SOME REMARKS ON THE RELATIVE GENUS FIELDS

By Koichi Takase

§1. Introduction.

Let k be a finite algebraic number field and K its finite extension. We denote by K^* the maximal abelian extension of k such that the composite field K^*K is unramified over K at all the finite or infinite primes, and the field K^*K is called the genus field of K with respect of k. (If K^* were defined as the maximal abelian extension of k such that K^*K was unramified over K at all the finite primes, the field K^*K was called the narrow genus field of K. We do not treat the narrow genus field in this paper.)

The field K^* is explicitly determined when k is the rational number field (see M. Ishida [5], [6] or M. Bhaskaran [1]). In § 3 of this paper we discuss the fundamental structure of K^* for general k. In § 4 we treat, as an example, the case of k=quadratic field of class number one in which 2 remains prime and (K: k)=2.

In §5 we prove the following theorem; let k be a finite algebraic number field of class number one, G any finite abelian group, and m a positive integer such that ex(G)|m and $m||G|^{\infty}$. Then there exist infinitely many cyclic extensions F of k of degree m such that

$$C_F/C_F^{1-\sigma} \cong G(F^*/F) \cong G$$
.

This paper contains the author's master thesis at Tokyo Institute of Technology (1981, March).

§2. Definitions.

Let k be a finite algebraic number field and K its finite extension. We denote by K^* the maximal abelian extension of k such that K^*K is unramified over K at all the finite or infinite primes. By the class field theory, K^* is the maximal abelian extension of k in the Hilbert class field of K, and $K^* \cap K$ is the maximal abelian extension of k in K. Throughout this paper the following notations are used;

 O_k : the integer ring of k U_k : the unit group of k

Received November 5, 1981

 $\phi(\mathfrak{a})$: the Euler function of k $U_k(\mathfrak{a}) = \{ \varepsilon \in U_k | \varepsilon \equiv 1 \pmod{\mathfrak{a}} \}, \text{ for an integral ideal } \mathfrak{a} \text{ of } k$ $k_{\mathfrak{p}}: \text{ the completion of } k \text{ at a finite or infinite prime } \mathfrak{p} \text{ of } k$ $k_A^{\times}: \text{ the idele group of } k \text{ into which we embed } k^{\times} \text{ and } k_{\mathfrak{p}}^{\times} \text{ in usual way}$ $k^{(1)}$ the Hilbert class field of k G(K/k): the Galois group of Galois extension K/k $\mathfrak{f}(K/k): \text{ the conductor of abelian extension } K/k.$

§3. Structure of genus field.

Let k be a finite algebraic number field, K its finite extension, and fix them. For a finite prime \mathfrak{p} of k, we put

$$\mathfrak{p} = \mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}} (\mathfrak{P}_{1}, \cdots, \mathfrak{P}_{r}: \text{ distinct primes of } K, e_{j} > 0)$$
$$e_{K}(\mathfrak{p}) = \mathfrak{g. c. d.} \{e_{1}, \cdots, e_{r}\}, \quad g_{k}(\mathfrak{p}) = \phi(\mathfrak{p})/(U_{k}: U_{k}(\mathfrak{p})),$$
$$d_{K}(\mathfrak{p}) = \mathfrak{g. c. d.} \{e_{K}(\mathfrak{p}), g_{k}(\mathfrak{p})\}.$$

Let $S(\mathfrak{p})$ be the ray class field modulo \mathfrak{p} of k. Then $S(\mathfrak{p})/k^{(1)}$ is a cyclic extension of degree $g_k(\mathfrak{p})$, and we put

 $k(\mathfrak{p})$: unique intermediate field of $S(\mathfrak{p})/k^{(1)}$ such that $(k(\mathfrak{p}): k^{(1)}) = d_K(\mathfrak{p})$.

Then we have

LEMMA 1. $k(\mathfrak{p}) \subset K^*$ for any finite prime \mathfrak{p} of k.

Proof. This lemma is proved in [4]. Another proof using Abhyanker's lemma is given in [3].

We define two subfield K_1^* and K_2^* of K^* by

 $K_1^* = \prod_{\mathfrak{p}} k(\mathfrak{p})$: composite field, $K_2^* = \bigcap_{\mathfrak{p}} T(\mathfrak{p})$,

where \mathfrak{p} runs over all finite primes of k such that $e_K(\mathfrak{p})|g_k(\mathfrak{p})$, and $T(\mathfrak{p})$ is the inertia field of \mathfrak{p} in K^*/k . Notice that, for distinct finite primes $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ of k, the fields $k(\mathfrak{p}_1), \dots, k(\mathfrak{p}_r)$ are linearly disjoint over $k^{(1)}$. Then we have

THEOREM 2.

$$K_1^* \cap K_2^* = k^{(1)}, \quad K^* = K_1^* K_2^*.$$

Proof. Because the primes of k which are ramified in K_1^* are unramified in K_2^* , the field $K_1^* \cap K_2^*$ is an unramified abelian extension of k. Hence we have $K_1^* \cap K_2^* = k^{(1)}$, since $K_1^* \cap K_2^*$ contains $k^{(1)}$.

