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§0. Introduction.

Real hypersurfaces in a complex projective space have been studied by many
differential geometers (for example, see [2], [4], [5], [6], [10] and [11]).

Typical examples of real hypersurfaces in a complex projective space are
homogeneous ones ([10]). They are realized as the tubes of constant radius
over compact Hermitian symmetric spaces of rank 2 (see [10]). Homogeneous
real hypersurfaces in a complex projective space have been characterized by
many differential geometers, who have used the multiplicities of the principal
curvatures of them.

In [7], some of homogeneous real hypersurfaces are characterized from a
different point of view. In this paper, we give some generalizations of the
results in [7].

Let f: M—EY be an isometric immersion from an n-dimensional compact
Riemannian manifold into an N-dimensional Euclidean space, and let A and
Spec (M)={0<1,<A,< -} be the Laplacian of M and the spectrum of M, re-
spectively. Then, it is known that f can be decomposed as f=f,+>enfs,
where Af,=2,f, and f, is a constant mapping, and the addition is convergent
componentwise for the L*topology on ¢*(M). We say that the immersion is
of order {k} (or mono-order) if f=foy+fs, REN, fr#0, and of order {k, {} (or
bi-order) if f=f,+fs+fi, k, IEN, 1>k, fi, f1#0. Moreover, we say that M
is mono-order (resp. bi-order) if f is mono-order (resp. bi-order). From a well
known result of Takahashi [12], we know that M is mono-order if and only
if M is a minimal submanifold of some sphere of E¥. Minimal submanifolds
of a sphere have been studied by many differential geometers. Then, we con-
sider the following problems :

i) Investigate the necessary and sufficient conditions for f to be bi-order.

ii) Classify the bi-order immersions.

These problems are very interesting, but very difficult. Hence, we consider
the restricted problems as follows: Let F:CP™(4)—EY be the first standard
imbedding of an m-dimensional complex projective space of constant holomorphic
sectional curvature 4 into an N-dimensional Euclidean space (for details, see
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§1), and let ¢: M*—>CP™(4) be an isometric immersion of an n-dimensional
Riemannian manifold. We consider f=F-¢: M"—E¥. Note that f is mono-
order (resp. bi-order) if and only if the restriction of an arbitrary first eigen-
function of CP™(4) to M™ is also an eigenfunction of M" (resp. sum of two
eigenfunctions of M™ corresponding to distinct eigenvalues). It is interesting
to study the problems: To what extent, does the analytic condition (such as
the order of the immersion) determine the geometry of submanifolds? If ¢’s
are Kaehler immersions, mono-order and bi-order immersions are completely
determined ([8], [13]). In fact, they are totally geodesic Kaehler submanifolds
(order {1}) or Einstein parallel Kaehler submanifolds (order {1, 2}). Moreover,
every totally real submanifold M™ of CP™ is mono-order. In this paper, we
consider the case that M is a real hypersurface of CP™.

Then, Martinez and Ros [7] obtained the following

THEOREM A. Let M be a real hypersurface of CP™4) (m=2). Then, M is
minimal in some sphere of E¥ if and only if M is locally congruent to the geo-
desic hypersphere

7(SMV1/2(m~+1)) X S*™- X/ (2m+1)/2(m+1))),
where m: S*™+Y(1)>CP™(4) is the usual fibration.

THEOREM B. Let M be a compact minimal real hypersurface of CP™(4).
Then, M is bi-order in E¥ if and only if M is congruent to one of the following :

i) a geodesic hypersphere n(S'(vV1/2mxS?™-1(~/(2m—1)/2m)), m=2,
i) 7(S™(V1/2)xS™1/2)), m: odd, m=3.

Remark 1. In fact, CP™(4) is minimally imbedded in a sphere
Sm+02-2( /37900 +1)) of radius vm/2(m—+1) and #(S*(V1/2(m+1)) X
S2m-1(/(Zm+1)/2(m~+1))) is minimal in a small hypersphere
Sm+02-3( /Gt =T /8mmE D)) of S™HP-2(n/m/2mI1)).

