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§ 0. Introduction.

Real hypersurfaces in a complex projective space have been studied by many
differential geometers (for example, see [2], [4], [5], [6], [10] and [11]).

Typical examples of real hypersurfaces in a complex projective space are
homogeneous ones ([10]). They are realized as the tubes of constant radius
over compact Hermitian symmetric spaces of rank 2 (see [10]). Homogeneous
real hypersurfaces in a complex projective space have been characterized by
many differential geometers, who have used the multiplicities of the principal
curvatures of them.

In [7], some of homogeneous real hypersurfaces are characterized from a
different point of view. In this paper, we give some generalizations of the
results in [7].

Let / : M->EN be an isometric immersion from an n-dimensional compact
Riemannian manifold into an iV-dimensional Euclidean space, and let Δ and
Spec(M)={0<^!<iί2< •••} be the Laplacian of M and the spectrum of M, re-
spectively. Then, it is known that / can be decomposed as /—/O+Σ*eiv/*,
where Afk=λkfk and f0 is a constant mapping, and the addition is convergent
componentwise for the ZΛtopology on c°°(M). We say that the immersion is
of order {k} (or mono-order) if / = / 0 + / * , k^N, / * ^ 0 , and of order {k, 1} (or

bi-order) if f=fo+fk+fι, k, /eiV, l>k, fk,fι^O. Moreover, we say that M

is mono-order (resp. bi-order) if / is mono-order (resp. bi-order). From a well
known result of Takahashi [12], we know that M is mono-order if and only
if M is a minimal submanifold of some sphere of EN. Minimal submanifolds
of a sphere have been studied by many differential geometers. Then, we con-
sider the following problems:

i) Investigate the necessary and sufficient conditions for / to be bi-order.
ii) Classify the bi-order immersions.
These problems are very interesting, but very difficult. Hence, we consider

the restricted problems as follows: Let F: CPm(i)->EN be the first standard
imbedding of an m-dimensional complex projective space of constant holomorphic
sectional curvature 4 into an TV-dimensional Euclidean space (for details, see
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§ 1), and let φ: M71—> CPm(4) be an isometric immersion of an n-dimensional
Riemannian manifold. We consider f=F°φ:Mn->EN. Note that / is mono-
order (resp. bi-order) if and only if the restriction of an arbitrary first eigen-
function of CPm(4) to Mn is also an eigenfunction of Mn (resp. sum of two
eigenfunctions of Mn corresponding to distinct eigenvalues). It is interesting
to study the problems: To what extent, does the analytic condition (such as
the order of the immersion) determine the geometry of submanifolds? If φ's
are Kaehler immersions, mono-order and bi-order immersions are completely
determined ([8], [13]). In fact, they are totally geodesic Kaehler submanifolds
(order {1}) or Einstein parallel Kaehler submanifolds (order {1, 2}). Moreover,
every totally real submanifold Mm of CPm is mono-order. In this paper, we
consider the case that M i s a real hypersurface of CPm.

Then, Martinez and Ros [7] obtained the following

THEOREM A. Let M be a real hypersurface of CPm(4) (ra^2). Then, M is
minimal in some sphere of EN if and only if M is locally congruent to the geo-
desic hypersphere

where π: S 2 m + 1(l)^CPm(4) is the usual fibration.

THEOREM B. Let M be a compact minimal real hypersurface of CPm(4).

Then, M is bi-order in EN if and only if M is congruent to one of the following:

i) a geodesic hypersphere π(S1(VΓ72mXS2m-1(V(2m-l)/2m)), ?n^2,

ii) π(Sm)(Vϊ72)xSm(Vϊ72)), m: odd, m ^ 3 .

Remark 1. In fact, CPm(4) is minimally imbedded in a sphere

S ( m + 1 ) 2-2(Vm/2(m+l)) of radius Vm/2(m+l) and π(S\Vl/2(m+lJ)X

S2m"1(V(2m+l)/2(m-|-l))) is minimal in a small hypersphere

S ( m + 1 ) 2-3(V(4m2-l)/8m(m+l)) of S ( m + 1 ) 2-2(Vm/2(m+D).

