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REGION AND NUMBER OF PERIODIC SOLUTIONS

OF DUFFING'S EQUATION

BY YASUNORI SAWANO

§ 1. Introduction.

In this paper, we consider the generalized equation

(1.1) x"+f(x)x'+g{x)=e(t), '=jt

of Duffing's equation

(1.2) xff+cx'+ax+bx*=ε cos ωt.

where a, b, c and ε are positive constants. Suppose that /(%) and g(x) in the
equation (1.1) satisfy the following conditions:

(1.3) e(t) is periodic with the least period L;

\e(f)\^E for v ί ,

where E is a positive constant.
In section 2, we indicate in Theorem 1 the existence of periodic solutions

of the equation (1.1) and the regions where the periodic solutions exist. The
analogous results have been obtained by N. Levinson [1], [2], W. S. Loud [4]
and K. Shiraiwa [5], when dg(x)/dx is positive for any x, and xg{x) is not
negative for any x. Moreover, Levinson [1] and [2] assumed that f(x) is posi-
tive for Itfl^A", where X is a positive constant. Loud [4] and Shiraiwa [5]
supposed that f(x) is positive. We show the statements under weaker assump-
tions. In our proof, we applied the method of Shiraiwa [5].

In section 3, we show in Theorem 8 that the periodic solutions which are
given in Theorem 1 are completely stable when we assume f(x)>dg(x)/dx>l
in some region. This property was showed by Levinson [1] when g(x)—x,
and by Loud [4] and Shiraiwa [5] when f(x) is a positive constant. We can
show it by the same way as in Levinson [1] except how to take the distance
of two different solutions of the equation (1.1).
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In section 4, we give, as the application of the previous sections, the num-
ber of periodic solutions, their property and the regions where they exist, and
in the last section, numerical results are given where the statement of section
4 are asserted for two particular equations.

§2. Existence of periodic solutions.

Up to the present, many people have shown the existence of periodic solu-
tions of the equation (1.1) with the following assumptions for f(x), g(x):

for

4(x)>0 for
ax

xg(x)>0 for xφQ.

Beside K. Shiraiwa [5] indicated a region where the periodic solution exists
under the assumptions:

f(x)>C>0 for

as
0 ^ - ^ - W < 3 M for \x\<"m;

\im\ g(x)\>E,

where M depends on m. In this paper, we prove the existence of periodic solu-
tions of the equation (1.1) under weaker assumption, and we prove the regions
where these solutions are.

THEOREM 1. Assume the condition (1.3). We suppose that, there exist a and
β such that

g(a)=-E

(2.1) g(β)=E

\g(x)\g,E for a<x<β.

Moreover, assume that f(x) and g(x) satisfy

for a - ^ ^ x ^ ^

(2.2)

^f for a

Then the equation (1.1) has at least one periodic solution with the least period L
in the region
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AF AF AFΛf AF

D={(x, . 0 k - ^

Proof. We consider the system
xf—y

(2,3)
y'=-f(χ)y-gW+e(t),

which is equivalent to the equation (1.1). From the equation (2.3), we have

(2.4) y~^ =

Here we define dy/dx at y=0 as

+ 00 for y'>0

(2.5) " ^ H ' ° for :y/=0

— 00 for y'<0.

We define the following equations:

(2.6) y—r-——Cy

(2.7) y*y- = -Cy

where we assume also that dy/dx satisfy (2.5). From the first inequalities in
the assumption (2.2), we have

(2.8) - ^ - in ( 2 . 4 ) ^ - ^ - in (2.6) 3>>0

(2.9) 4^" i n (2,4)^4^ i n (2 7)
dx dx

We need the following lemmas for solutions of the equation (2.6), whose proofs
will be given after the proof of Theoreml.

LEMMA 2. All the solutions y(x) of the equation (2.6) have the following
properties in the upper half plane {(x, 3>)l:y>0} :

(2.10.1) y(x) is a increasing function of x below the curve
—Cy—g(x)-srE=0, and decreasing above it.

(2.11.1) y(x) have extremums at the point which is the
meeting point of the curve —Cy—g(x)-\-E—0.;



58

(2.12.1)

YASUNORI SAWANO

y(x) which start the region {(x, y)\a—4E/C2<x<β, y>0],
meet with the line χ—β in the upper half plane.