Our results are the following

THEOREM 1. Let M be a compact real hypersurface with constant mean cur-
vature in CP™4). Then, M is bi-order in E¥ if and only 1f M is congruent to
one of the following

i) a geodesic hypersphere m(SH (/7)) X S*™ Y /7y) with ri+r,=1, ri#1/2(m4-1).

i) w(SP(Vp/2(m+1)) X SUN(g+2)/2(m+1))),

iil) #(SP(V(p+1)/2(m+1)) X SUV(¢+1)/2(m+1))),
where p, ¢>1, and p and q are odd with p+q=2m.

A submanifold M of a sphere S¥-! in E¥ is called mass-symmetric in S¥-*
if the center of gravity of M coincides with the center of S¥-* in E¥, Then,
we have
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THEOREM 2. Let M be a compact real hypersurface of CP™4). Then, M
s mass-symmetric and bi-order in E¥ if and only if M is congruent to the case
iii) 2n Theorem 1.

Remark 2. Since CP™4) is mass-symmetric in S™*+V%-2(v/m/2(m~+1)), the
condition that M is mass-symmetric is equivalent to the one that the center of
gravity of M coincides with the center of gravity of CP™(4).

For Kaehler submanifolds in CP™, some kind of spectral inequality involv-
ing 4, and 4, of M is obtained ([14]). For real hypersurfaces as well as Koehler
submanifolds, the same kind of spectral inequality will be proved in §5. In fact,
Theorem 1 and Theorem 2 are used to prove the spectral inequality.

All manifolds are assumed to be connected and of real dimension =2 unless
otherwise stated.

The author wishes to thank Professors K. Ogiue and N. Ejiri for many
valuable comments and suggestions, and also thank Mr. M. Kimura for many
useful comments.

§1. Preliminaries.

Let CP™ be a complex projective space obtained as a quotient space of the
unit sphere S?™+}(1)={ze C™*!|zz*=2zz'=1} by identifying z with 1z, A=C and
|A|=1. Let g, be the canonical metric on CP™, which is the invariant metric
such that the fibration =:S*™*(1)>CP™ is a Riemannian submersion. It is
known that (CP™, g,) has constant holomorphic sectional curvature 4. More-
over, its Riemannian curvature tensor R is given by

(L.1) RX, V)Z=g\Y, Z)X—goX, Z)Y +2,(JV, Z)]X
—a(JX, 2)JYy +2g,(X, JV)]Z
for any X, Y, ZT(CP™),

szere f is the complex structure tensor of CP™. Let HM(m+1)={P< gl(m+1, C)
| P=P!} be the set of all Hermitian matrices of degree (m-+1) with the metric
g such that

1.2) g(P, Q)=1/2nr(PQ)  for any P, Q€ HM(m+1).
Sakamoto [9] proved that the mapping F: S*™+(1)—HM(m+1) given by
(€.3) Fa)=zrz=2'z, zeS™(1)

induces an immersion F: CP™— HM(m+1) such that the following hold:
i) F(CP™={P=sHM(m+1)| P*=P and tr(P)=1},
i) F is an equivariant full isometric imbedding into
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HM(m+1)={P=s HM(m+1) | tr(P)=1}.

In the following, we identify CP™ with F(CP™). We denote by D the Rie-
mannian connection of HM(m-+1), by V the induced connection of CP™ and
denote by V+, , A and H, the normal connection, the second fundamental form,
the corresponding shape operator and the mean curvature vector of CP™ in
HM(m+1), respectively.

LEMMA 1. The tangent and normal speces at each point B CP™ are given
respectively by
TzCP™={Xe HM(m+1) | XB+BX=X}

(1.4
T3CP™={Z=HM(m+1) | ZB=BZ}.

Moreover, we have

(L5) JX=v=1T(U—-2B)X,

(1.6) X, V)=(XY +Y X)I—2B), A, X=(XZ—-ZX)I—2B),
%) Hy=(@/m)I—(m+1)B),

(1.8) ¢(JX, J")=8(X, V),

(1.9) V5=0,

(1.10) 23X, Y), 6V, W)=2g(X, VgV, W)+g(X, V)g(Y, W)
+5(X, W)g(Y', V)+g(JX, V)e(JY, W)+g(JX, W)g(JY, V),

1.11) ga(X,Y), D=0, g@XY) B)=—gX,Y),

where I is the identity matrix of HM(m+1) and X,Y,V, WeTz(CP™), Z<
THCP™).

§2. Real hypersurfaces satisfying a certain equation.