Our results are the following

THEOREM 1. Let M be a compact real hypersurface with constant mean cur-
vature in CPm(4). Then, M is bi-order in EN if and only if M is congruent to
one of the following

i) a geodesic hypersphere ^(^(VrίJxS 2 ™"^)) with r2-f r 2 =l, r ^ l A m + l ) .

ii) π(Sp(Vp/2(m+l))xS«(V(q+2)/2(m+l))),

iii) π(Sp(V(p+l)/2(m+l))xS%V(q+l)/2(m+l))),

where p, q>l, and p and q are odd with p-\-q=2m.

A submanifold M of a sphere SN~1 in EN is called mass-symmetric in SN~λ

if the center of gravity of M coincides with the center of SN~1 in EN. Then,
we have
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THEOREM 2. Let M be a compact real hyper surf ace of CPm(4). Then, M
is mass-symmetric and bi-order in EN if and only if M is congruent to the case
iii) in Theorem 1.

Remark 2. Since CPm(4) is mass-symmetric in S ( m + 1 ) 8-8(Vm/2(m+l)), the
condition that M is mass-symmetric is equivalent to the one that the center of
gravity of M coincides with the center of gravity of CPm(4).

For Kaehler submanifolds in CPm, some kind of spectral inequality involv-
ing λx and λ2 of M is obtained ([14]). For real hypersurfaces as well as Koehler
submanifolds, the same kind of spectral inequality will be proved in § 5. In fact,
Theorem 1 and Theorem 2 are used to prove the spectral inequality.

All manifolds are assumed to be connected and of real dimension ^ 2 unless
otherwise stated.

The author wishes to thank Professors K. Ogiue and N. Ejiri for many
valuable comments and suggestions, and also thank Mr. M. Kimura for many
useful comments.

§ 1. Preliminaries.

Let CPm be a complex project!ve space obtained as a quotient space of the
unit sphere S2m+1(l)={z^Cm+1\zz*=zzt=l} by identifying z with λz, λ^C and
|Λ |=1. Let go be the canonical metric on CPm, which is the invariant metric
such that the fibration π: S2m+1(l)-^CPm is a Riemannian submersion. It is
known that (CPm, g0) has constant holomorphic sectional curvature 4. More-
over, its Riemannian curvature tensor R is given by

(1.1) R(X, Y)Z=go(Y, Z)X-go(X, Z)Y+go(JY, Z)]X

-goϋX, Z)JY+2go(X, JY)JZ

for any X, Y, Z^T(CPm),

where / i s the complex structure tensor of CPm. Let HM(m+l)={P^gί(m+lf C)
\p=P1} be the set of all Hermitian matrices of degree (m+1) with the metric
g such that

(1.2) g(P, Q)=(l/2)tr(PQ) for any P, <?eΞ#M(m-fl).

Sakamoto [9] proved that the mapping F: S2m+1(l)-+HM(m+l) given by

(1.3) F(z)=z*z=ztz,

induces an immersion F: CPm-+HM(mJ

Γl) such that the following hold:
i) F(CPm)={PeiHM(m+l) \ P2=P and tr(P)=l],
ii) F is an equivariant full isometric imbedding into
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In the following, we identify CPm with F(CPm). We denote by D the Rie-
mannian connection of HM(m+ϊ), by 7 the induced connection of CPm and
denote by 7X, σ, ̂ 4 and //, the normal connection, the second fundamental form,
the corresponding shape operator and the mean curvature vector of CPm in
HM(m+l), respectively.

