

Let X=(1, 0, 0) and Y=(0, 1, 0). Let $T=(\sin b, 0, \cos b)$ where $0 < b \le \pi/2$. Let L_A be a plane in $\{L_A\}$ and let $g=g(L_A)=g(\theta)$ be the corresponding great circle on $S^2(1)$, $0 \le \theta < \pi/2$. The point of intersection of g and the equator is $(\cos \theta, \sin \theta, 0)$.

The distance $w = w(b, \theta)$ between T and g is given by

(7.1)
$$\sin w = \sin b \sin \theta.$$

Let $\varepsilon < b$ and let θ_0 be the value of parameter of L_A for which g is tangent to the geodesic circle $C[T, \varepsilon]$ of radius ε centered at T in $S^2(1)$. By putting $w = \varepsilon$ in (7.1) we see that θ_0 is determined by

(7.2)
$$\sin\theta_0 = \frac{\sin\varepsilon}{\sin\theta}.$$

For $\theta \in [0, \theta_0]$, we denote the points of intersection of $g(\theta)$ and $C[T, \varepsilon]$ by V and Z. The half of the distance between V and Z is denoted by $\varepsilon^* = \varepsilon^*(\varepsilon, b, \theta)$. Then

(7.3)
$$\cos \varepsilon = \cos \varepsilon^* \cos w$$
.

With respect to only one spherical cap $C^3(T, \varepsilon)$, the mean value $U(b, \varepsilon)$ of areas of removed caps with respect to $\{L_A\}$ is calculated by

(7.4)
$$U(b, \varepsilon) = \frac{2}{\pi} \int_{0}^{\theta_{0}} \left(\varepsilon^{*} - \frac{1}{2} \sin 2\varepsilon^{*} \right) d\theta.$$

If one changes the variables, then (7.4) is rewritten as

(7.5)
$$U(b, \varepsilon) = \frac{2}{\pi} \int_0^{\varepsilon} \left(\varepsilon^* - \frac{1}{2} \sin 2\varepsilon^* \right) \frac{\cos w}{\sqrt{\sin^2 b - \sin^2 w}} dw.$$

Next we obtain an estimate of $U(\alpha, \varepsilon)$.

LEMMA 7.1.

(7.6)
$$\int_{0}^{\varepsilon} \frac{\sqrt{\varepsilon^{2} - w^{2}}}{\sqrt{\sin^{2}b - w^{2}}} w^{k} dw$$
$$= \frac{1}{\sin b} \bigg[\sum_{l=0}^{\infty} \frac{(2l-1)!!}{l!2^{l}} \Big(\frac{\varepsilon}{\sin b} \Big)^{2l} \frac{\pi(k+2l-1)!!}{2(k+2l+2)!!} \bigg] \varepsilon^{k+2}.$$

Proof. By

$$\frac{1}{\sqrt{1-x}} = \sum_{l=0}^{\infty} \frac{(2l-1)!!}{l!2^l} x^l$$

and (3.6) we obtain

$$\int_{0}^{\varepsilon} \frac{\sqrt{\varepsilon^{2} - w^{2}}}{\sqrt{\sin^{2}b - w^{2}}} w^{k} dw = \int_{0}^{\varepsilon} \frac{\sqrt{\varepsilon^{2} - w^{2}}}{\sin b} \left[\sum_{l=0}^{\infty} \frac{(2l-1)!!}{l!2^{l}} \left(\frac{w}{\sin b} \right)^{2l} \right] w^{k} dw$$
$$= \sum_{l=0}^{\infty} \frac{(2l-1)!!}{l!2^{l} \sin^{2l+1}b} \int_{0}^{\varepsilon} \sqrt{\varepsilon^{2} - w^{2}} w^{k+2l} dw$$
$$= \sum_{l=0}^{\infty} \frac{(2l-1)!!}{l!2^{l} \sin^{2l+1}b} \cdot \frac{\pi(k+2l-1)!!}{2(k+2l+2)!!} \varepsilon^{k+2l+2},$$

from which we obtain (7.6).