LEMMA 3. All the solutions y{x) of the equation (2.7) have the following
properties in the lower half plane {(x, 3>)|;y<0} :

(2.10.2) y(x) is a decreasing function of x above the curve
—Cy—g(x)—E=0, and increasing below it.

(2.11.2) y(x) have extremums at the point which is the meeting
point of the curve —Cy—g(x)—E—0.

(2.12.2) y{x) which start the region {(x, y)\a<x<β+4E/C2, y<0\,
meet with the line x=a in the lower half plane.

Moreover, we assume the next lemmas.

LEMMA 4. The solutions of the equation (2.6) starting from (β, AE/C) inter-
sect with x-axis at some x such that β<x<βJ

rAE/C2.

LEMMA 5. The solutions of the equation (2.7) starting from (α, —4E/C)
intersect with x-axis at some x such that a—iE/C2<x<a.

From now on, we consider the domain bounded by the following curves
Ci Cio

Cx is the solution of the equation (2.6) started from (β, 4E/C) to a inter-
section with x-axis at (xlf 0). Lemma 4 gives that /3<X!</3+4£/C2. Next we
define C2 as the solution of the equation (2.7) started from (xlf 0) to a inter-
section with the curve — Cy—g{x)—E—0. Let the intersection be called (x2, yz).
Here, we suppose the next lemma, too.

LEMMA 6. The point (x2, y2) satisfies y2^—

(«' —C")

Fig. 1.
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From this lemma we have y^—^E/C, then we define C3 as the line seg-
ment from (#2, 3>2) to (x2, —4£/C). Next we make the curve C4, which is the
solution of the equation (2.7) starting from (x2, —4E/C) till x—a. The end
point is {a, 3/3). It is clear that (x2, —4E/C) lies below the curve —Cy—g(x)—E
=0. So the solution of the equation (2.7) is increasing in some interval. The
assumption (2.2) gives dg(x)/dx>0 at β<x<β+4E/C2, then the curve
—Cy—g(x)—E=0 is decreasing in β<x<β+4E/Cz. From this and the assump-
tion, we have

0>y>-2E/C for a<x<β,

where (x, y) is the point on the curve — Cy—g{x)—E—Q. Then we have y^
—AE/C by Lemma 3. At the end, we define C5, the line segment from {a, ys)
to (α, — 4E/C). And, we assume the following Lemma 7 for drawing the curves
C6—Clo by the same way.

LEMMA 7. The point (x5, yB) satisfies y5^4E/C.

We consider the tangent vectors of the solutions of the equation (2.4) on
these curves Clf C2, C4, C6, C7 and C9. From the equations (2.8) and (2.9), we
find that they return to the inside of the region D. For C3, C6, C8 and Clo, the
first equation of (2.3) shows that the tangent vectors direct inside of it. Hence,
any solution of the equation (2.4) enter the domain D, and never go out from
D. Therefore, the equation (2.6) has at least one periodic solution with the
least period L by Brower's fixed point theorem. Now, we completed the proof
of Theorem 1.

From now, we prove the lemmas.

Proof of Lemma 2. From the equation (2.6), we get dy/dx<0, dy/dx>0
and dy/dx=0 respectively below, above and on the curve — Cy—g(x)+E=0.
From these, we have (2.10.1) and (2.11.1).

(2.11.1) shows that the solution of the equation (2.6) started from {(x, y)\a
—£E/C2<x<β, y>0\ has its infimum in this region D at one of the following
point which is the meeting point with the curve — Cy—g(x)+E—0 or x=/3 or
starting point. But in this domain the curve — Cy—g(x)+E=0 is above the
x-axis. Hence, the solutions of the equation (2.6) under consideration meet x=β
in the upper half plane. The proof is completed.

Proof of Lemma 4. The assumptions (2.1) and (2.2) give

g(x)^E for β^χ^ ^ξ

and from
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we have dy/dx<0. Now, we multiply the equation (2.6) by y, next we differ-
entiate the product with respect to x, then we find

(2.13)

Here g(x)^E, dy/dx^O, dg(x)/dx^0 and y^O, so we find d2y/dx2^0. This
gives the solutions of the equation (2.6) that are concave downward.

These show that the solutions of the equation (2.6) are below the tangent
line of the solution through (β,4E/C) in β<x<β+4E/C\ Hence, we have
proved Lemma 4.