LEMMA 1. The tangent and normal speces at each point B^CPm are given
respectively by

TBCPm^{XζΞHM(m+l) | XB+BX=X}
(1.4)

TέCP m ={Z

Moreover, we have

(1.5) JX

(1.6) σ(X, Y)=(XY+YX)U-2B), ΆZX=(XZ-ZX)(I-2B),

(1-7) ffB=(2/m)(I-(m+l)B),

(1.8) d(JX,JY)=d(X,Y),

(1.9) 7 5 = 0 ,

(1.10) £(*(*, Y), d(V, W))=2g(X, Y)g(V, W)+g(X, V)g{Y, W)

+g(X, W)g(Y, V)+g(JX, V)g(JY, W)+g(JX, W)g(jY, V),

(1.11) g(σ(X, Y), 7)=0, g(σ(X, Y), B) = -g(X, Y),

where I is the identity matrix of HM(m+l) and X, Y, V, W(ΞTB(CPm),
TB(CPm).

§2. Real hypersurfaces satisfying a certain equation.

Let M be a real hypersurface in CPm. We put

(2.1) JX=JX+fN,

where X is a unit tangent vector of M and N is the unit normal vector of M
and / is the 1-form on M. The pair (/, /) is called the almost contact struc-
ture of M. Let elf •••, e2m-lf AT be a local field of orthonormal frames of CPm

such that, restricted to M, e1} •••, £2m-i are tangent to M. With reference to
the local field of orthonormal frames, we can verify the following relations

(2.2) ΈkJikJkj=ftfj-δtJ,
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where J=(Jιj), /=(/<) and i, /, &=1, •••, 2m—1. We denote by 7 the induced
connection of M, and denote by σ and A, the second fundamental form of M
in CPm and the corresponding shape operator, respectively. We may put

(2.3) σ(et, ej)=hιjN> hιj=hjί.

We may define the covariant derivative of a by

(2.4) (V;iσ)(^, ek)=ei{hjk)N-σφeie,, ek)-σ(eJt ltiek),

and we put

(2.5) (ΨHσ)(ej, ek)=hjkiN.

Then, we have the Gauss equation and the Codazzi equation, respectively

(2.6) Rχjki=δjkδu—δikδJι+JjkJiι—JikJji+2JJiJkl+hJjkhiι--hikhjl,

(2.7) hkji-hkιj=fιjjk-fjik+2fjji,

where Rtjkι=g(R(elf βj)ekf et) and R is the curvature tensor of M.
Let H and H be the mean curvature vector of M in CPm and the mean

curvature vector of M in HxMim+l), respectively. Then, we see that

(2.8) J/

(2.9) #

for any point

where we have used (1.7). The following relations are verified:

(2.10) AB=

(2.11) Δ»β=

where ΔBk—λkBk. Then, it follows from the definition of bi-order immersion
that if M is compact, M is bi-order if and only if

(2.12) AHB=aHB+b(B-B0),

where a and b are positive constants and Bo is the constant part of B. If M
is of order {k, I}, then we have

(2.13) a=λk+λt, b=λkλι/(2m-l).

Therefore, computing AH, we want to derive the conditions that M satisfies
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the equation (2.12).

Remark 3. AH is computed in [7] under the assumption that M is minimal
in CPm.

PROPOSITION 1. Let M be a real hypersurface of CPm. Then, we have

(2.14) Dttβ=-ABei+a/{2m-l)){-2(2m+l)et+2fιΣjfie)

+ Σjβi(k,J)N} + σ(et, H)+(2/(2m-l))σ(Aeu N),

(2.15) Δ # β

+(2/(2m-l))Σ,MAet, Aet)+2Σ,iσ(et, AHe%)

+(S(,2m+l)/(2m-l))(I-(m+l)B)-(4/(2m-l)mt,jhmσ(et,N)

-{2(2m+2+\\σ\\*)/(2m-l)+{2m-l)\\HΓ\σ(N, N).