Since ε^* , ε and w satisfy the relations satisfied by ε^{\sim} , ε and t, we have the corresponding equalities as in Lemma 2.2. So as in the proof of Lemma 3.3 we obtain

(7.7)
$$\left(\varepsilon^* - \frac{1}{2}\sin 2\varepsilon^*\right)\cos w = \frac{2}{3}\sqrt{\varepsilon^2 - w^2} \left[\varepsilon^2 - \frac{1}{5}\varepsilon^4 - \left(1 - \frac{2}{5}\varepsilon^2\right)w^2 - \frac{1}{5}w^4\right] + \left[\varepsilon^7\right].$$

By (7.5) with $b = \alpha$ we get

$$U(\alpha, \varepsilon) < \frac{2}{\pi} \int_0^{\varepsilon} \left(\varepsilon^* - \frac{1}{2} \sin 2\varepsilon^* \right) \frac{\cos w}{\sqrt{\sin^2 \alpha - w^2}} dw \, .$$

Applying (7.6) and (7.7) to the last inequality we obtain

$$\begin{split} U(\alpha, \varepsilon) &< \frac{2}{3} \left(1 - \frac{1}{5} \varepsilon^2 \right) \frac{\varepsilon^4}{\sin \alpha} \left[\frac{1}{2} + \frac{1}{2} \left(\frac{\varepsilon}{\sin \alpha} \right)^2 \frac{1}{4!!} + \frac{3}{2 \cdot 4} \left(\frac{\varepsilon}{\sin \alpha} \right)^4 \frac{3!!}{6!!} + \cdots \right] \\ &- \frac{2}{3} \left(1 - \frac{2}{5} \varepsilon^2 \right) \frac{\varepsilon^4}{\sin \alpha} \left[\frac{1}{4!!} + \frac{1}{2} \left(\frac{\varepsilon}{\sin \alpha} \right)^2 \frac{3!!}{6!!} + \frac{3}{2 \cdot 4} \left(\frac{\varepsilon}{\sin \alpha} \right)^4 \frac{5!!}{8!!} + \cdots \right] \\ &- \frac{2\varepsilon^6}{15 \sin \alpha} \left[\frac{3!!}{6!!} + \frac{1}{2} \left(\frac{\varepsilon}{\sin \alpha} \right)^2 \frac{5!!}{8!!} + \frac{3}{2 \cdot 4} \left(\frac{\varepsilon}{\sin \alpha} \right)^4 \frac{7!!}{10!!} + \cdots \right] \\ &+ \arcsin \left(\frac{\varepsilon}{\sin \alpha} \right) [\varepsilon^7] \\ &= \frac{2\varepsilon^4}{3 \sin \alpha} \left[\frac{3}{8} + \frac{1}{2} \left(\frac{\varepsilon}{\sin \alpha} \right)^2 \cdot \frac{1}{16} + \frac{3}{8} \left(\frac{\varepsilon}{\sin \alpha} \right)^4 \cdot \frac{3}{128} + \cdots \right] \\ &- \frac{2\varepsilon^6}{15 \sin \alpha} \left[\frac{5}{16} + \frac{1}{2} \left(\frac{\varepsilon}{\sin \alpha} \right)^2 \cdot \frac{5}{128} + \frac{3}{8} \left(\frac{\varepsilon}{\sin \alpha} \right)^4 \cdot \frac{3}{256} + \cdots \right] \\ &+ \arcsin \left(\frac{\varepsilon}{\sin \alpha} \right) [\varepsilon^7]. \end{split}$$

Since

$$\left\{\frac{(2l-1)!!}{(2l+2)!!} - \frac{(2l+1)!!}{(2l+4)!!}\right\} = \left\{\frac{3}{8}, \frac{1}{16}, \frac{3}{128}, \cdots\right\}$$

is decreasing with respect to l, and

$$\left\{\frac{15(2l-1)!!}{(2l+6)!!}\right\} = \left\{\frac{5}{16}, \frac{5}{128}, \frac{3}{256}, \cdots\right\}$$