Because K^*K/K is unramified, we have $e_{K^*}(\mathfrak{p})|e_K(\mathfrak{p})$ for any finite prime \mathfrak{p} of k. Then we have the following inequalities from which the equality

 $K^* = K_1^* K_2^*$ follows;

$$(K_1^*: k^{(1)}) = (K_1^* K_2^*: K_2^*) \leq (K^*: K_2^*) \leq \prod_{\mathfrak{p}} (K^*: T(\mathfrak{p}))$$
$$\leq \prod_{i=1}^{n} (k(\mathfrak{p}): k^{(1)}) = (K_1^*: k^{(1)})$$

On the conductor of abelian extension K^*/k , we have the following theorem :

THEOREM 3. Suppose that K is a normal extension of k. Then $f(K^*/k) = f(K^* \cap K/k)$. (Notice that the field $K^* \cap K$ is the maximal abelian extension of k in K.)

Proof. Put $U=\prod_{\mathfrak{P}} U_{\mathfrak{P}}$ the unit idele group of K, where \mathfrak{P} runs over all finite or infinite primes of K and $U_{\mathfrak{P}}$ is the unit group of $K_{\mathfrak{P}}$. Then, by the class field theory, we have

 K^* =the class field of k corresponding to $k^{\times}N_{K/k}U$, $K^* \cap K$ =the class field of k corresponding to $k^{\times}N_{K/k}K_{A}^{\times}$.

Since K is normal over k, we have

$$N_{K/k}U = \prod_{\mathfrak{p}} N_{\mathfrak{P}/\mathfrak{p}}U_{\mathfrak{P}}, \quad N_{K/k}K_{\mathbf{A}}^{\times} = k_{\mathbf{A}}^{\times} \cap \prod_{\mathfrak{p}} N_{\mathfrak{P}/\mathfrak{p}}K_{\mathfrak{P}}^{\times}$$

where \mathfrak{p} runs over all the finite or infinite primes of k, \mathfrak{P} is any one of the primes of K lying over \mathfrak{p} , and $N_{\mathfrak{P}/\mathfrak{p}}$ is the norm from $K_{\mathfrak{P}}$ to $k_{\mathfrak{p}}$. Because the inverse image of $U_{\mathfrak{p}}$ by $N_{\mathfrak{P}/\mathfrak{p}}$ is contained in $U_{\mathfrak{P}}$, we have $\mathfrak{f}(K^*/k) = \mathfrak{f}(K^* \cap K/k)$.

COROLLARY 4. Suppose that K is a normal extension of k. Then $K_* = K_1^*$ if and only if $K^* \cap K/k$ is unramified at the infinite primes and $e_K(\mathfrak{p})|g_k(\mathfrak{p})$ for any finite prime \mathfrak{p} of k ramified in $K^* \cap K$.

Proof. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ be the finite primes of k such that $e_K(\mathfrak{p}_j)|g_k(\mathfrak{p}_j)$ and $e_K(\mathfrak{p}_j)>1$. Then we have $\mathfrak{f}(K_1^*/k)=\mathfrak{p}_1 \dots \mathfrak{p}_r$. Because $\mathfrak{f}(K_1^*/k)$ and $\mathfrak{f}(K_2^*/k)$ are relatively prime and K^* is the composite field of K_1^* and K_2^* , we have $\mathfrak{f}(K^*k) = \mathfrak{f}(K_1^*/k)\mathfrak{f}(K_2^*/k)$. Because $K_1^* \cap K_2^*$ is equal to $k^{(1)}$ and K_2^* contains $k^{(1)}, K^*=K_1^*$ if and only if $\mathfrak{f}(K_2^*/k)=1$, that is, if and onlf if $\mathfrak{f}(K^*/k)|\mathfrak{f}(K_1^*/k)$. Hence, because of Theorem 3, $K^*=K_1^*$ if and only if $\mathfrak{f}(K^* \cap K/k)|\mathfrak{f}(K_1^*/k)$, and only-if-part of the assertion is proved.

If $K^* \cap K/k$ is unramified at the infinite primes and $e_K(\mathfrak{p}) | g_k(\mathfrak{p})$ for any finite prime \mathfrak{p} of k which is ramified in $K^* \cap K/k$, $K^* \cap K$ is tamely ramified over k at the finite primes and hence $\mathfrak{f}(K^* \cap K/k)$ is square-free. Because the set $\{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ includes the prime factors of $\mathfrak{f}(K^* \cap K/k)$ by hypothesis, we have $\mathfrak{f}(K^* \cap K/k) | \mathfrak{f}(K^*_1/k)$.