Let M be a real hypersurface in CP™. We put
@1 JX=JX+/N,
where X is a unit tangent vector of M and N is the unit normal vector of M
and f is the 1-form on M. The pair (/, f) is called the almost contact struc-
ture of M. Let ey, -+, @m-1, IV be a local field of orthonormal frames of CP™
such that, restricted to M, e, -+, e;n-, are tangent to M. With reference to
the local field of orthonormal frames, we can verify the following relations

2.2) Ekfik]kj=fzfj"‘5n » Ejf;]jizo,-
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>.f5=1,  J;+]:=0,

where J=(/.;), f=(f:) and ¢, j, k=1, ---, 2m—1. We denote by V the induced
connection of M, and denote by ¢ and A, the second fundamental form of M
in CP™ and the corresponding shape operator, respectively. We may put

(23) 0'(01,, ej):hth: hlJ':hfi'

We may define the covariant derivative of ¢ by

(2.4) (Ve,0)(e;, er)=ei(hjs)N—a(Nee,, ep)—ale,, Vees),
and we put
(2.5) (Ve,0)(e;, er)=hjrN .

Then, we have the Gauss equation and the Codazzi equation, respectively

(2.6) Rijui=0;10u—0:0 1+ e u—Jie 5 +2] i 0 seha—hawhy,
2.7) hieji—he=FJi—1 5 iet2f ],

where R,;,,=g(R(e,, e;)e:, ¢;) and R is the curvature tensor of M.
Let H and H be the mean curvature vector of M in CP™ and the mean
curvature vector of M in H,M(m+1), respectively. Then, we see that

(2.8) H=(1/@m—1)Z;a(e,, e)=1/@m—1))2hiN,
(2.9) Hy=1/Cm—1){Z:0(e,, e)+ile,, e}

=Hp+(1/@m—1)){4 —(m+1)B)—&(N, N)}
for any point BeM,

where we have used (1.7). The following relations are verified :

(2.10) AB=—(2m—1)Hz=34en2:Bs
2.11) A*B=—(2m—1)AHz=31en 2B, ,

where AB,=24,B,. Then, it follows from the definition of bi-order immersion
that if M is compact, M is bi-order if and only if

(2.12) AHy=aHz+b(B—B,),

where @ and b are positive constants and B, is the constant part of B. If M
is of order {k, [}, then we have

(2.13) a=2+4,, b=2;4,/2m—1).

Therefore, computing A1-7, we want to derive the conditions that M satisfies
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the equation (2.12).

Remark 3. AH is computed in [7] under the assumption that M is minimal
in CP™.

PROPOSITION 1. Let M be a real hypersurface of CP™. Then, we have
(2.14) D, A=—Ayei+(1/@m—1){—2@m+1)ei+2f,3,f e,
+ 3 eih;) N} +3(e., H)+(2/2m—1)3(Ae,, N),
(2.15) AHz=(1/Cm—1),., 112h;5hin+hisnh s} e
—(1/2m—1) D, shs5eN+&/@m—1)JAIN+Em+2+ 0| H
+(2/Cm—1))2:(Aes, Aey)+2%;5(e., Aney)
+@@m+1)/2m—1))I—(m+1)B)—(4/2m—1)Z, ;h;;:6(e,, N)
—{2@m+2+|e)?)/Cm—1)+2m—1)|H|*} 6(N, N).
Proof. From (2.8), (2.9) and (1.9), we obtain
(2.16) D, A=—Agxei+(1/2m—1)),eh;)N+3(e., H)
—(@(m+1)/@m—1))ei+(1/@m—1)){ Ascw, wre:+23(Ae,, N)}.
Using (1.10), we get
2.17) Ascw, myei=2e;+2g(JN, e) JN .

Since (2.1) implies fN:—E,-f,e,, (2.16) and (2.17) yield (2.14). In the following,
we assume that (V,,e;)s=0 for any 7 and j at BeM. Then, we obtain

(2.18)  AHz=—3.D.,D.,H;z
=2i{Ve(Ane)ta(e, Ane)ta(e, Anell

+2@2m+1)/2m—1))Z:{o(e,, e)+d(e,, e}
—@2/@m—1)Zd—g(JAe,, e)JN+g(JN, e)(—JAet+s(e., JN)}
—(1/@m—1)Z,, j{eseih; )N+ eilh;))(— Aei+d(e,, N))}
—Ei{—ﬁa(ei,mei-l-&(a(ez, e;), H)

+(1/2m—1))é (e, ei(h;)N)—a(e., Aned)}
—(2/@m—1) Sl — Ascse, meit (Vo i(Aes), N)

+(o(e,, Ae,), N)—d(Ae,, Ae,)}.