Proof. From (2.8), (2.9) and (1.9), we obtain

(2.16) DHH=-AHei+a/(2m-l))ΣMhjj)N+σ(eι, H)

-(4(m+l)/(2m-l))ei+(l/(2m-l)){ΆHN,N)ei+2σ(Aeτ,N)}.

Using (1.10), we get

(2.17) ΆSίN,ιoeι=2ei+2g(JN, et)JN.

Since (2.1) implies JN=-ΣJfJe}, (2.16) and (2.17) yield (2.14). In the following,
we assume that (7eje_,)s=0 for any i and j at B e M . Then, we obtain

(2.18) i i

a{e%, AHet)}

β., β,)+ά(β,, et)}

-(2/(2m-l))ΣΛ-gUAeι, et)JN+gCjN, eι)(-JAei+σ(eι, JN))}

-(l/(2m-l))^j{eiei(hjj)N+ei(hJi)(-Aei+σ(eΐ,N))}

)ei+a{σ{eι, e(), H)

+a/(2m-l))σ(et, et{hjj)N)-σ(et,

+ σ(σ(eι, Aet), N)-σ(Aet,
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Moreover, we see that

(by (2.2), (2.4) and (2.7)),

ΣtV<1(i4β,)=Σ,.*A«*β» (by (2.2), (2.4) and (2.7)),

«., βt)JN=Q (by (2.2) and (2.3)),

, βt)JAβt=JAJN,

ΈigiJN, βdσ(βιt JN)=σ(N, N) (by (1.8)),

ΈiΆί(e{,lί)ei=2(m-l)H (by (1.10) and (2.2)),

ΈιASίΛei,ίnet={2m-l)H+JAJN (by (1.10) and (2.2)).

Therefore, (2.18) is reduced to (2.15). Q.E.D.

LEMMA 2. Let M be a real hyper surf ace of CPm. Then, the following
relations are verified:

(2.19) g(B,B)=l/2,

(2.20) g(B,H)=-l,

(2.21) g(H, # ) = | | # U 2 + 4 ( 2 m 2 - l ) / ( 2 m - l ) 2 ,

(2.22) g(AH, β ) = - ( 2 m - l ) | | i / | | 2 - 4 ( 2 m 2 - l ) / ( 2 r n - l ) ,

(2.23) g{AHB, ^ ) = (

, JH).

Lemma 2 can be obtained by using (1.2), (1.4), (1.10), (1.11) and (2.15). Now,
we prepare the following

LEMMA 3. Let M be a real hyper surf ace of CPm. Assume that M is mass-
symmetric and satisfies the equation (2.12). Then,

\\H\\= const ant.

Proof. If M is mass-symmetric, it follows from (1.7) that

Then, using (2.12), Proposition 1 and Lemma 2, we have
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\\H\\2=(l/(2m-l)){a-b/2+b/2(m+l)-4(2m2-l)/(2m-l)}.

Therefore, we see that \\H\\2=constant. Q. E. D.

§3. Proofs of Theorems.

In consideration of Lemma 3, we assume in the following that M satisfies
the equation (2.12) and has constant mean curvature in CPm. First, (2.12) and
Lemma 2 imply that

(3.1) g(B, B0)=a/b){-a+b/2+(2nι-l)\\H\\*+4(2nι*-l)/(2m-l)}

—constant for any B<EM.

Then, we see that

(3.2) g(B-B0, B-B0)=l/2-2g(B, B0)+g(B0, Bo)

—constant.

(3.2) implies that M is contained in some sphere of radius

Vl/2-2g{B, B0)+g(B0, Bo) with center Bo. Since CPm is imbedded in a sphere

S{ϊ}ίi}iΓ)2)/(Vm/2(m+l)) of radius Vm/2(m+l) with center (l/(m+l))/, we con-

sider the following two cases.

Case 1. B0Φ(l/(m+l))I.
In this case, M is fully immersed in a small hypersphere of

because CPm is fully imbedded in HihMjn+1) and M is
a real hypersurface of CPm. We define a hyperplane HΊMim+l) of
as follows

0= -_-

3
u+v-\-l=m,

)~r2) r i + r 2 = l | .