PROPOSITION 5. Suppose that K is an abelian extension of k which is unramified over k at the infinite primes and that there exists only one finite prime

484

 \mathfrak{p} of k such that $e_K(\mathfrak{p}) \not\mid g_k(\mathfrak{p})$. Then we have

 $K^* = K_1^*K, K_1^* \cap K = the inertia field of p in K/k.$

Proof. Since \mathfrak{p} is unique prime of k which may be ramified in K_2^* , \mathfrak{p} is totally ramified in $K_2^*/k^{(1)}$. Because K^*K is unramified over K, we have $(K_2^*: k^{(1)})|e_K(\mathfrak{p})$. As \mathfrak{p} is unramified in $K_1^* \cap K$, we have

 $K_1^* \cap K \subset T =$ the inertia field of \mathfrak{p} in K/k.

Therefore we have the following inequalities from which our assertion follows;

$$(K_1^*: k) = (K_1^*K: K)(K_1^* \cap K: k)$$

$$\leq (K^*: K)(T: k)$$

$$= (K_1^*: k^{(1)})(K_2^*: k^{(1)})(k^{(1)}: k)/(K. T) \leq (K_1^*: k)$$

In Proposition 5 the uniqueness of prime \mathfrak{p} of k such that $e_{\kappa}(\mathfrak{p}) \not\mid g_{k}(\mathfrak{p})$ is indispensable as the following example shows:

EXAMPLE. Put $k=Q(\sqrt{-11})$. The polynomial $f(X)=X^3-3X-1$ is irreducible over k. Let α be a root of f(X)=0 and put $K=k(\alpha)$. Then K is a cyclic extension of k of degree 3 and the relative discriminant of K over k is $D(K/k)=3^4$. The prime factors D(K/k) in k are $1+\omega$ and ω where $\omega=(1+\sqrt{-11})/2$. Since $g_k(1+\omega)=g_k(\omega)=1$, $e_K(1+\omega)=e_K(\omega)=3$, we have

 $K_1^* = k$.

On the other hand, by the genus number formula proved in [2], we have

$$(K^*: k) = 9$$
.

For the latter use, we prove the following lemma:

LEMMA 6. Let L and M be finite extension of k such that (L:k) and (M:k) are relatively prime. Then we have $(LM)^* = L^*M^*$.

Proof. Put K=LM. The inclusion $L^*M^* \subset K^*$ is obvious. We have to prove that any finite abelian extension F of k such that FK is unramified over K is contained in L^*M^* . We can suppose that (F:k) is a power of a rational prime l and the F is ramified over k. Then, as FK is unramified over K, we have l|(K:k) and hence l|(L:k) or l|(M:k). Suppose l|(L:k). Since $(FL:L)=(F:F\cap L)$ is a power of l, the ramification index in FL/L of the finite primes of L are power of l. Because FK is unramified over K and $l \nmid (M:k)=(K:L)$, FL is unramified over L and so $F \subset L^* \subset L^*M^*$.

§4. Examples.

Let k be a finite algebraic number field of class number one in which 2 remains prime. Let (k:Q)=n and $\{\omega_j^2 \ (j=1, 2, \dots, 2^n-1)\}$ be a system of complete representatives of the squares of the multiplicative group of $O_k/(4)$ (its order is easily shown to be 2^n-1). Let m be a square-free integer of k and put $K=k(\sqrt{m})$. We define an integer θ of K by

$$\theta = \begin{cases} (\omega_j + \sqrt{m})/2 : m \equiv \omega_j^2 \pmod{4} \text{ for some } j \\ \sqrt{m} : \text{ otherwise.} \end{cases}$$

Then we have

LEMMA 7. O_K is a free O_k -module with base $\{1, \theta\}$, and the relative discriminant of K over k is given by

$$D(K/k) = \begin{cases} m: m \equiv \omega_j^2 \pmod{4} \text{ for some } j \\ 4m: \text{ otherwise.} \end{cases}$$

Proof. We use the following fact; for integers a, b and c of k, the equation

$$a^2 - b^2 c \equiv 0 \pmod{4}$$

is equivalent to $a \equiv b\omega_j \pmod{2}$ if $c \equiv \omega_j^2 \pmod{4}$ for some *j*, and to $a \equiv b \equiv 0 \pmod{2}$ if $c \not\equiv \omega_j^2 \pmod{4}$ for any *j*. Because *m* is a square-free integer of *k*, we have

$$O_K = \{a + b\sqrt{m} \mid a, b \in k \text{ such that } 2a \in O_k, a^2 - b^2 m \in O_k\}$$
$$= \{(a + b\sqrt{m})/2 \mid a, b \in O_k \text{ such that } a^2 - b^2 m \equiv 0 \pmod{4}\}$$

If $m \equiv \omega_j^2 \pmod{4}$ for some j, we have by above remark

$$O_K = \{(a-b\omega_j)/2 + b(\omega_j + \sqrt{m})/2 \mid a, b \in O_k \text{ such that } a \equiv b\omega_j \pmod{2}\}$$
$$= \{a+b\theta \mid a, b \in O_k\}.$$

If $m \equiv \omega_j^2 \pmod{4}$ for any *j*, we have

$$O_K = \{a + b\sqrt{m} \mid a, b \in O_k\}$$
.