188 SEIICHI UDAGAWA
Moreover, we see that

2NV (Age)=1/Cm—1))20, ), e{hjjihirthirhjster

(by (2.2), (2.4) and (2.7)),

SV (Ae)=3 shirer by (2.2), (2.4) and (2.7)),

Shg(JAe, e) JN=0  (by (2.2) and (2.3)),

ig(JN, e)JAe,=JA]N,

ig(JN, edate, JN)=a(N, N)  (by (L.8)),

DAz, mes=2m—1H  (by (1.10) and (2.2)),

SuAscsen mye=Cm—1DH+JAJN  (by (1.10) and (2.2)).

Therefore, (2.18) is reduced to (2.15). Q.E.D.

LEMMA 2. Let M be a real hypersurface of CP™. Then, the following
relations are verified :

(2.19) g(B, B)=1/2,

(2.20) g(B, H)=—1,

@.21) g(f, h=|H|*+4@m*—1)/2m—1),

(2.22) g(AH, B)=—@m—1)| H|*—4@2m*—1)/2m—1),

(2.23) 8(AHp, Hg)=(1/2)A|H|*+ || dH |[*++B(m—+1)dm? —2m—1))/(2m—1)?
+(4/@m—1®) o |*+10m-+6+ o) H|*
—(4/@m—1)| AN |*—(8/@m—1))g(AJN, JH).

Lemma 2 can be obtained by using (1.2), (1.4), (1.10), (1.11) and (2.15). Now,
we prepare the following

LEMMA 3. Let M be a real hypersurface of CP™. Assume that M is mass-
symmetric and satisfies the equation (2.12). Then,

|| H||=constant.

Proof. If M is mass-symmetric, it follows from (1.7) that
By=1/(m+1)I.

Then, using (2.12), Proposition 1 and Lemma 2, we have
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IH|?=1/@2m—1)){a—b/2+b/2(m+1)—4(2m*—1)/2m—1)}.

Therefore, we see that |H||?=constant. Q.E.D.

§3. Proofs of Theorems.

In consideration of Lemma 3, we assume in the following that M satisfies
the equation (2.12) and has constant mean curvature in CP™. First, (2.12) and
Lemma 2 imply that

@1 g(B, B)=Q1/b){—a+b/2+Cm—DIH|*+4(2m*—1)/(2m—1)}
=constant for any BeM.
Then, we see that
(3.2) g(B—B,, B—By)=1/2—2g(B, By)+g(B,, By)
=constant.

(3.2) implies that M is contained in some sphere of radius

1/2—2g(B, By+g(B,, B,) with center B,. Since CP™ is imbedded in a sphere
St ((v'm/2(m~+1)) of radius ~/m/2(m~+1) with center (1/(m+1))I, we con-
sider the following two cases.

Case 1. B,*={1/(m+1)I.
In this case, M is fully immersed in a small hypersphere of

minE2 (v/m/2(m~+1)) because CP™ is fully imbedded in H;M(m-+1) and M is
a real hypersurface of CP™. We define a hyperplane HiM(m+1) of HM(m+1)
as follows

S,
HiMn+1)={Q HMim+1) | Q= [ --------

S, e HM(u+1), S,e HM(v+1), u+v+l=m,
tr(S)=ry, tr(Sy)=r,, ?'1+7’2:l} .
Then, we may assume that M is contained in HiM(m+1). Since

[ (r1/(u+D) w1, ussr

__________________ 0 ]
(ra/ 1)1 ps1, 041
with 7;+7,=1 is contained in H;{M(m-+1) and
8(B—=Q,, B—Qy)=1/2—(1/2)r}/(u+1)+7r}/(v+1))
=constant for any Be MCHM(m+1),
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we see that
[ (ro/ (w41 s1,uts } 0
= .