Then, we may assume that M is contained in H[M(m+l). Since

o

with r 1 + r 2 = l is contained in H[M(m+l) and

=constant for any B^M(ZH[M(m+l),
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o
0

On the other hand, for any BeM, we see that

(3.3) B=z*z=

ZtZn

' I Zm + \

with IzJM- ••• +\zu+1\*=r1, \zu+2\
2+ ••• + \zm+ί\

z=r2. Therefore, M is locally
congruent to π(S5(Vn)x59(V^2)) with ^ + ^ = 1 , p=2u+ί, g=2v+l and
=2m. For any (z, w)(ΞSp(Vr1)xSq(Vr2)c:S2m+1(l), we see that

Using the properties of Δ for a Riemannian product manifold and the fact that
ί is a Riemannian submersion with the totally geodesic fibres (see [1]), we
obtain

o
(l/r1+(2m-l)/n)wizι

0

(3.4)

a/r1+(2m-l)/rύtz1wι

if p=l,

(3.5) AB=-{2m-l)H=\ -_

Δ2β = -(2m-l)Δ//

(p/r1-\-g/r2)ziWj

ΐ (P/r1+q/r2)
2ϊϋjzι

if ί,
For the case of p—\, M satisfies the equation (2.12) if and only if the fol-

lowing equations hold

(3.6)
16m2/rS=4mα/r2-(2m-l)ft,
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where a and b are positive constants. Then, we see that every π(S\\/ΐr

1)X
S 2 m -Vr 2 )) with riΦl/im+1) (i.e., J30^(l/(m+l))7) and r1Φl/2(m-\-l) satisfies
the equation (2.12). For the case of p, q>l, M satisfies the equation (2.12) if
and only if the following equations hold

(3.7)

(p/r1+q/r2)
2^(p/r1+q/r2)a-(2m-l)b.

In consideration of the condition r 2 (ί+l)=£ri(#+l) (i.e., BoφQ./(m+l))I), from

(3.7) we can see that every π(Sp(Vp/2(m+l))xSq(V(q+2)/2(m+l))) satisfies the
equation (2.12).

Case 2. 5 0 =(l/(m+l))/
If M has constant mean curvature, (2.15) can be reduced to

(3.8) AHB=(i/(2m-l))(JΛJN+(6m^2^\\σ\\ηH+(2/(2m-l))Σiσ(Λeu Ae%)

α(Λ̂ , N).

Since 7 and B are normal to CPm (see (1.4)), if M satisfies the equation (2.12),
it follows from (2.9) and (3.8) that

(3.9) ΛJN=μJN,

where μ—(βm+2+lk||2—a)a/A and a—^ihu. Now, we prepare the following
lemmas,

LEMMA 4 ([6]). If ΛJN=μJN for some real function μ on M, then, μ is
locally constant.

We denote by Vr the eigenspace of A corresponding to the eigenvalue r.

LEMMA 5 ([6]). Assume that AJN=μJN. If X belongs to Vr and is ortho-
gonal to JN, then JX belongs to Viμr+2)K2r-μ).

Using (1.10), (1.11) and (2.9), we obtain

(3.10) g(σ(X, Y), adB+b(B-(X/(m+l))I))

=(2(2m+l)fl/(2ro-l)-ft)*(*, Y)-(2a/(2m-l))g(X, JN)g{Y} JN)

for any X, Y<=ΞTBM.