We have

$$K_1^* = \prod_{\mathfrak{p}} k(\mathfrak{p}), \qquad K_2^* = \bigcap_{\mathfrak{p}} T(\mathfrak{p})$$

where \mathfrak{p} runs over the prime factors of D(K/k) in k such that $2|g_k(\mathfrak{p})$, and $T(\mathfrak{p})$ is the inertia field of \mathfrak{p} in K^*/k . For a prime factor \mathfrak{p} of D(K/k) in k such that $2|g_k(\mathfrak{p}), k(\mathfrak{p})$ is a quadratic extension of k, and by Lemma 7, $k(\mathfrak{p})=k(\sqrt{\pi})$ where π is a generator of \mathfrak{p} such that $\pi \equiv \omega_j^2 \pmod{4}$ for some j and satisfies conditions on its signature (if necessary).

We treat more explicitly the case of k=quadratic field below.

1) Let k be a imaginary quadratic field of class number one in which 2 remains prime, that is, $k=Q(\sqrt{D})$ where D=-3, -11, -19, -43, -67, -163, and put $\omega=(-1+\sqrt{D})/2$. Then $\{a+b\omega|a, b=0, 1, 2, 3\}$ is a system of complete representatives of O_k modulo 4. There are only three representatives which are prime to 2 and are congruent modulo 4 to squares, and they are named as in the following table:

D name	ω_1	ω_2	ω_3
- 3, - 19 -67, -163	1	$\omega \equiv (1+\omega)^2$	$3+3\omega\equiv\omega^2$
—11, — 43	1	$2+\omega\equiv(1+\omega)^2$	$1+3\omega\equiv\omega^2$

Let *m* be a square-free integer of *k* and put $K = k(\sqrt{m})$. Let θ be an integer of *K* defined by

$$\theta = \begin{cases} (1+\sqrt{m})/2 : m \equiv \omega_1 \pmod{4} \\ (1+\omega+\sqrt{m})/2 : m \equiv \omega_2 \pmod{4} \\ (\omega+\sqrt{m})/2 : m \equiv \omega_3 \pmod{4} \\ \sqrt{m} : \text{ otherwise.} \end{cases}$$

Then, by Lemma 7, O_k is a free O_k -module with base $\{1, \theta\}$ and the relative discriminant of K over k is given by

$$D(K/k) = \begin{cases} m: m \equiv \omega_1, \, \omega_2, \, \omega_3 \pmod{4} \\ 4m: \text{ otherwise.} \end{cases}$$

For a finite prime \mathfrak{p} of k, we have

$$k(\mathfrak{p}) = \begin{cases} k(\sqrt{\pi}): & \text{if } \mathfrak{p} = (\pi) \text{ where } \pi \equiv \omega_1, \, \omega_2, \, \omega_3 \pmod{4} \\ k: & \text{otherwise.} \end{cases}$$

EXAMPLE 1. Put $k=Q(\sqrt{-11})$, $K=k(\sqrt{5})$. Because 5 is a square-free integer of k and $5\equiv\omega_1 \pmod{4}$, we have D(K/k)=5. The prime factors of D(K/k) in k are $1-\omega$ and $2+\omega$. Since $g_k(1-\omega)=g_k(2+\omega)=2$ and $1-\omega\equiv\omega_3 \pmod{4}$, $2+\omega\equiv\omega_2 \pmod{4}$, we have by Corollary 4

$$K^* = K_1^* = k(\sqrt{1-\omega}, \sqrt{2+\omega}).$$

EXAMPLE 2. Put $k=Q(\sqrt{-3})$, $K=k(\sqrt{26})$. Because 26 is a square-free integer of k and $26 \neq \omega_1, \omega_2, \omega_3 \pmod{4}$, we have $D(K/k)=2^313$. The prime

factors of D(K/k) in k are 2, $3-\omega$ and $4+\omega$. Since $g_k(2)=1$, $g_k(3-\omega)=g_k(4+\omega)=2$ and $3-\omega\equiv\omega_3 \pmod{4}$, $4+\omega\equiv\omega_2 \pmod{4}$, we have by Proposition 5

$$K^* = K_1^* K = k(\sqrt{26}, \sqrt{3-\omega}, \sqrt{4+\omega})$$

2) There are ten real quadratic field of discriminant less than 100 of class number one in which 2 remains prime, that is, $Q(\sqrt{D})$ where D=5, 13, 21, 29, 37, 53, 61, 69, 77, 93. Let k be one of the ten real quadratic fields and put $\omega = (-1 + \sqrt{D})/2$. Then $\{a+b\omega | a, b=0, 1, 2, 3\}$ is a system of complete representatives of O_k modulo 4. There are only three representatives of O_k modulo 4 which are prime to 2 and are congruent modulo 4 to squares, and they are named as in the following table