Proof of Lemma 6. When x2^β, it is clear that y2>—4E/C from g(x)<E,
because (xt, y2) is the cross point of —Cy—g(x)—E—0 and the solution of the
equation (2.7). So we must show the lemma for x2>β. From Lemma 2, we
know that y2 is the minimum of y of C2.

Now we integrate the equation (2.6) from (β, AE/C) to (xlf 0). So we have

(2.14) ^ΐl = ^

Here r=AE/C and

G(x)=\*g(u)du.
Jo

d is the solution of the equation (2.13), so it is convex upward. Then the
integral part of the equation (2.14) is greater than the area of triangle whose
vertices are (β, AE/C), (β, 0) and (x1} 0). Hence, we find

(2.15) -r^-Cj(x1-β)-G(x1)+G(β)+E(x1-β).

On the other hand, we integrate the equation (2.7) from (x1} 0) to (x2, y2).
Then we have

(2.16) ^ (

The integrated part of the equation (2.16) is positive when ;y<0 and x2<xx.
Therefore the equation (2.16) gives

(2.17) Y ^ - G ( X 8 ) + G ( X 1 ) - £ ( X 2 - X 1 ) .

We add the equation (2.15) to the equation (2.17). So we find

(2.18) ^ C
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Here, from r=4E/C, (xi—β)>(xi—x*) and the conditions (2.1) and (2.2), we
have

Hence, we find

After all, we have \y2\ ^r—AE/C, so the proof of Lemma 6 is completed.
Lemma 3, Lemma 5 and Lemma 7 are proved in the same way as the proof of
Lemma 2, Lemma 4 and Lemma 6 respectively.

§ 3. Uniqueness of periodic solutions in some region

In the previous section, we show the existence of periodic solutions. In this
section, we prove that there is only one periodic solution which is completely
stable in some region.

In this section, we consider the following system:

x'=y-F(x)
(3.1)

y'=-g(χ)+e{t)

which is equivalent to the equation (1.1). Here, we define

F(x)=\*f(u)du.
Jo

Let (X(t), Y(t)) be the periodic solution of the equation (3.1) with the least period
L. We consider the following transformation T:

T : (x(f0), y{t0)) — > (x(to+L), y(to+L)).

Let λlt λ2 be the eigenvalue of the Jacobian matrix of the transformation T at
(X(t0), Y(t0)). The periodic solution, (X(ΐ), Y(t)) (or the fixed point, (X(t0), Y(t0)))
is called completely stable if |>U<1, |Λ 2 |<1.

Similarly if ^ ! > l > ^ 2 > 0 , then we shall call the solution (X(t), Y(t)), directly
unstable.

THEOREM 8. In addition to the assumptions of Theorem 1, assume that f(x)
and g(x) satisfy

(3.4) / ( * ) ^ - ^ r ( * ) > l for VXΪΞD.

Then, in the region D given in Theorem 1, there exists only one periodic solution
of the equation (1.1) with the least preriod L and it is completely stable.

Proof. We assume the following lemma.
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LEMMA 9. Let (*i(f), 3>i(0) and (x2(0, y*(t)) be two different solutions which
are contained in D. We define a function pit) by

V((x2(t)-x1(t))2+(y2(t)-y1(t)r for B^O
(3.5) p(t)=i

i \x2(t)-x1(t)\ + \y2(t)~y1(t)\ for B^O.

where
B=(x2(t)-x1(t))(y2(t)-y1(t)).

Then ρ(t) is a decreasing function in (0, oo).

The proof of this lemma will be sent after the proof of Theorem 8.
Let X{t) be a periodic solution of the equation (1.1). By substituting X(t)

into the equation (1.1) it follows at once the period of X(t), which is denoted
by Llf must be some multiple of L. Here, we assume that there exists a solu-
tion xo(t) of the equation (1.1) which does not tend to X(t) as f-»oo in the
region D.

Corresponding to X(t) and xo(t) we have solutions (X(t), Y(t)) and (xo(t), yo(t))
of the equation (3.1) respectively. Since xo(t) does not tend to X(t), we have
that (xo(t), yo(t)) does not tend to (X(t), Y(t)) as f-+oo. Then we denote the dis-
tance of (X(t), Y(t)) and (*0(f), yo(t)) by po(f).

We have

(3.6) limpo(f)=A>O.

