SOME REMARKS ON THE RELATIVE GENUS FIELDS

By Koichi Takase

§ 1. Introduction.

Let k be a finite algebraic number field and K its finite extension. We denote by K^{*} the maximal abelian extension of k such that the composite field $K^{*} K$ is unramified over K at all the finite or infinite primes, and the field $K^{*} K$ is called the genus field of K with respect of k. (If K^{*} were defined as the maximal abelian extension of k such that $K^{*} K$ was unramified over K at all the finite primes, the field $K^{*} K$ was called the narrow genus field of K. We do not treat the narrow genus field in this paper.)

The field K^{*} is explicitly determined when k is the rational number field (see M. Ishida [5], [6] or M. Bhaskaran [1]). In § 3 of this paper we discuss the fundamental structure of K^{*} for general k. In $\S 4$ we treat, as an example, the case of $k=$ quadratic field of class number one in which 2 remains prime and $(K: k)=2$.

In $\S 5$ we prove the following theorem; let k be a finite algebraic number field of class number one, G any finite abelian group, and m a positive integer such that $e x(G) \mid m$ and $m \|\left. G\right|^{\infty}$. Then there exist infinitely many cyclic extensions F of k of degree m such that

$$
C_{F} / C_{F}^{1-\sigma} \cong G\left(F^{*} / F\right) \cong G .
$$

This paper contains the author's master thesis at Tokyo Institute of Technology (1981, March).

§ 2. Definitions.

Let k be a finite algebraic number field and K its finite extension. We denote by K^{*} the maximal abelian extension of k such that $K^{*} K$ is unramified over K at all the finite or infinite primes. By the class field theory, K^{*} is the maximal abelian extension of k in the Hilbert class field of K, and $K^{*} \cap K$ is the maximal abelian extension of k in K. Throughout this paper the following notations are used;
O_{k} : the integer ring of k
U_{k} : the unit group of k
Received November 5, 1981
$\phi(\mathfrak{a})$: the Euler function of k
$U_{k}(\mathfrak{a})=\left\{\varepsilon \in U_{k} \mid \varepsilon \equiv 1(\bmod \mathfrak{a})\right\}$, for an integral ideal \mathfrak{a} of k
k_{p} : the completion of k at a finite or infinite prime \mathfrak{p} of k
k_{A}^{\times}: the idele group of k into which we embed k^{\times}and k_{p}^{\times}in usual way
$k^{(1)}$ the Hilbert class field of k
$G(K / k)$: the Galois group of Galois extension K / k
$\mathfrak{f}(K / k)$: the conductor of abelian extension K / k.

§ 3. Structure of genus field.

Let k be a finite algebraic number field, K its finite extension, and fix them. For a finite prime \mathfrak{p} of k, we put

$$
\begin{aligned}
& \mathfrak{p}=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{r}^{e_{r}}\left(\mathfrak{P}_{1}, \cdots, \mathfrak{P}_{r}: \text { distinct primes of } K, e_{\jmath}>0\right) \\
& e_{K}(\mathfrak{p})=\text { g.c.d. }\left\{e_{1}, \cdots, e_{r}\right\}, \quad g_{k}(\mathfrak{p})=\phi(\mathfrak{p}) /\left(U_{k}: U_{k}(\mathfrak{p})\right) \\
& d_{K}(\mathfrak{p})=\text { g.c.d. }\left\{e_{K}(\mathfrak{p}), g_{k}(\mathfrak{p})\right\}
\end{aligned}
$$

Let $S(\mathfrak{p})$ be the ray class field modulo \mathfrak{p} of k. Then $S(\mathfrak{p}) / k^{(1)}$ is a cyclic extension of degree $g_{k}(\mathfrak{p})$, and we put
$k(\mathfrak{p})$: unique intermediate field of $S(\mathfrak{p}) / k^{(1)}$ such that $\left(k(\mathfrak{p}): k^{(1)}\right)=d_{K}(\mathfrak{p})$.
Then we have
Lemma 1. $k(\mathfrak{p}) \subset K^{*}$ for any finite prime \mathfrak{p} of k.
Proof. This lemma is proved in [4]. Another proof using Abhyanker's lemma is given in [3].