D	ω_1	ω₂	ω_{3}
5, 21, 37 53, 69	1	$2+\omega\equiv(1+\omega)^2$	$1+3\omega\equiv\omega^2$
13, 29, 61 77, 93	1	$\omega \equiv (1+\omega)^2$	$3+3\omega\equiv\omega^2$

Let *m* be a square-free integer of *k* and put $K = k(\sqrt{m})$. Let θ be an integer of *K* defined by

$$\theta = \begin{cases} (1+\sqrt{m})/2 & : m \equiv \omega_1 \pmod{4} \\ (1+\omega+\sqrt{m})/2 & : m \equiv \omega_2 \pmod{4} \\ (\omega+\sqrt{m})/2 & : m \equiv \omega_3 \pmod{4} \\ \sqrt{m} & : \text{ otherwise.} \end{cases}$$

Then, by Lemma 7, O_K is a free O_k -module with base $\{1, \theta\}$ and the relative discriminant of K over k is given by

$$D(K/k) = \begin{cases} m: m \equiv \omega_1, \, \omega_2, \, \omega_3 \pmod{4} \\ 4m: \text{ otherwise.} \end{cases}$$

For a finite prime \mathfrak{p} of k, we have

$$k(\mathfrak{p}) = \begin{cases} k(\sqrt{\pi}): & \text{if } \mathfrak{p} = (\pi) \text{ where } \pi \equiv \omega_1, \, \omega_2, \, \omega_3 \pmod{4} \text{ and } \pi \geqq 0\\ k : & \text{otherwise} \end{cases}$$

where $\pi \geq 0$ means that π is totally positive.

EXAMPLE 3. Put $k=Q(\sqrt{13})$, $K=k(\sqrt{53})$. Because 53 is a square-free integer of k and $53\equiv\omega_1 \pmod{4}$, we have D(K/k)=53. The prime factors of D(K/k) in k are $7-\omega$ and $8+\omega$. Since $g_k(7-\omega)=g_k(8+\omega)=2$ (see the tables at the end of this §), and $7-\omega\equiv\omega_3 \pmod{4}$, $8+\omega\equiv\omega_2 \pmod{4}$, $7-\omega\geq0$, $8+\omega\geq0$,

we have by Corollary 4

$$K^* = K_1^* = k(\sqrt{7-\omega}, \sqrt{8+\omega}).$$

EXAMPLE 4. Put $k=Q(\sqrt{29})$, $K=k(\sqrt{10})$. Because 10 is a sequare-free integer of k and $10 \not\equiv \omega_1, \omega_2, \omega_3 \pmod{4}$, we have $D(K/k)=2^{35}$. The prime factors of D(K/k) in k are 2, $4+\omega$, and $3-\omega$. Since $g_k(2)=1$, $g_k(4+\omega)$ $=g_k(3-\omega)=2$, and $4+\omega\equiv\omega_2 \pmod{4}$, $3-\omega\equiv\omega_3 \pmod{4}$, $4+\omega\geq0$, $3-\omega\geq0$, we have by Proposition 5

$$K^* = K_1^* K = k(\sqrt{10}, \sqrt{4+\omega}, \sqrt{3-\omega}).$$

EXAMPLE 5. Put $k=Q(\sqrt{53})$, $K=k(\sqrt{221})$. Because 221 is a square-free integer of k and $221\equiv\omega_1 \pmod{4}$, we have $D(K/k)=13\cdot17$. The prime factors of D(K/k) in k are $13+3\omega$, $17+4\omega$, $5-\omega$, and $6+\omega$. Since $g_k(13+3\omega)=g_k(17+4\omega)$ $=g_k(5-\omega)=g_k(6+\omega)=2$, and $13+3\omega\equiv\omega_3 \pmod{4}$, $17+4\omega\equiv\omega_1 \pmod{4}$, $5-\omega\equiv\omega_3$ (mod 4), $6+\omega\equiv\omega_2 \pmod{4}$, $13+3\omega\geq0$, $17+4\omega\geq0$, $5-\omega\geq0$, $6+\omega\geq0$, we have

$$K^* = K_1^* = k(\sqrt{13+3\omega}, \sqrt{17+4\omega}, \sqrt{5-\omega}, \sqrt{6+\omega})$$

Let L be the genus field of K with respect to the rational number field, that is, the maximal abelian extension of Q such that KL/K is unramified. Then we have by the genus number formula

$$(L:Q) \leq 2^3$$
 i.e. $(L:k) \leq 2^2$

On the other hand, we have $(K^*: k) = 2^4$ and hence $L \subseteq K^*$.