is composed of positive numbers, we obtain

$$U(\alpha, \varepsilon) < \frac{2\varepsilon^{4}}{3\sin\alpha} \left[\left(\frac{3}{8} - \frac{3}{128} \right) + \frac{1}{2} \left(\frac{\varepsilon}{\sin\alpha} \right)^{2} \left(\frac{1}{16} - \frac{3}{128} \right) \right. \\ \left. + \frac{3}{128} \sum_{l=0}^{\infty} \frac{(2l-1)!!}{l!2^{l}} \left(\frac{\varepsilon}{\sin\alpha} \right)^{2l} \right] - \frac{2\varepsilon^{6}}{15\sin\alpha} \cdot \frac{5}{16} + \left[\varepsilon^{8} \right] \\ \left. = \frac{2\varepsilon^{4}}{3\sin\alpha} \left[\frac{45}{128} + \frac{5}{256} \left(\frac{\varepsilon}{\sin\alpha} \right)^{2} + \frac{3}{128\sqrt{1 - (\varepsilon/\sin\alpha)^{2}}} \right] \right] \\ \left. - \frac{\varepsilon^{6}}{24\sin\alpha} + \left[\varepsilon^{8} \right].$$

For $\alpha < 0.156$ by Lemma 5.1 we obtain

$$U(\alpha, \varepsilon) < \frac{\varepsilon^4}{\sin \alpha} \left(\frac{141}{512} + \frac{7}{128} \alpha^2 \right) - \frac{\varepsilon^6}{24 \sin \alpha} + \left[\varepsilon^8 \right]$$

For $\alpha < 0.156$, $\alpha / \sin \alpha$ is increasing, and so

$$\frac{1}{\sin\alpha} < \frac{0.156}{\alpha\sin 0.156} < \frac{1.004\cdots}{\alpha}.$$

Therefore we obtain

$$U(\alpha, \varepsilon) < \frac{28}{100\alpha} \varepsilon^4 - \frac{1}{24\alpha} \varepsilon^6 + [\varepsilon^8],$$

and hence by numerical calculation we get

$$U(\alpha, \varepsilon) < \frac{28}{100\alpha} \varepsilon^4 - \frac{1}{24\alpha} \varepsilon^6.$$

Since $\alpha < |AQ|$ we see that

$$P(q_1q_2q_3) < 3U(\alpha, \varepsilon)$$
,

and hence we obtain

LEMMA 7.2. For
$$\alpha < 0.156$$
, $2P(q_1q_2q_3)$ is estimated by

(7.8)
$$2P(q_1q_2q_3) < \frac{168}{100\alpha} \varepsilon^4 - \frac{1}{4\alpha} \varepsilon^6.$$

§8. Proof of Theorem B.

PROPOSITION 8.1. For $N \ge 100$, $A(\varepsilon, N) > \pi - M'_0(\varepsilon, N; A)$ holds.

Proof. By $N \ge 100$ we obtain $\alpha < 0.156$ and $\varepsilon < 0.136$. Applying estimates (3.5), (3.9) and (6.4) and (7.8) to (4.7), we obtain

SECTIONS OF CENTRALLY SYMMETRIC CONVEX BODIES

$$\begin{split} A(\varepsilon, N) - \pi + M_0'(\varepsilon, N; A) &= A(\varepsilon, N) - 2N \cdot P(\varepsilon) + 2P(\varepsilon, N, \mathcal{Q}) - 2P(q_1 q_2 q_3) \\ &> \pi N \Big(\frac{1}{4} \varepsilon^4 - \frac{1}{12} \varepsilon^6 \Big) - \Big(1 - \frac{98\alpha}{100} \Big) 2N \Big(\frac{\pi}{8} \varepsilon^4 - \frac{\pi}{60} \varepsilon^6 \Big) - \frac{168}{100\alpha} \varepsilon^4 + \frac{1}{4\alpha} \varepsilon^6 \\ &= \frac{98}{100} \alpha N \Big(\frac{\pi}{4} \varepsilon^4 - \frac{\pi}{30} \varepsilon^6 \Big) - \frac{1}{20} \pi N \varepsilon^6 - \frac{168}{100\alpha} \varepsilon^4 + \frac{1}{4\alpha} \varepsilon^6 . \end{split}$$

By (3.8) and (4.5) we obtain

$$\begin{aligned} A(\varepsilon, N) - \pi + M_0'(\varepsilon, N; A) &> \frac{98}{100} \cdot \frac{12}{5\alpha} \cdot \frac{78}{100} \varepsilon^4 - \frac{\pi}{20} \left(2 + \frac{1}{5} \varepsilon^2\right) \varepsilon^4 - \frac{168}{100\alpha} \varepsilon^4 \\ &> \frac{183}{100\alpha} \varepsilon^4 - \frac{32}{100} \varepsilon^4 - \frac{168}{100\alpha} \varepsilon^4 \\ &= \frac{15 - 32\alpha}{100\alpha} \varepsilon^4 > 0. \end{aligned}$$
(q. e. d.)