We define two subfield K_{1}^{*} and K_{2}^{*} of K^{*} by

$$
K_{1}^{*}=\prod_{\mathfrak{p}} k(\mathfrak{p}): \text { composite field, } K_{2}^{*}=\bigcap_{\mathfrak{p}} T(\mathfrak{p})
$$

where \mathfrak{p} runs over all finite primes of k such that $e_{K}(\mathfrak{p}) \mid g_{k}(\mathfrak{p})$, and $T(\mathfrak{p})$ is the inertia field of \mathfrak{p} in K^{*} / k. Notice that, for distinct finite primes $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}$ of k, the fields $k\left(\mathfrak{p}_{1}\right), \cdots, k\left(\mathfrak{p}_{r}\right)$ are linearly disjoint over $k^{(1)}$. Then we have

Theorem 2.

$$
K_{1}^{*} \cap K_{2}^{*}=k^{(1)}, \quad K^{*}=K_{1}^{*} K_{2}^{*}
$$

Proof. Because the primes of k which are ramified in K_{1}^{*} are unramified in K_{2}^{*}, the field $K_{1}^{*} \cap K_{2}^{*}$ is an unramified abelian extension of k. Hence we have $K_{1}^{*} \cap K_{2}^{*}=k^{(1)}$, since $K_{1}^{*} \cap K_{2}^{*}$ contains $k^{(1)}$.

Because $K^{*} K / K$ is unramified, we have $e_{K^{*}}(\mathfrak{p}) \mid e_{K}(\mathfrak{p})$ for any finite prime \mathfrak{p} of k. Then we have the following inequalities from which the equality
$K^{*}=K_{1}^{*} K_{2}^{*}$ follows;

$$
\begin{aligned}
\left(K_{1}^{*}: k^{(1)}\right)=\left(K_{1}^{*} K_{2}^{*}: K_{2}^{*}\right) \leqq\left(K^{*}: K_{2}^{*}\right) & \leqq \prod_{p}\left(K^{*}: T(\mathfrak{p})\right) \\
& \leqq \prod_{p}\left(k(\mathfrak{p}): k^{(1)}\right)=\left(K_{1}^{*}: k^{(1)}\right)
\end{aligned}
$$

On the conductor of abelian extension K^{*} / k, we have the following theorem:
Theorem 3. Suppose that K is a normal extension of k. Then $f\left(K^{*} / k\right)$ $=\mathrm{f}\left(K^{*} \cap K / k\right)$. (Notıce that the field $K^{*} \cap K$ is the maximal abelian extension of k in K.)

Proof. Put $U=\prod_{\mathfrak{B}} U_{\mathfrak{B}}$ the unit idele group of K, where \mathfrak{P} runs over all finite or infinite primes of K and $U_{\mathfrak{B}}$ is the unit group of $K_{\mathfrak{F}}$. Then, by the class field theory, we have
$K^{*}=$ the class field of k corresponding to $k^{\times} N_{K / k} U$,
$K^{*} \cap K=$ the class field of k corresponding to $k^{\times} N_{K / k} K_{A}^{\times}$.
Since K is normal over k, we have

$$
N_{K / k} U=\prod_{p} N_{\mathfrak{B} / \mathfrak{p}} U_{\mathfrak{B}}, \quad N_{K / k} K_{A}^{\times}=k_{A}^{\times} \cap \prod_{\mathfrak{p}} N_{\mathfrak{B} / \mathfrak{p}} K_{\mathfrak{B}}^{\times}
$$

where \mathfrak{p} runs over all the finite or infinite primes of k, \mathfrak{F} is any one of the primes of K lying over \mathfrak{p}, and $N_{\mathfrak{R} / \mathfrak{p}}$ is the norm from $K_{\mathfrak{F}}$ to $k_{\mathfrak{p}}$. Because the inverse image of $U_{\mathfrak{p}}$ by $N_{\mathfrak{B} / \mathfrak{p}}$ is contained in $U_{\mathfrak{B}}$, we have $\mathfrak{f}\left(K^{*} / k\right)=\mathfrak{f}\left(K^{*} \cap K / k\right)$.

Corollary 4. Suppose that K is a normal extension of k. Then $K_{*}=K_{1}^{*}$ if and only if $K^{*} \cap K / k$ is unramified at the infinte primes and $e_{K}(p) \mid g_{k}(p)$ for any finte prome \mathfrak{p} of k ramified in $K^{*} \cap K$.