Tables.

Table of $g_k(\mathfrak{p})$ and prime elements of k above each rational primes. (Blanks mean that the rational prime remains prime in k.)

	2	3	5	7]]	11	13	17	1	9	23	2	29
			$2-\omega$		$3-\omega$	$4+\omega$			$4-\omega$	$5+\omega$		$5-\omega$	$6+\omega$
$g_k(p)$	1	1	1	3	1	1	2•3	23	1	1	11	2	2
3	1	37	4	1	43	47	53	5	9				
$7+2\omega$	$5-2\omega$		$6-\omega$	$7+\omega$				$9+2\omega$	$7 - 2\omega$				
1	1	2•32	1	1	3•7	3•23	2•13	1	1				

a) $k = Q(\sqrt{5}), \omega = (-1 + \sqrt{5})/2, \text{ fundamental unit} = (1 + \sqrt{5})/2 = 1 + \omega$

b)	k = Q()	13), $\omega = ($	$-1+\sqrt{2}$	13)/2,	fundamental	unit = $(3 + \sqrt{3})$	$(13)/2=2+\omega$
----	---------	-------------------	---------------	--------	-------------	-------------------------	-------------------

	2		3	5	7	11	13	1	17		2	23
		ω	$1+\omega$			-	$1+2\omega$	$4-\omega$	$5+\omega$		$1 - 3\omega$	$4+3\omega$
$g_k(\mathfrak{p})$	1	1	1	2	3	3•5	3	1	1	32	1	1

2	:9	31	37	41	4	3	47	5	3	59	6	51
$2+3\omega$	$1+3\omega$				$1-4\omega$	$5+4\omega$		$7-\omega$	8+w		8-30	11 + 3w
1	1	3•5	2•3²	22•3•5	1	1	23	2	2	5•29	2	2

c) $k = Q(\sqrt{29}), \omega = (-1 + \sqrt{29})/2, \text{ fundamental unit} = (5 + \sqrt{29})/2 = 3 + \omega$

	2	3		5		7	11		13	17	19	2	3
			1-0	$2+\omega$	ω	$ 1+\omega $		$4-\omega$	$5+\omega$			$5-\omega$	6+w
$g_k(\mathfrak{p})$	1	1	2	2	1	1	5	1	1	28	32	1	1
29	31	37	41	43	47	5	3	5	9	61			
$1+2\omega$						$5+3\omega$	$2-\omega$	$1 - 3\omega$	$4+3\omega$				
7	3•5	2•3 ²	22•3•5	3•7	23	1	1	1	1	2•3•5			

d)	$k = Q(\sqrt{37}).$	$\omega = (-1 + \sqrt{37})/2.$	fundamental	unit= $6 + \sqrt{37} = 7 + 2\omega$

	2		3	5		7	1	11	13	17	19	23	29
		$2-\omega$	$3+\omega$		$1-\omega$	$2+\omega$	$4-\omega$	$5+\omega$					
$g_k(\mathfrak{p})$	3	1	1	2	1	1	1	1	2•3	23	3²	11	2•5•7
31	37	4	1	43	4	7	5	3	59	61			
	$1 + 2\omega$	$8+3\omega$	$5-3\omega$		$7-\omega$	8+w	$4-3\omega$	$7+3\omega$					
3•5	32	1	1	3•7	1	1	1	1	29	2•3•5			

e) $k = Q(\sqrt{53}), \omega = (-1 + \sqrt{53})/2, \text{ fundamental unit} = (7 + \sqrt{53})/2 = 4 + \omega$

	2	3	5		7]]	1		13	1	7	19	23
				$2-\omega$	3+0	$1-\omega$	$2+\omega$	ω	$1+\omega$	$5-\omega$	$6+\omega$		
$g_k(\mathfrak{p})$	1	1	2	3	3	1	1	2	2	2	2	3^2	3•11
	29	31	3	7	41	4	3	4	7	53			
$6-\omega$	$7+\omega$		$5+2\omega$	$3 - 2\omega$		$7-\omega$	8+w	$7-3\omega$	$10 + 3\omega$	$1+2\omega$			
1	1	3•5	1	1	2 ² •5	3	3	1	1	13			

f) $k = Q(\sqrt{61}), \omega = (-1 + \sqrt{61})/2, \text{ fundamental unit} = (39 + 5\sqrt{61})/2 = 22 + 5\omega$

	2		3	5		7	11	1	13		19		23
		$4+\omega$	$3-\omega$	$4-\omega$	$5+\omega$			$1-\omega$	$2+\omega$		$11 - 3\omega$	$14 + 3\omega$	
$g_k(\mathfrak{p})$	1	1	1	1	1	3	5	2•3	2•3	23	1	1	3•11