We denote the distance between (Z(ί+nLj), Y{t+nL^)t and (xoit+nL^, ySΛ-nL^)
by pn(t). Then, we find

Pnf^ — p^t + nL^ .
Then we have

(3.7) \\mpn{t)=A
n-*oo

from (3.6). When we denote the points (J?(0), Y(0)) and (x o (^i), y*(nL3) by P
and Pny respectively, the distance PnP must approach to A as ί—>oo from (3.7).

From this fact, there exists a positive integer N such that

PnP<A+ε for n^

for any ε. Then we take any nλ and such that nx>N and any δ such that
A>δ>0 and Qni denote the point whose distance from P is δ, and it is on the
line PniP. That is

QniP=δ.
So we have

Now we denote the solution which starts Qni by Ui(0, 3^(0), then from Lemma
9 we find
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(3.8) l imQ n P=i4 1 <3
7i->oo

\im QnPn<A+ε-δ.
n-*<χ>

And we know

PnP<PnQn+QnP,

then we have

by the equation (3.8). Here, ε is arbitrary, so we find

(3.9)

This is a contradiction with Ax<δ. Hence, (3.6) and (3.7) do not hold. This
proves that the periodic solution X(t) of the equation (1.1) in the domain D is
completely stable.

Next we show that L is the period of this solution. We suppose LXΦL.
Then (X(t), Y(t)) and (X(t—L), Y{t-L)) is a periodic solutions of the equation
(3.1). But (X(t-L), Y(t-L)) does not tend to (X(t), Y{t)) as f->oo. Therefore,
this contradict to Lemma 9. Then we can say that the least period of (X)(t), Y(t))
is L. Now, the proof of Theorem 8 is completed.

Proof of Lemma 9. We consider the solution (x(t), y(t)) in a neighborhood
of ίe(0, oo) such that (x2(t)—x1(t))>0 and (y2(t)-y1(t))>0. We differentiate
pit) with respect to t, so we find

(3.10)

Here we have

(3.11) (

S Xott)
f(x)dx,

which is negative. From the assumption Kdg(x)/dx. Hence, ρ(t)>0 gives

(3.12) p'(t)<0

by the equation (3.11).

We can find the proof as the same way when we assume (x2(t)—x1(t))<0
and (y2(t)-y1(t))<0.

Next we consider the solution (x(t), y(t)) in a neighborhood of ίe(O, oo)
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such that (*2(0—*i(0)>0 and (:y£(f)—3ΊG0XO. We find

We differentiate this equation with respect to t, and get

(3.13) p'(t)=(χί(t)-xί(t))-(yί(t)-yί(t))

The assumption (f(x)—dg(x)/dx)^0 gives

(3.14) p'(t)<0.

And, we can find easily that the same statement holds for the case when
(*.(f)-*i(f))<0 and (y2(t)-yi(t))>0.

Third we consider the solution (x(t), y(t)) in a neighborhood of ί = ί 0 such
that #2(ίo)—JCi(ίo)=O and (jy2(*o)—3>i(ίo))>0. Consider the Dini derivatives of p(ί)
at ί=ί 0 . Then we have

dx

On the other hand,

So, we have Dini derivative of D+p(t).

h(f) Hit)
p\U)

Here

and

So, we must show /i(ί)<0. We can find easily,

hit) I t=to=(ySo)-yi(to))ίl-g'(xi(t))l I ί = ί o < 0 .
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Hence we find that the Dini derivative is never positive. The case (3>2(0—3>i(0)
<0 is shown by the same way.

Lastly we consider the solution (x(t), y(t)) in a neighborhood of t=t0 such
that (y2(to)—yi(to))=Ό and (x2(t0)—*i(fo))>O. We have Dini derivative

ί
Xodt)

/W| W o <0

These show ^'(ί) is a decreasing function.
We finish the proof of Lemma 9.

§ 4. Application.

In this section, we show two corollaries. To this end, we need the follow-
ing theorem by K. Shiraiwa :

Theorem (Shiraiwa) In the equation

x'=y
(4.1)

y'=-f(χ)y-g(χ)+e(t).

the following properties are assumed to be satisfied.
(a) There exists a solution of the equation (4.1) under any initial condition.
(b) There exist positive constants C and E such that

(c) g(x) is a differentiable function satisfying the following conditions (i),
(ii) and (iii):

( i ) dg(x)/dx is bounded on any finite interval.