Proof. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}$ be the finite primes of k such that $e_{K}\left(\mathfrak{p}_{j}\right) \mid g_{k}\left(\mathfrak{p}_{j}\right)$ and $e_{K}\left(\mathfrak{p}_{j}\right)>1$. Then we have $\mathfrak{f}\left(K_{1}^{*} / k\right)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}$. Because $\mathfrak{f}\left(K_{1}^{*} / k\right)$ and $\mathfrak{f}\left(K_{2}^{*} / k\right)$ are relatively prime and K^{*} is the composite field of K_{1}^{*} and K_{2}^{*}, we have $\mathrm{f}\left(K^{*} k\right)$ $=\mathrm{f}\left(K_{1}^{*} / k\right) \mathrm{f}\left(K_{2}^{*} / k\right)$. Because $K_{1}^{*} \cap K_{2}^{*}$ is equal to $k^{(1)}$ and K_{2}^{*} contains $k^{(1)}, K^{*}=K_{1}^{*}$ if and only if $\mathfrak{f}\left(K_{2}^{*} / k\right)=1$, that is, if and onlf if $\mathfrak{f}\left(K^{*} / k\right) \mid \mathfrak{f}\left(K_{1}^{*} / k\right)$. Hence, because of Theorem 3, $K^{*}=K_{1}^{*}$ if and only if $\mathfrak{f}\left(K^{*} \cap K / k\right) \mid \mathfrak{f}\left(K_{1}^{*} / k\right)$, and only-ifpart of the assertion is proved.

If $K^{*} \cap K / k$ is unramified at the infinite primes and $e_{K}(\mathfrak{p}) \mid g_{k}(\mathfrak{p})$ for any finite prime \mathfrak{p} of k which is ramified in $K^{*} \cap K / k, K^{*} \cap K$ is tamely ramified over k at the finite primes and hence $\mathfrak{f}\left(K^{*} \cap K / k\right)$ is square-free. Because the set $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}\right\}$ includes the prime factors of $\mathfrak{f}\left(K^{*} \cap K / k\right)$ by hypothesis, we have $\mathfrak{f}\left(K^{*} \cap K / k\right) \mid \mathfrak{f}\left(K_{1}^{*} / k\right)$.

Proposition 5. Suppose that K is an abelian extension of k which is unramified over k at the infinite promes and that there exists ouly one finite prime
\mathfrak{p} of k such that $e_{K}(\mathfrak{p}) \nmid g_{k}(\mathfrak{p})$. Then we have
$K^{*}=K_{1}^{*} K, K_{1}^{*} \cap K=$ the inertıa field of \mathfrak{p} in K / k.
Proof. Since \mathfrak{p} is unique prıme of k which may be ramified in K_{2}^{*}, \mathfrak{p} is totally ramified in $K_{2}^{*} / k^{(1)}$. Because $K^{*} K$ is unramified over K, we have $\left(K_{2}^{*}: k^{(1)}\right) \mid e_{K}(\mathfrak{p})$. As \mathfrak{p} is unramified in $K_{1}^{*} \cap K$, we have
$K_{\mathrm{i}}^{*} \cap K \subset T=$ the inertia field of \mathfrak{p} in K / k.
Therefore we have the following inequalities from which our assertion follows;

$$
\begin{aligned}
\left(K_{1}^{*}: k\right) & =\left(K_{1}^{*} K: K\right)\left(K_{1}^{*} \cap K: k\right) \\
& \leqq\left(K^{*}: K\right)(T: k) \\
& =\left(K_{1}^{*}: k^{(1)}\right)\left(K_{2}^{*}: k^{(1)}\right)\left(k^{(1)}: k\right) /(K . T) \leqq\left(K_{1}^{*}: k\right) .
\end{aligned}
$$

In Proposition 5 the uniqueness of prıme \mathfrak{p} of k such that $e_{K}(\mathfrak{p}) \nless g_{k}(\mathfrak{p})$ is indispensable as the following example shows:

Example. Put $k=Q(\sqrt{ }-11)$. The polynomial $f(X)=X^{3}-3 X-1$ is irreducible over k. Let α be a root of $f(X)=0$ and put $K=k(\alpha)$. Then K is a cyclic extension of k of degree 3 and the relative discriminant of K over k is $D(K / k)=3^{4}$. The prime factors $D(K / k)$ in k are $1+\omega$ and ω where $\omega=(1+\sqrt{-11}) / 2$. Since $g_{k}(1+\omega)=g_{k}(\omega)=1, e_{K}(1+\omega)=e_{K}(\omega)=3$, we have

$$
K_{1}^{*}=k
$$

On the other hand, by the genus number formula proved in [2], we have

$$
\left(K^{*}: k\right)=9 .
$$

For the latter use, we prove the following lemma:
Lemma 6. Let L and M be finte extension of k such that $(L: k)$ and $(M: k)$ are relatively prome. Then we have $(L M)^{*}=L^{*} M^{*}$.

Proof. Put $K=L M$. The inclusion $L^{*} M^{*} \subset K^{*}$ is obvious. We have to prove that any finite abelian extension F of k such that $F K$ is unramıfied over K is contained in $L^{*} M^{*}$. We can suppose that ($F: k$) is a power of a rational prime l and the F is ramified over k. Then, as $F K$ is unramified over K, we have $l \mid(K: k)$ and hence $l \mid(L: k)$ or $l \mid(M: k)$. Suppose $l \mid(L: k)$. Since $(F L: L)=(F: F \cap L)$ is a power of l, the ramification index in $F L / L$ of the finite primes of L are power of l. Because $F K$ is unramified over K and $l \nmid(M: k)=(K: L), F L$ is unramified over L and so $F \subset L^{*} \subset L^{*} M^{*}$.

§4. Examples.

Let k be a finite algebraic number field of class number one in which 2 remains prime. Let $(k: Q)=n$ and $\left\{\omega_{j}^{2}\left(\jmath=1,2, \cdots, 2^{n}-1\right)\right\}$ be a system of complete representatives of the squares of the multiplicative group of $O_{k} /(4)$ (its order is easily shown to be $2^{n}-1$). Let m be a square-free integer of k and put $K=k(\sqrt{ } / \bar{m})$. We define an integer θ of K by

$$
\theta=\left\{\begin{aligned}
\left(\omega_{j}+\sqrt{ } m\right) / 2 & : m \equiv \omega_{j}^{2}(\bmod 4) \text { for some } j \\
\sqrt{ } \bar{m} & : \text { otherwise } .
\end{aligned}\right.
$$

Then we have
Lemma 7. O_{K} is a free O_{k}-module with base $\{1, \theta\}$, and the relative discriminant of K over k is given by

$$
D(K / k)=\left\{\begin{array}{l}
m: m \equiv \omega_{j}^{2}(\bmod 4) \text { for some } j \\
4 m: \text { otherwise } .
\end{array}\right.
$$

Proof. We use the following fact; for integers a, b and c of k, the equation

$$
a^{2}-b^{2} c \equiv 0(\bmod 4)
$$

is equivalent to $a \equiv b \omega_{j}(\bmod 2)$ if $c \equiv \omega_{j}^{2}(\bmod 4)$ for some j, and to $a \equiv b \equiv 0$ $(\bmod 2)$ if $c \not \equiv \omega_{j}^{2}(\bmod 4)$ for any j. Because m is a square-free integer of k, we have

$$
\begin{aligned}
O_{K} & =\left\{a+b \sqrt{m} \mid a, b \in k \text { such that } 2 a \in O_{k}, a^{2}-b^{2} m \in O_{k}\right\} \\
& =\left\{(a+b \sqrt{m}) / 2 \mid a, b \in O_{k} \text { such that } a^{2}-b^{2} m \equiv 0(\bmod 4)\right\} .
\end{aligned}
$$

If $m \equiv \omega_{j}^{2}(\bmod 4)$ for some \jmath, we have by above remark

$$
\begin{aligned}
O_{K} & =\left\{\left(a-b \omega_{j}\right) / 2+b\left(\omega_{j}+\sqrt{m}\right) / 2 \mid a, b \in O_{k} \text { such that } a \equiv b \omega_{j}(\bmod 2)\right\} \\
& =\left\{a+b \theta \mid a, b \in O_{k}\right\} .
\end{aligned}
$$