SOME REMARKS ON THE RELATIVE GENUS FIELDS

29	31	37	4	1	43	4	17	53	59	61	67
			$7-\omega$	8+w		$11 + 3\omega$	$8-3\omega$,	$1+2\omega$	
2 ² •7	3•15	2•3²	2^{2}	2²	3•7	1	1	2•3•13	5•29	3•5	?

g)	$k = Q(\sqrt{21}),$	$\omega = (-1 + \sqrt{21})/2.$	fundamental	unit = $(5 +)$	$(21)/2=3+\omega$
----	---------------------	--------------------------------	-------------	-----------------	-------------------

	2	3		5	7	11	13	1	17	19	23	29	31
		$1-\omega$	$1+\omega$	ω	$3-\omega$			$3+2\omega$	$1 - 2\omega$				
$g_k(\mathfrak{p})$	1	1	1	1	3	2•5	2 ² •3	1	1	2 ² •3 ²	2•3•11	22•3•7	2²•3•5
3	37	4	1	4	3	4	7	53	5	9	61		
$6-\omega$	$7+\omega$	$1 - 3\omega$	$4+3\omega$	$9+2\omega$	$7 - 2\omega$	$2+3\omega$	$1+3\omega$		$7+4\omega$	$3-4\omega$			
2	2	1	1	1	1	1	1	$2^2 \cdot 13$	1	1	22•3•5		

h)	$k = Q(\sqrt{69}),$	$\omega = (-1 + \sqrt{69})/2,$	fundamental	unit = $(25 + 3\sqrt{69})/2 = 4 + 3\omega$

	2 3			5		7 1		1 1		17		19	23
		$4-\omega$	$3-\omega$	$4+\omega$		$2-\omega$	$3+\omega$	$5-\omega$	$6+\omega$	ω	$1+\omega$		10-3w
$g_k(\mathfrak{p})$	1	1	1	1	2•3	1	1	2	2	1	1	2•3 ²	11
29	3	31	37	41	43	47	5	3	59	61	67		
	$11 + 2\omega$	$9 - 2\omega$			· · · · ·		$5+2\omega$	$3-2\omega$			1		
2 ² •7	1	1	2 ² •3 ²	2³•5	2•3•7	2 ² •23	1	1	22•3•29	22•3•	•52•3•1	1	

i) $k = Q(\sqrt{77}), \omega = (-1 + \sqrt{77})/2, \text{ fundamental unit} = (9 + \sqrt{77})/2 = 5 + \omega$

	2	3	5	7	11	11 13		17		19		23	
				3-0	$5-\omega$	$2-\omega$	$3+\omega$	$1-\omega$	$2+\omega$	ω	$1+\omega$	$6-\omega$	$7+\omega$
$g_k(\mathfrak{p})$	1	2	22	3	5	1	1	1	1	1	1	1	1
29	31	3	37	4	1	43	47	5	53	59	Î		
		$7-\omega$	8+ω	$7+2\omega$	$5 - 2\omega$		_	$8-\omega$	9+w		and the state of t		
2 ² •7	2•3•5	2	2	1	1	22•3•7	2 ² •23	2	2	2•29			

j)	$k = Q(\sqrt{93}), \omega = (-1 + \sqrt{93})/2,$	fundamental	unit = $(29 + 3\sqrt{93})/2 = 16 + 3\omega$

	2	3	5	7		11		13	17		19	
		$4-\omega$		$5-\omega$	$6+\omega$	3-0	$4+\omega$		$2-\omega$	$3+\omega$	$6-\omega$	$7+\omega$
$g_k(p)$	1	1	22	1	1	1	1	22•3	1	1	1	1

2	23 29			31	37	41	43	47	5	53	59	61
ω	$1+\omega$	$9+2\omega$	$7-2\omega$	$14 - 3\omega$					$14 + 3\omega$	$11 - 3\omega$		
1	1	7	7	3•5	$2^2 \cdot 3^2$	2³•5	22•3•7	2•3•23	1	1	2•29	22•3•5

§5. Construction of genus field.

For a finite abelian group G, we denote by |G| the order of G, ex(G) the exponent of G, that is, the smallest positive integer which annihilates G. For integer m and n, $n | m^{\infty}$ means that $n | m^t$ for sufficiently large t.

THEOREM 8. Let k be a finite algebraic number field of class number one, G any finite abelian group, and m a positive integer such that ex(G)|m and $m||G|^{\infty}$. Then there exist infinitely many cyclic extensions F of k of degree m such that

$$C_F/C_F^{1-\sigma} \cong G(F^*/F) \cong G$$

where C_F is the ideal class group of F on which G(F/k) acts in usual way and σ is one of the generators of cyclic group G(F/k).