Proof of Theorem B. By Proposition 8.1 we see that $M'_0(\varepsilon, N; A) > \pi - A(\varepsilon, N)$ holds. Since $M'_0(\varepsilon, N; A)$ is the mean value, we have some plane L through O and A such that

Area
$$(K(\varepsilon, N, \Theta'_0) \cap L) > \pi - A(\varepsilon, N).$$
 (q. e. d.)

Let Θ be an ε -proper distribution of 2N points on $S^2(1)$, and let q be a point of $S^2(1)$. By $M(q)=M(\varepsilon, N, \Theta; q)$ we denote the rotational mean value at q, *i.e.*, the mean value of $\operatorname{Area}(K(\varepsilon, N, \Theta) \cap L_q)$ with respect to planes $\{L_q\}$ which contain the line qO. If we consider M(q) as a function on $S^2(1), \pi - M(q)$ takes big value at q if relatively many points of Θ are distributed near q, or if q is very near some p_k of Θ . Theorem B implies that even if Θ is nearly homogeneous, the variation of M(q) with respect to q is not so small.

Observations for the case where N is small and Theorem B lead us to the following conjecture.

CONJECTURE. For an ε -proper distribution Θ of 2N points on $S^2(1)$. Area $(K(\varepsilon, N, \Theta) \cap L) < \operatorname{Area}(B^3(R) \cap L)$ for each L may imply

$$\operatorname{Vol}(K(\varepsilon, N, \Theta)) < \operatorname{Vol}(B^{\mathfrak{s}}(R)).$$

As a remark we prove the following.

PROPOSITION 8.2. Let ε and N be given so that 2N points can be ε -properly distributed on S²(1). Then;

(i) There exists an ε -proper distribution Θ_* of 2N points on $S^2(1)$ such that the maximum value of the rotational mean value function $M_*(q)$ is not greater than the maximum value of M(q) for any other ε -proper distribution Θ of 2N points on $S^2(1)$.

(ii) There exists an ε -proper distribution Θ^* of 2N points on $S^2(1)$ such that

the maximum value of Area $(K(\varepsilon, N, \Theta^*) \cap L)$ with respect to $\{L\} = RP^2$ is not greater than the maximum value of Area $(K(\varepsilon, N, \Theta) \cap L)$ with respect to $\{L\}$ for any other ε -proper distribution Θ of 2N points on $S^2(1)$.

Proof. Let Ψ be a subset of $S^2(1) \times S^2(1) \times \cdots \times S^2(1)$ (*N* times) composed of elements (p_1, p_2, \cdots, p_N) such that $|p_k(\pm p_l)| \ge 2\varepsilon$ for $1 \le k < l \le N$. Then Ψ is compact. The rotational mean value function $M(\varepsilon, N, \Theta; q)$ is a continuous function on $\Psi \times S^2(1)$. We define $\Lambda(\varepsilon, N, \Theta)$ by

$$\Lambda(\varepsilon, N, \Theta) = \max_{q \in S^2(1)} \{ M(\varepsilon, N, \Theta; q) \}.$$

Then $\Lambda(\varepsilon, N, \Theta)$ is a continuous function on Ψ . Therefore we have some $\Theta_* \in \Psi$, which attains the minimum of $\Lambda(\varepsilon, N, \Theta)$. This proves (i).

(ii) is easily proved.

§9. Appendix.

It is clear that if N is not so large and ε is very small then for any ε -proper distribution of 2N points on $S^2(1)$ we can find some L such that $K(\varepsilon, N, \Theta) \cap L = B^3(1) \cap L$.

Let Θ be an ε -proper distribution of 2N points on $S^2(1)$. Even if $\operatorname{Area}(K(\varepsilon, N, \Theta) \cap L) < \pi$ holds for any L, we see that the variation of $\operatorname{Area}(K(\varepsilon, N, \Theta) \cap L)$ is big, if N is not so large. To show this we give two examples corresponding to the closest packings of equal circles on $S^2(1)$.

 $\langle 9-1 \rangle$ Octahedron.