If $m \not \equiv \omega_{j}^{2}(\bmod 4)$ for any j, we have

$$
O_{K}=\left\{a+b \sqrt{m} \mid a, b \in O_{k}\right\} .
$$

We have

$$
K_{1}^{*}=\prod_{p} k(\mathfrak{p}), \quad K_{2}^{*}=\bigcap_{p} T(\mathfrak{p})
$$

where \mathfrak{p} runs over the prime factors of $D(K / k)$ in k such that $2 \mid g_{k}(\mathfrak{p})$, and $T(\mathfrak{p})$ is the inertia field of \mathfrak{p} in K^{*} / k. For a prime factor \mathfrak{p} of $D(K / k)$ in k such that $2 \mid g_{k}(\mathfrak{p}), k(\mathfrak{p})$ is a quadratic extension of k, and by Lemma 7, $k(\mathfrak{p})=k(\sqrt{\pi})$ where π is a generator of \mathfrak{p} such that $\pi \equiv \omega_{j}^{2}(\bmod 4)$ for some \jmath and satisfies conditions on its signature (if necessary).

We treat more explicitly the case of $k=$ quadratic field below.

1) Let k be a imaginary quadratic field of class number one in which 2 remains prime, that is, $k=Q(\sqrt{D})$ where $D=-3,-11,-19,-43,-67,-163$, and put $\omega=(-1+\sqrt{ } \bar{D}) / 2$. Then $\{a+b \omega \mid a, b=0,1,2,3\}$ is a system of complete representatives of O_{k} modulo 4 . There are only three representatives which are prime to 2 and are congruent modulo 4 to squares, and they are named as in the following table:

D	ω_{1}	ω_{2}	ω_{3}
$-3,-19$ $-67,-163$	1	$\omega \equiv(1+\omega)^{2}$	$3+3 \omega \equiv \omega^{2}$
$-11,-43$	1	$2+\omega \equiv(1+\omega)^{2}$	$1+3 \omega \equiv \omega^{2}$

Let m be a square-free integer of k and put $K=k(\sqrt{ } m)$. Let θ be an integer of K defined by

$$
\theta=\left\{\begin{array}{cll}
(1+\sqrt{m}) / 2 & : & m \equiv \omega_{1}(\bmod 4) \\
(1+\omega+\sqrt{m}) / 2 & : & m \equiv \omega_{2}(\bmod 4) \\
(\omega+\sqrt{m}) / 2 & : & m \equiv \omega_{3}(\bmod 4) \\
\sqrt{m} & : & \text { otherwise } .
\end{array}\right.
$$

Then, by Lemma $7, O_{k}$ is a free O_{k}-module with base $\{1, \theta\}$ and the relative discriminant of K over k is given by

$$
D(K / k)=\left\{\begin{aligned}
m: & m \equiv \omega_{1}, \omega_{2}, \omega_{3}(\bmod 4) \\
4 m: & \text { otherwise } .
\end{aligned}\right.
$$

For a finite prime \mathfrak{p} of k, we have

$$
k(\mathfrak{p})=\left\{\begin{aligned}
k(\sqrt{\pi}): & \text { if } \mathfrak{p}=(\pi) \text { where } \pi \equiv \omega_{1}, \omega_{2}, \omega_{3}(\bmod 4) \\
k: & \text { otherwise } .
\end{aligned}\right.
$$

Example 1. Put $k=Q(\sqrt{-11}), K=k(\sqrt{ } 5)$. Because 5 is a square-free integer of k and $5 \equiv \omega_{1}(\bmod 4)$, we have $D(K / k)=5$. The prime factors of $D(K / k)$ in k are $1-\omega$ and $2+\omega$. Since $g_{k}(1-\omega)=g_{k}(2+\omega)=2$ and $1-\omega \equiv \omega_{3}$ $(\bmod 4), 2+\omega \equiv \omega_{2}(\bmod 4)$, we have by Corollary 4

$$
K^{*}=K_{1}^{*}=k(\sqrt{1-\omega}, \sqrt{2+\omega})
$$

Example 2. Put $k=Q(\sqrt{-3}), K=k(\sqrt{2})$. Because 26 is a square-free integer of k and $26 \equiv \omega_{1}, \omega_{2}, \omega_{3}(\bmod 4)$, we have $D(K / k)=2^{3} 13$. The prime
factors of $D(K / k)$ in k are $2,3-\omega$ and $4+\omega$. Since $g_{k}(2)=1, g_{k}(3-\omega)=g_{k}(4+\omega)$ $=2$ and $3-\omega \equiv \omega_{3}(\bmod 4), 4+\omega \equiv \omega_{2}(\bmod 4)$, we have by Proposition 5