(ii) dg(x)/dx^0;

(iii) Umg(x)>E, \im g(x)<-E.
X-*<X> X-*-OQ

By the condition (c), g(x) is a monotone increasing function, and there exist
numbers xx and x2 (x1<x2) such that

Let x(t) be any solution of the equation (4.1). Then there exists a large t0

such that
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and

for t>t0.

In this paper, there is no need that the condition (a) is satisfied, because of
the assumption (1.3). This gives the following corollary to Theorem 8.

COROLLARY 10. Suppose that the equation (1.1) satisfies conditions (b) and (c),
and suppose that we have a and β such that

g(a)=-E, g(β)=E

hold for the equation (1.1). Then the equation (1.1) has only one completely stable
periodic solution with the least period L.

Moreover, making stronger the condition of Theorem 8, we have the fol-
lowing corollary.

COROLLARY 11. We assume that the function f{x) and g(x) in the equation
(1.1) satisfy

f(x)>C for

dg (χ)>c\
(4.2) ~dx~ for"\x\>X

χg(χ)>0

for sufficiently large X>0. And

E<\g(xt)\<3E

where x% is the point that satisfy dg(xτ)/dx=0. Let at, βt be that

and
a1<β1<β2<a2< ••• <a2j<a2j+1<β2j+i<β2j+2<cx2j+2< ••• <a2m+1<β2m+i -

Let us assume that \g(x)\ΦE for xΦ(Xj, βr Moreover, we assume that the as-
sumption of Theorem 8 holds in the region a2j+1—4E/C2<x<β2j+1+4:E/C\ Then
the equation (1.1) has just one completely stable periodic solutions in each region

<<β+ 11 <}
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and the equation (1.1) has just one directly unstable periodic solutions in each
region

( AE 1
Duj=^{x, y)\β2j+2<x<a2j+2) 13> I < - £ - } •

And, there exist just ra+1 DSj and just m Όu3. Then there exist just ra+1
periodic solutions which are completely stable and just m periodic solutions which
are directely unstable.

Proof of Corrolary 11. First, we prove that there exist no periodic solution
outside of region

AE 4E

where y — x'.
Cj is the solution of the equation (2.6) started from (β2m+1, r) to a intersec-

tion with x-axis at (Xu 0). Here, r is larger than 4E/C. Next we define C2

as the solution of the equation (2.7) from (Xlf 0) to the point where it meets
with the curve — Cy—g{x)—E~{). We call it (Z2, Y2). Here, we suppose the
lemma.

//

Fig. 2.

LEMMA 12. The point (X2, Y2) satisfies Y2^-r.

From this lemma, we have Y2^—r, then we define C3 as the line segment
from (X2, Y2) to (X2, —r). Next we make the curve C4, which is the solution
of the equation (2.7) starting from (Z2, — r) till x—ax. The end point is (a1} Y3).
It is clear that

and

mm

mm
x<P2m+i

-g(x)-E ^
s x 2 O

-g(x)-E
>

So the solution of the equation (2.7) is decreasing for x^X2. Then we
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have Y3>— r. At the end, we define C5 which is a line segment from (alf Ys)
to (α-L, —r). And we assume the following lemma for drawing the curve C6—C10

by the same way.

LEMMA 13. The point (X6, Y6) satisfies Yδ^r.

We consider the tangent vectors of the solutions of the equation (2.4) on
these curves Cu C2, C4, Cβ, C7 and C9. From the equations (2.8) and (2.9), we
find that they turn to inside of this closed curve. For C3, C5, C8 and C lo, the
first equation (2.3) shows that the tangent vector direct inside of it. Hence all
solutions of the equation (2.4) enter the domain D.

Next, we define subregion as follows:

AE AE

4£
" C

D2j

β*>+* /

D6j

S!

Fig. 3.

We consider the tangent vector of any solution of the equation (2.4) on \y\ =
4E/C. We find that the solution is decreasing. And any solution of the equa-
tion (2.4) moves from left to right above x-axis and inversely below %-axis.
Hence, the behaivor of solution of the equation (2.4) on x-axis shows the ex-
istence of periodic solution. But in the domain DlJf there exists only one com-
pletely stable periodic solution by Theorem 8. On β2j+1+4:E/C2^x^a2j+2, y
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component of the tangent vector is negative. So, any solution in the domain
D2j goes to the domain D3j or D4,. And any solution in the domain D3j goes
to Dlj. By the same way, we find that any solution in D5j goes to Dίj+1, and
any solution in D6j goes to DAό or D5j. Next we show that there is only one
periodic solution in the domain D4,.