0 o/ 0D e, g0
On the other hand, for any BE M, we see that

212 Zi2p oo Z21Zm1
(3'3) B:Z*Z: 2221 Izzlz ...............

§m+121 ............ |Zm+1|2

with |z,]24 - + 121 |2=7y, |Zuse|®+ - +|2Znei|2=rs.  Therefore, M is locally
congruent to #(SU/71)XSU+/72) With r,+7r,=1, p=2u+1, ¢g=2v+1 and p+gq
=2m. For any (z, w)eSP(\/71) X SU/7)CS*™ (1), we see that

B w=] 2] w

S ] e HiM(m+1).

Using the properties of A for a Riemannian product manifold and the fact that
# is a Riemannian submersion with the totally geodesic fibres (see [1]), we

obtain

. 0 A/ri+2m—1)/r)Zw,
(3.4) AB=—02m—1)H= R
(1/ri+@2m—1)/1,)i0:2, @m/r)ww;—41
N 0 | A/rit+@m—1)/r)Zw,
A’B=—(2m—1)AH= s
1/ry+@m—1)/7r.)%W 12, (16m?/73) W yw ;— (16m/7,) ]

if p=1,

. [(2(p+1)/r1)§izj—41 (p/r1+q/r)Zw, }
(3.5)  AB=—(2m—1)H=| oo
A*B=—(2m—1)AH
_[ 4(p+1)*/rHzez;—@B(p+1)/r)l
(;b/rl-l-q/r,)zij,

(p/ri+a/r)Zw, ]
(A(q+1)*/r)@w;—B(q+1)/r)I |

if p, ¢>1.
For the case of p=1, M satisfies the equation (2.12) if and only if the fol-

lowing equations hold
A/ri+@Cm—1)/r)*=1/r+(2m—1)/r;)a—(2m—1)b

(3.6)
16m?/ri=4dma/r,—(2m—1)b,
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where a and b are positive constants. Then, we see that every n(S*(+/71)X
S2m-1(/r,)) with »,#1/(m+1) (.e., Bo#=1/(m+1)I) and r,#1/2(m+1) satisfies
the equation (2.12). For the case of p, ¢>1, M satisfies the equation (2.12) if
and only if the following equations hold

A4 p+12/r:=2(p+Da/r,—2m—1)b
3.7 4(q+1)*/ri=2(g+1)a/r,—(2m—1)b
(p/r1+q/r:)*=(p/r1+q/r)a—(2m—1)b.

In consideration of the condition r,(p+1)#r,(¢g+1) (i.e., By#=(1/(m—+1))I), from
(3.7) we can see that every n(S?(Vp/2(m+1))X SU~(qg+2)/2(m~+1))) satisfies the
equation (2.12).

Case 2. B,=1/(m~+1)I

If M has constant mean curvature, (2.15) can be reduced to

3.8 AHp=4/@m—1))JAIN+6m+2-+| 0| H+(2/2m—1))5:5(Ae,, Ae,)
+2205 (e, Aner)+8@2m+1)/2m—1))I—(m+1)B)
—{2@m+2+|0|*)/Cm—1+Cm—D[H|*} (N, N).

Since I and B are normal to CP™ (see (1.4)), if M satisfies the equation (2.12),
it follows from (2.9) and (3.8) that

(3.9) AJN=ujN,

where p=(6m+2+||lo||*—a)a/4 and a=3;hi;. Now, we prepare the following
lemmas,

LEMMA 4 ([6]). If AJN=ujN for some real function p on M, then, y is
locally constant.

‘We denote by V, the eigenspace of A corresponding to the eigenvalue 7.

LEMMA 5 ([6]). Assume that AJN=pJN. If X belongs to V, and is ortho-
gonal to [N, then JX belongs to V curizyicor-p-

Using (1.10), (1.11) and (2.9), we obtain
(3.10)  g(6(X, Y), aHp+b(B—1/(m+1)D)
=@2@2m+1)a/@m—1)—b)g(X, Y)—(2a/2m—1)g(X, [N)g(Y, JN)
for any X, YeT:M.