$$
K^{*}=K_{1}^{*} K=k(\sqrt{26}, \sqrt{3-\omega}, \sqrt{4+\omega}) .
$$

2) There are ten real quadratic field of discriminant less than 100 of class number one in which 2 remains prime, that is, $Q(\sqrt{ } \bar{D})$ where $D=5,13,21,29$, 37, 53, 61, 69, 77, 93. Let k be one of the ten real quadratic fields and put $\omega=(-1+\sqrt{ } \bar{D}) / 2$. Then $\{a+b \omega \mid a, b=0,1,2,3\}$ is a system of complete representatives of O_{k} modulo 4 . There are only three representatives of O_{k} modulo 4 which are prime to 2 and are congruent modulo 4 to squares, and they are named as in the following table

| D | name | ω_{1} | ω_{2} |
| :---: | :---: | :---: | :---: |ω_{3}

Let m be a square-free integer of k and put $K=k(\sqrt{ } m)$. Let θ be an integer of K defined by

$$
\theta=\left\{\begin{array}{rll}
(1+\sqrt{m}) / 2 & : & m \equiv \omega_{1}(\bmod 4) \\
(1+\omega+\sqrt{m}) / 2: & m \equiv \omega_{2}(\bmod 4) \\
(\omega+\sqrt{m}) / 2 & : & m \equiv \omega_{3}(\bmod 4) \\
\sqrt{m} & : & \text { otherwise }
\end{array}\right.
$$

Then, by Lemma 7, O_{K} is a free O_{k}-module with base $\{1, \theta\}$ and the relative discriminant of K over k is given by

$$
D(K / k)=\left\{\begin{aligned}
m: & m \equiv \omega_{1}, \omega_{2}, \omega_{3}(\bmod 4) \\
4 m: & \text { otherwise }
\end{aligned}\right.
$$

For a finite prime \mathfrak{p} of k, we have

$$
k(\mathfrak{p})=\left\{\begin{array}{cl}
k(\sqrt{\pi}): & \text { if } \mathfrak{p}=(\pi) \text { where } \pi \equiv \omega_{1}, \omega_{2}, \omega_{3}(\bmod 4) \text { and } \pi \geqq 0 \\
k: & \text { otherwise }
\end{array}\right.
$$

where $\pi \geqq 0$ means that π is totally positive.
Example 3. Put $k=Q(\sqrt{13}), K=k(\sqrt{ } 53)$. Because 53 is a square-free integer of k and $53 \equiv \omega_{1}(\bmod 4)$, we have $D(K / k)=53$. The prime factors of $D(K / k)$ in k are $7-\omega$ and $8+\omega$. Since $g_{k}(7-\omega)=g_{k}(8+\omega)=2$ (see the tables at the end of this $\S)$, and $7-\omega \equiv \omega_{3}(\bmod 4), 8+\omega \equiv \omega_{2}(\bmod 4), 7-\omega \geqq 0,8+\omega \geqq 0$,
we have by Corollary 4

$$
K^{*}=K_{1}^{*}=k(\sqrt{7-\omega}, \sqrt{8+\omega}) .
$$

Example 4. Put $k=Q(\sqrt{29}), K=k(\sqrt{10})$. Because 10 is a sequare-free integer of k and $10 \not \equiv \omega_{1}, \omega_{2}, \omega_{3}(\bmod 4)$, we have $D(K / k)=2^{3} 5$. The prime factors of $D(K / k)$ in k are $2,4+\omega$, and $3-\omega$. Since $g_{k}(2)=1, g_{k}(4+\omega)$ $=g_{k}(3-\omega)=2$, and $4+\omega \equiv \omega_{2}(\bmod 4), 3-\omega \equiv \omega_{3}(\bmod 4), 4+\omega \geqq 0,3-\omega \geqq 0$, we have by Proposition 5