To prove this theorem, we use the following lemma proved in [7]. For a rational prime number l and a positive integer n, we put

$$k(l, n) = k(\zeta, \varepsilon_1^{1/l-n}, \cdots, \varepsilon_r^{1/l-n})$$

where l^{δ} is the number of *l*-power roots of unity in k, ζ is a primitive $l^{\delta+n}$ -th root of unity, and $\{\varepsilon_1, \dots, \varepsilon_r\}$ is the fundamental units of k. Then we have

LEMMA 9. Let k be a finite algebraic number field. For a rational prime number l such that $l \nmid h_k$, a positive integer n, and a finite prime \mathfrak{p} of k, the following three conditions are equivalent;

1) Let S be the ray class field modulo \mathfrak{p} of k. Then there exists an intermediate field L of S/k such that $(L:k)=l^n$.

- 2) $l^n divides \phi(\mathfrak{p})/(U_k : U_k(\mathfrak{p})).$
- 3) $\mathfrak{p} \not\mid l$ and \mathfrak{p} splits completely in k(l, n).

When these three equivalent conditions are fulfilled, L is a cyclic extension of k and \mathfrak{p} is totally ramified in L. Therefore the intermediate field of 1) is unique.

Proof of Theorem 8. Suppose first that G is *l*-primary for a rational prime number *l*. Then we have

$$G = G_1 \times \cdots \times G_t$$
, $m = l^{e_{t+1}}$

where G_j is cyclic group of order l^{e_j} and $1 < e_1 \leq \dots, \leq e_t \leq e_{t+1}$. By Lemma 9,

there exist distinct finite primes $\mathfrak{p}_1, \dots, \mathfrak{p}_{t+1}$ of k such that l^{e_j} divides $\phi(\mathfrak{p}_j)/(U_k: U_k(\mathfrak{p}_j))$. Let S_j be the ray class field modulo \mathfrak{p}_j of k, L_j the intermediate field of S_j/k such that $(L_j: k) = l^{e_j}$, and σ_j a generator of cyclic group $G(L_j/k)$. Put $K = \prod_{j=1}^{t+1} L_j$ composite field, then we have

$$G(K/k) = G(L_1/k) \times \cdots \times G(L_{t+1}/k).$$

Let *H* be the subgroup of G(K/k) generated by $\{\sigma_j \sigma_{l+1}^{n-e_j} : (1 \le j \le t)\}$, and *F* the fixed field of *H* (the construction of *F* is due to [7]). Then G(F/k) = G(K/k)/H is a cyclic group of order *m* whose generator is $\sigma_{t+1}H$, and σ_j generates the inertia group of \mathfrak{p}_j in K/k, for $1 \le j \le t+1$. Therefore *K* is unramified over *F*, and hence $K \subset F^*$. Since $h_k = 1$, we have $(K:k) \ge (F^*:k)$ by the genus number formula, and hence $K = F^*$. Then we have

$$G(F^*/F) = H \cong G_1 \times \cdots \times G_t = G$$
.

For general G, we have

$$G = G_1 \times \cdots \times G_s$$
, $m = q_1 \cdots q_s$

where G_j is the l_j -primary part of G for a rational prime number l_j , and q_j is a power of l_j . Then there exists a cyclic extension F_j of k of degree q_j such that

$$G(F_{i}^{*}/F_{i}) \cong G_{i}$$
.

Let $F = \prod_{j=1}^{s} F_{j}$ composite field. Then, by Lemma 6, we have $F^{*} = \prod_{j=1}^{s} F_{j}^{*}$ composite field. By the genus number formula, $\{(F_{j}^{*}:k): (1 \leq j \leq s)\}$ are mutually prime, therefore we have

$$G(F^*/F) \cong G(F_1^*/F_1) \times \cdots \times G(F_s^*/F_s) \cong G_1 \times \cdots \times G_s = G.$$

The infinity of F is follows from the way of construction of F and from Lemma 9. The fact that the Artin mapping gives the isomorphism $C_F/C_F^{-\sigma} \cong G(F^*/F)$ is proved in [8].

References

- M. BHASKARAN, Construction of genus field and some applications. J. Number Theory 11 (1979), 488-497.
- [2] Y. FURUTA, The genus field and genus number in algebraic number field. Nagoya Math. J. 29 (1967), 281-285.
- [3] R. GOLD and L. MADAN, Some applications of Abhyanker's lemma. Math. Nachr. 82 (1978), 115-119.
- [4] M. ISHIDA, Some unramified abelian extensions of algebraic number field. J. Reine Angew. Math. 268/269 (1974), 165-173.
- [5] M. ISHIDA, The genus fields of algebraic number fields. Springer Lecture Note 555 (1976).

- [6] M. ISHIDA, On the genus fields of pure number fields. Tokyo J. Math. Vol. 3 No. 1 (1980), 163-171.
- [7] O. YAHAGI, Construction of number fields with prescribed *l*-class group. Tokyo J. Math. Vol. 1 No. 2 (1978), 275-283.
- [8] H. YOKOI, On the class number of relatively cyclic number field. Nagoya Math. J. 29 (1967), 31-44.

Department of Mathematics Tokyo Institute of Technology