On the other hand, it follows from (1.10), (1.11) and (3.8) that
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(B.11)  g#(X,Y), AHp)
={(16m*+16m+2a?/(2m—1)} g(X, Y)
+4/@m—1){ag(AX, Y)+g(AX, AY)+ag(AJX, JY)+g(AJX, AJY)}
—2{(4m+4+2|o|*+a*)/@m—D}g(JN, X)g(JN, ),
where a=>;h;; and X, YeTzM. We define the subspace ¥V of TM as follows
V={XeTM | g(X, JN)=0}.
Then, for any Xe ¥, (3.10) and (3.11) imply that
3.12) A X—JA I X+aAX—aJAJX+BX=0,

where B=4m(m+1)—2m+1)a/2+(2m—1)b/4+a®/2. Since er TM, we can see
that

(3.13) PX=]JJX)=]*X=—X.

Therefore, if X belongs to V,, then it follows from (3.12), (3.13) and lemma 5
that

@14) {4 ) A2 — ap+2B) A2 +4 -+ a— Ban) A+4d—2ep+ B X=0
for any XeV NV.

Consequently, (3.9), Lemma 4 and (3.14) imply that fN is a principal vector and
M has at most five distinct constant principal curvatures. Then, we need the
following i

LEMMA 6 ([4]). Let M be a real hypersurface of CP™. Assume that JN is
a principal vector and M has constant principal curvatures. Then, M is a homo-
geneous one.

It follows from Lemma 6 that M is a homogeneous real hypersurface of CP™.

§4. Mss-symmetric homogeneous real hypersurfaces.

Homogeneous real hypersurfaces can be divided into six types, which are
the types of A, A,, B, C, D and E (see [11]). They are listed in Table 1.
In Table 1, £ is the number of the distinct principal curvatures and p and ¢
are odd number with p, ¢>1 and p+q¢=2m. First, we consider the type A,.

TYPE A;. In this case, M has two distinct constant principal curvatures.
Therefore, a principal curvature A must satisfy the equation

(A—2)*=0.
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Table 1.
types dimension K principal curvatures multiplicities
2m—1 2 A=cotr m(A)=2(m—1)
A, (m=2)
p=2cot 2r m(pw)=1
om—1 A=cotr m(A)=p—1
A, (m=3) 3 Ay=—tanr m(4;)=g¢—1
p=2cot 2r m(p)=1
om—1 Ay=cot (r—m/4) m(A)=m=1
B (m=2) 3 Ay=—tan (r—mn/4) m(Ay)=m—1
p=2cot 2r m(p)=1
4n—3 Z,=c9t (r—mz/4) m(Zl)=2_(n—2)
(n=3) (i=1,2,3,4) =2, 4)
C 5 p=2cot2r m(,)=2
(=1, 3)
m(p)=1
A,=cot (r—mi/4) m(A,)=4
D 17 5 (=1, 2, 3, 4) (=1,2,34)
p=2cot 2r m(p)=1
A,=cot(r—mi/4) m(A,)=8
(=1, 2, 3, 4) (=2, 4)
E 29 5 p=2cot 2r m(A,)=6
(=1, 3)
m(p)=1

Comparing this with (3.14), we obtain A=0. This is a contradiction.
If M has three distinct constant principal curvatures, the following cases
can be considered :

Case
Case

i) (A=2)"(A—2=0.
i) (A—2,)(A—12)*=0.

Case iil) (A—2,)%(A—2,)=0.

TYPE A,.

For the case i), the following equation must be satisfied :

At =221+ ) AP+ (A} + 42,25+ A3) N* — 22, 25(A1+25) A+ 2523=0.

Comparing this with (3.14), we obtain
pr—ap+2B=22+ 42,0+ 23,

4.1)

a—p= —2(A1+4,),

pta—Bp=—242x4+2,),

4—2ap+Ppr=42223.
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This, together with Table 1, implies
sin r=+/(p+1)/2(m+1),  cos r=+/(¢g+1)/2(m~+1).

Therefore, M is locally congruent to

(SP(V(p+1)/2(m+1) X SV (g+1)/2(m+1)).

In the same way, we can verify that the cases ii) and iii) never occur.

TyYPE B. In this type, we can easily see that all the cases i), ii) and iii)
never occur.
Finally, we consider the types C, D and E.