On the other hand, it follows from (1.10), (1.11) and (3.8) that
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(3.11) g(σ(X,Y),AHB)

= {(16m2+lβm+2α2)/(2m-l)}^(Z, Y)

+(4/(2m-l)){ag(AX, Y)+g(AX, AY)+ag(AJX, JY)+g(AJX, AJY)}

-2{(4m+4+2||(τ||2+α2)/(2m-l)}g(/X X)g(JN9 Y),

where α=ΣtA« and X, YSΞTBM. We define the subspace V of TM as follows

Then, for any J£e?, (3.10) and (3.11) imply that

(3.12) A2X-JA2JX+aAX-aJAJX+βX=O,

where β=im(m+l)—(2m+ϊ)a/2+(2m—l)b/4:+ai/2. Since JXZΞTM, we can see
that

(3.13) PX=J(JX)=PX=-X.

Therefore, if X belongs to VΛ, then it follows from (3.12), (3.13) and lemma 5
that

(3.14) μ

for any XGVAΓ\V .

Consequently, (3.9), Lemma 4 and (3.14) imply that//V is a principal vector and
M has at most five distinct constant principal curvatures. Then, we need the
following

LEMMA 6 ([4]). Let M be a real hypersurface of CPm. Assume that JN is
a principal vector and M has constant principal curvatures. Then, M is a homo-
geneous one.

It follows from Lemma 6 that M is a homogeneous real hypersurface of CPm.

§4. Mss-symmetric homogeneous real hyper surf aces.

Homogeneous real hypersurfaces can be divided into six types, which are
the types of Au A2, B, C, D and E (see [11]). They are listed in Table 1.
In Table 1, tc is the number of the distinct principal curvatures and p and q
are odd number with p, q>\ and p+q=2m. First, we consider the type Ax.

TYPE AX. In this case, M has two distinct constant principal curvatures.
Therefore, a principal curvature λ must satisfy the equation
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Table 1.
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types

A1

Λ2

B

C

D

E

dimension

2m-1
(m^2)

2ra- l
(m^3)

2m-l
(m^2)

4n-3

17

29

2

3

3

5

5

5

principal curvatures

λ=cotr

μ=2cot2r

Λjirrcot r

λ2= — tan r

μ = 2 cot 2r

Λ^cot (r—π/4)

λ2— — tan(r—π/4)

^ = 2 c o t 2 r

^ϊ^cot (r—πz/4)
(z=l, 2, 3, 4)

μ=2cot2r

^ t =cot (r—πi/4:)
( ί=l , 2, 3, 4)

μ=2cot2r

^ t—cot(r— π/4)
(ι = l, 2, 3, 4)

μ=2cot2r

multiplicities

m(i)=2(m-l)

m(μ)=l

m(λι)=p"l

m(λ2)=g—l

m(μ)=l

m(λ1)=m=l

m(λ2)=m—l

m(μ)=l

m(λι)=2(n-2)
( ί = 2 , 4)

m(λt)=2
(i = l, 3)

m(/ι)=l

mWt)=4
(i = l , 2, 3, 4)

m( i M)=l

mWt)=8
(i=2, 4)

m(λι)=6
(i = l , 3)

7n(A£) = l

Comparing this with (3.14), we obtain λ—0. This is a contradiction.
If M has three distinct constant principal curvatures, the following cases

can be considered:
Case i) (A-λtfM-λ^O.
Case ii) (Λ-λJiΛ-λ.Y^O.
Case iii) (A-λ^Λ-λ^O.

TYPE A2. For the case i), the following equation must be satisfied:

Comparing this with (3.14), we obtain

a-μ=-2(λί+λ2)ί μ2-aμ+2β=2(λ2

1+U1λ2+λ2

2),

μ+a-βμ=-2λ1λ2(λ1+λ2), 4
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This, together with Table 1, implies

sin r = V ( ί + l ) / 2 ( w + l ) , cos r=V(?+l)/2(m+l)".

Therefore, M is locally congruent to

In the same way, we can verify that the cases ii) and iii) never occur.

TYPE B. In this type, we can easily see that all the cases i), ii) and iii)
never occur.

Finally, we consider the types C, D and E.