Consider an octahedron inscribed in $S^2(1)$. Vertices define an ε -proper distribution of six points on $S^2(1)$ with $\varepsilon = \pi/4$. Let $\Theta = \{\pm X, \pm Y, \pm A\}$ where X=(1, 0, 0), Y=(0, 1, 0) and A=(0, 0, 1). Let L_0 be the plane passing through Y, -Y and $(\sqrt{2}/2, 0, \sqrt{2}/2)$. Then

Area
$$(K(\pi/4, 3, \Theta) \cap L_0) = 2.5707 \cdots$$
,

 $\pi R(\pi/4, 3)^2 = 2.3613 \cdots$

Therefore Area $(K(\pi/4, 3, \Theta) \cap L) < \pi R(\pi/4, 3)^2$ does not hold for L_0 .

Notice that Θ corresponds to the closest packing of equal six circles on $S^2(1)$. As for closest packing, see for example [5] and [6] or references there. $\langle 9-2 \rangle$ Icosahedron.

Consider an icosahedron inscribed in $S^2(1)$. Vertices define an ε -proper distribution of Θ of eleven points on $S^2(1)$ with $\varepsilon = 0.5535 \cdots$. Let $p_1 \in \Theta$ and let L_0 be the plane orthogonal to $p_1(-p_1)$. Then

Area
$$(K(\varepsilon, 6, \Theta) \cap L_0) = 2.9389 \cdots$$
,

$$\pi R(\varepsilon, 6)^2 = 2.7281 \cdots.$$

Therefore Area $(K(\varepsilon, 6, \Theta) \cap L) < \pi R(\varepsilon, 6)^2$ does not hold for L_0 .

 Θ corresponds to the closest packing of equal twelve circles on $S^2(1)$.

 $\langle 9-3 \rangle$ Non-symmetric closest packing.

Let $p_1 = (\sin b, 0, \cos b)$ with $\sin^2 b = (8 - 2\sqrt{2})/7$. By $\pi/2$ -, π -, and $3\pi/2$ rotation of p_1 around the x^3 -axis, we define p_2 , p_3 , and p_4 . By $\pi/4$ -rotation
of $-p_1$, $-p_2$, $-p_3$, and $-p_4$ around the x^3 -axis, we define q_1 , q_2 , q_3 , and q_4 .
Then $\Sigma = \{p_1, p_2, p_3, p_4, q_1, q_2, q_3, q_4\}$ defines the closest packing of equal eight
circles on $S^2(1)$ with ε such that $\cos^2 \varepsilon = (3 + \sqrt{2})/7$, i.e., $\varepsilon = 0.6532\cdots$. Σ is not
centrally symmetric. By $K(\varepsilon, \Sigma)$ we denote the convex body obtained from $B^3(1)$ by removing eight spherical caps of $B^3(1)$ of angular radius ε corresponding to Σ . Let L_0 be the plane passing through A, q_1 , and q_3 . Then

Area
$$(K(\varepsilon, \Sigma) \cap L_0) = 2.8003 \cdots$$
,

 $\pi R(\varepsilon, 4)^2 = 2.6234 \cdots$

References

- [1] A.L. BESSE, Manifolds all of whose geodesics are closed, Ergeb. Math., no. 93, Springer, 1978
- [2] T. BONNESEN AND W. FENCHEL, Theorie der konvexen Körper, Berlin, 1934.
- [3] H. BUSEMANN, Volumes in terms of concurrent cross-sections, Pacific J. Math., 3 (1953), 1-12.
- [4] H. BUSEMANN AND C. M. PETTY, Problems on convex bodies, Math. Scand., 4 (1956), 88-94.
- [5] B.W. CLARE AND D.L. KEPERT, The closest packing of equal circles on sphere, Proc. R. Soc. London, A405 (1986), 329-344.
- [6] L. DANZER, Finite point-sets on S² with minimum distance as large as possible, Discrete Math., 60 (1986), 3-66.
- P. FUNK, Uber eine geometrische Anwendung der Abelschen Integralgleichung, Math. Ann., 77 (1916), 129-135.
- [8] D.G. LARMAN, Recent results in convexity, Proc. Intl. Congress Math., Helsinki, Vol. 1 (1978), 429-434.
- [9] D.G. LARMAN AND C.A. ROGERS, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika, 22 (1975), 164-175.

Department of Mathematics Tokyo Institute of Technology Tokyo, Japan