Let x{t) be a periodic solution of the equation (1.1) in β2j+i^x^β2j+2, and
let x(t) be a solution of the equation (1.1) near x(t). We consider the system

x'=y-F(x)
(4.5)

Let (x(t), y(t)) and (x(t), y(f)) be the solution of the equation (2.4) corresponding
to x(t) and x(f) respectively. Let us calculate a derivative of x(t)—x(t) and
y(t)—y(t). Then we have

_J(u)du

J XU)

g'(u)du.

We denote the tangent vector of (x(f)—x(t), y(t)—y(t)) by (w, v). The above
equation show that u is positive above the curve:

5 x(.t)
f(u)du,

xm

and u is negative below the curve. And we find that v is positive in the left
of the line x(t)=x(t), and negative in the right of the line x(t)—x(t). So, we
have that (x(t), y(t)) go out from the region β2j+i^x^β2j+2- Hence, we find at
most one periodic solution in the region β2j+i^x^β2j+2-

Then there exist at least 2m+1 periodic solutions, and there exist just m+1
periodic solutions whitch are completely stable. Moreover, Index Theorem of
Levinson [3] shows that if there exist m + 1 completely stable periodic solutions
then there exist at least m directly unstable periodic solutions. So we find just
m periodic solutions that are directly unstable. We finish the proof of Cor-
rolary 11.

Proof of Lemma 12. This proof is done by the same way as the proof of
Lemma 6. When Λ ^ & J + I , it is clear that Y2>— 4E/C from g(x)<E, because
(X2, Y2) is the cross point of — Cy—g(x)—E—0 and the solution of the equation
(2.7). So we must show the lemma for X2>β2j+i> From Lemma 3, we know
that Y2 is the minimum of y of C2.

Now we integrate the equation (2.6) from (β2j+i, r) to (Xu 0). So we have

(4.6) ~ = -
Z
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where

G(x)=[*g(u)du.
Jo

Ci is a solution of the equation:

so it is convex upward. Then the integral part of the equation (4.4) is greater
than the area of triangle whose vertices are (J82J +I, r), (β2j+i, 0) and (Xlt 0).
Hence, we find

(4.7) ~£-C^

On the other hand, we integrate the equation (2.7) from (Xu 0) to (Xif Y2).
Then we have

(4.8) W_

The integrated part of the equation (4.8) is positive when y<0 and X2<Xlt

Therefore the equation (4.8) gives

(4.9) ψ^

We add the equation (4.7) to the equation (4.9). So we find

We have

from the condition

g(β*J+1)=E

- ^ - W S O for x^β2J+ί,

and (X1—β2j+1)>(Xi—X2). Hence, we find

After all, we have \Y2\^r, so the proof of Lemma 12 is completed. Lemma 13
is proved as the same way as the proof of Lemma 12.
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§ 5. Examples.

In this section, we give two examples and their numerical results are com-
pared with the theory.

First, we consider
/(x)=0.1;c2+l

g(x)=x3—x

From this

So, we have dg/dx(x)>l in:

and f(x)^dg/dx(x) is satisfied in:

- F<x< F
^29= - ^ 2 9

Thus, we have two completely stable periodic solutions in the following regions:

ί
respectively. The numerical results are indicated in Fig. 4, 5, 6. We can see

" x \

^2~: Γ IΓ% it ! 2

1 π

I
Fig. 4.
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two completely stable periodic solutions. We have a directly unstable periodic
solution near origin by theory, but we can not find by calculation.

Next example is
/(x)=10;c2+1.7

£(x)=0.02x5-0.33;c3+0.9;t

0(0=0.5 cos 2πf.

0.1!

- 0 . 1 .

Fig. 5.

0.01

0.99 1 I 1.01

-0.01

\ i

v

Fig. 6.
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In this example, we can find three completely stable solutions near x — — 3.5,

0, 3.5. And, we can confirm three completely solutions. See Fig. 7.

\
\ •

ί -1

Fig. 7.
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