TyPEs C, D and E. In these types, the following equation must be satisfied
(A—=2)(A—=2)(A—2)(A—2,)=0.
Comparing this with (3.14), we obtain
a—p=—23_14,, pr—ap+2B=23<,A:4,,
pta—Bu=—2ic<rhididy,  4A—2au+PBur=42,4,4:4,.
Since 4,4,4;4,=1 and p+0 for these types, the last equation in (4.2) implies that
B=2a/p. This, together with (4.2), yields
dp+ (P —DZiAi=2p200jAid, .

Then, from Table 1, we can easily see that this is a contradiction. Thus,
Theorem 1 is proved. Theorem 2 is a immediate consequence of Theorem 1
and Lemma 3.

4.2)

§5. Spectral inequality.
The following spectral inequality is proved in [3] and [8].

THEOREM C. Let x: M—EY be an isometric immersion of an n-dimensional
compact Riemannian manifold into an N-dimensional Euclidean space. Then,

G.1) SM{nZg(AFI, ) —n*(+2,)g(A, A)—nizeg(x, B))=0.
The equality holds if and only if M is of order {1} or order {2} or order {1, 2}.
Using Theorem C, we prove the following

THEOREM 3. Let M be a compact real hypersurface of CP™. Then, we have
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(5.2) {8(m+1)(dm*—2m—1)—4@2m>*—1)(A,+ 25)+(2m—1)A,4,} vol(M)

+(@2m—1) SM{(10m+6+H0IIZ—ZI—XZ)IIH||2+ lldH|*}

24|, (1AFNP—llo|+2@m—1g(A]N, JH)).

A) If M has constant mean curvature H, then the equality in (5.2) holds if
and only if M is congruent to one of the following

1) a(SYVI/20m+1D) X SV @m~+1)/2(mF1)) (order {1}),

2) w(SHVT)XS*™ U V7)) with 7, <1/(m+1), ri#1/2(m+1) and r,-+r.=1
(order {1, 2}),

3) =SV (p+1)/2m~+1)) X SV (g+1) /2(m+1))) (order {1, 2}), with p, ¢>1,
p+q=2m and p, q: odd.

B) If M is mass-symmetric, then the equality in (5.2) holds if and only if
M is congruent to the case 3) in A).

Remark 4. For the case of M being minimal in CP™, we have Corollary
4.6 in [7].

Proof. (5.2) can be obtained by Lemma 2 and Theorem C. The equality
in (5.2) holds if and only if M is of order {1} or order {2} or order {1, 2}. Then.
if M has constant mean curvature H and M is of order {1, 2}, it follows from
Theorem 1 that M is congruent to one of the cases i), ii) and iii) in Theorem
1. Therefore, it is enouph to investigate the order of the immersions of the
cases i), ii) and iii),

First, note that (see [1])

Spec (7(S1 X S,))={2€Spec (S1 X Sz) | A(f e Xf)=A(f X[1) .
with k+I/=even, f,: a homogeneous polynomial of degree j},

where S; and S, are the spheres with the natural metrics.

Case i). M=n(S* (1) XS*™ Y /7y), ri#1/(m+1), 1/2(m+1). In this case,
from (2.13) and (3.6) we have A,=4m/r,, A,=1/r;+Cm—1)/r,. If r,>1/2(m+1)
(i.e., 2,>2,), M is of order {1, 2} if and only if »,.<1/(m+1). If r,<1/2(m+1),
M is of order {1, 2} for any r,. If r,=1/2(m+1), M is of order {1}.

Case ii). M=n(S?(Vp/2m+1))XSU~(q+2)/2(m~+1))), p, ¢>1, p+qg=2m
and p, ¢:odd. In this case, from (2.13) and (3.7) we have 2,=4(p+1)(m+1)/p,
Ai=4(g+1)(m+1)/(g+2). Therefore, M is of order {1, 2} if and only if

2m+1)+2g(m+1)/(g+2)=24(p+1)(m+1)/p .

But, this is impossible.
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Case iil). M==(S?(V(p+1)/2(m+1))XSU~(¢+1)/2(m+1))), p, ¢>1, p+q=
2m and p, ¢: odd. In this case, from (2.13), (3.12) and (4.1) we have

Ap=2(m+1)(p(g+1)+g(p+1)/(p+1)(g+1), 2, =4(m+1).

Therefore, M is of order {1, 2}, If M is mass-symmetric, Theorem 2, together
with the above arguments, gives the result. Q.E.D.
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