TYPES C, D and E. In these types, the following equation must be satisfied

U-h)U -λ2)(Λ -λs)(Λ -λ<)=0.

Comparing this with (3.14), we obtain

Λ-A£=-Σί=
(4.2)

μ+a-βμ=-

Since X^X^^l and μ=£θ for these types, the last equation in (4.2) implies that
β=2a/μ. This, together with (4.2), yields

Then, from Table 1, we can easily see that this is a contradiction. Thus,
Theorem 1 is proved. Theorem 2 is a immediate consequence of Theorem 1
and Lemma 3.

§5. Spectral inequality.

The following spectral inequality is proved in [3] and [8].

THEOREM C. Let x: M->EN be an isometric immersion of an n-dimensional
compact Riemannian manifold into an N-dimensional Euclidean space. Then,

(5.1) ( {n*g(AH, fy-nWi+

The equality holds if and only if M is of order {1} or order {2} or order {1, 2}.

Using Theorem C, we prove the following

THEOREM 3. Let M be a compact real hypersurface of CPm. Then, we have
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(5.2>

S4( {\\AJNΓ-\\σ\\*+2(2m-l)g(AJN,

A) // M has constant mean curvature H, then the equality in (5.2) holds if
and only if M is congruent to one of the following

1) π(S1(VΓ/2(m+l))XS2m-1(V(2m+l)/2(m+I))) (order {1}),
2) π(51(Vnί)X52 m-1(V^)) with ri<l/(m+l), r ^ l / 2 ( m + l ) β?zJ rt+r2=l

(order {1, 2}),

3) π(S^(V(p+l)/2(m+l))xS3(V(^+l)/2(m+Γ))) (orώr {1, 2}), uΛA p, q>l,
p-\-q=2m and p, q: odd.

B) // M is mass-symmetric, ί/zen ί/ιe equality in (5.2) /10/ds // αnJ <?n/̂  2/
M /s congruent to the case 3) in A).

Remark 4. For the case of M being minimal in CPm, we have Corollary
4.6 in [7].

Proof. (5.2) can be obtained by Lemma 2 and Theorem C. The equality
in (5.2) holds if and only if Mis of order {1} or order {2} or order {1, 2}. Then,
if M has constant mean curvature H and M is of order {1, 2}, it follows from
Theorem 1 that M is congruent to one of the cases i), ii) and iii) in Theorem
1. Therefore, it is enouph to investigate the order of the immersions of the
cases i), ii) and iii),

First, note that (see [1])

Spec(τr(S1xS,))={JleSpec(S1xS2) | A(fkXfί)=λ(fkxfι).

with &+/=even, f3: a homogeneous polynomial of degree j},

where Sj and Sz are the spheres with the natural metrics.

Case i). M=π(S1(v /rDxS2 w-1(Vr2)), r ^ l / C m + l ) , l/2(m+l). In this case,
from (2.13) and (3.6) we have λk=4m/r2, λι=l/r1+(2rn-l)/r2. If r 1 >l/2(m+l)
(i.e., λk>λt), M is of order {1, 2} if and only if r K l / t m + 1 ) . If
M is of order {1, 2} for any rx. If r 1 =l/2(m+l), M is of order {1}.

Case ii). M=π(Sp(Vp/2(m+l))XS«(V(q+2)/2(m+l))), p, q>l,
and p, q:oάά. In this case, from (2.13) and (3.7) we have Λft=4(/>+l)(

Therefore, M is of order {1, 2} if and only if

2(m+l)+2q(m+l)/(q+2)^4:(p+l)(m+l)/p.

But, this is impossible.
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Case iii). M=π(Sp(V(p+l)/2(m+l))xS<ί(V(q+l)/2(m+l)))f p, q>\,
2m and p, q: odd. In this case, from (2.13), (3.12) and (4.1) we have

Therefore, M is of order {1, 2}, If M is mass-symmetric, Theorem 2, together

with the above arguments, gives the result. Q. E. D.
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