$$
K^{*}=K_{1}^{*} K=k(\sqrt{10}, \sqrt{4+\omega}, \sqrt{3-\omega}) .
$$

Example 5. Put $k=Q(\sqrt{ } 53), K=k(\sqrt{221})$. Because 221 is a square-free integer of k and $221 \equiv \omega_{1}(\bmod 4)$, we have $D(K / k)=13 \cdot 17$. The prime factors of $D(K / k)$ in k are $13+3 \omega, 17+4 \omega, 5-\omega$, and $6+\omega$. Since $g_{k}(13+3 \omega)=g_{k}(17+4 \omega)$ $=g_{k}(5-\omega)=g_{k}(6+\omega)=2$, and $13+3 \omega \equiv \omega_{3}(\bmod 4), \quad 17+4 \omega \equiv \omega_{1}(\bmod 4), \quad 5-\omega \equiv \omega_{3}$ $(\bmod 4), 6+\omega \equiv \omega_{2}(\bmod 4), 13+3 \omega \geqq 0,17+4 \omega \geqq 0,5-\omega \geqq 0,6+\omega \geqq 0$, we have

$$
K^{*}=K_{1}^{*}=k(\sqrt{13+3 \omega}, \sqrt{17+4 \omega}, \sqrt{5-\omega}, \sqrt{6+\omega}) .
$$

Let L be the genus field of K with respect to the rational number field, that is, the maximal abelian extension of Q such that $K L / K$ is unramified. Then we have by the genus number formula

$$
(L: Q) \leqq 2^{3} \quad \text { i. e. } \quad(L: k) \leqq 2^{2}
$$

On the other hand, we have $\left(K^{*}: k\right)=2^{4}$ and hence $L \subsetneq K^{*}$.
Tables.
Table of $g_{k}(\mathfrak{p})$ and prime elements of k above each rational primes. (Blanks mean that the rational prime remains prime in k.)
a) $k=Q(\sqrt{5}), \omega=(-1+\sqrt{5}) / 2$, fundamental unit $=(1+\sqrt{5}) / 2=1+\omega$

	2	3	5	7	11		13	17	19		23	29
			$2-\omega$		$3-\omega$	$4+\omega$			$4-\omega$	$5+\omega$		$5-\omega$
$g_{k}(p)$	1	1	1	3	1	1	$2 \cdot 3$	2^{3}	1	1	11	2

31		37	41		43	47	53	59	
$7+2 \omega$	$5-2 \omega$		$6-\omega$	$7+\omega$				$9+2 \omega$	
1	1	$2 \cdot 3^{2}$	1	1	$3 \cdot 2 \omega$	$3 \cdot 23$	$2 \cdot 13$	1	

b) $k=Q(\sqrt{13}), \omega=(-1+\sqrt{13}) / 2$, fundamental unit $=(3+\sqrt{13}) / 2=2+\omega$

	2	3		5	7	11	13	17		19	23	
		ω	$1+\omega$				$1+2 \omega$	$4-\omega$	$5+\omega$		$1-3 \omega$	
$g_{k}(\mathfrak{p})$	1	1	1	2	3	$3 \cdot 5$	3	1	1	3^{2}	1	

29		31	37	41	43	47	53	59	61		
$2+3 \omega$	$1+3 \omega$				$1-4 \omega$	$5+4 \omega$		$7-\omega$	$8+\omega$		$8-3 \omega$
1	1	$3 \cdot 5$	$2 \cdot 3^{2}$	$2^{2} \cdot 3 \cdot 5$	1	1	23	2	2	$5 \cdot 29$	2
1	2										

c) $k=Q(\sqrt{29}), \omega=(-1+\sqrt{29}) / 2$, fundamental unit $=(5+\sqrt{29}) / 2=3+\omega$

	2	3					11			17	19		
			1- ω	$2+\omega$	ω	$1+\omega$		$4-\omega$	$5+\omega$			5-w	$6+\omega$
$g_{k}(\mathfrak{p})$	1	1	2	2	1	1	5	1	1	2^{3}	3^{2}	1	1

29	31	37	41	43	47	53		59	
$1+2 \omega$						$5+3 \omega$	$2-\omega$	$1-3 \omega$	$4+3 \omega$
7	$3 \cdot 5$	$2 \cdot 3^{2}$	$2^{2 \cdot 3 \cdot 5}$	$3 \cdot 7$	23	1	1	1	1

d) $k=Q(\sqrt{ } 37), \omega=(-1+\sqrt{ } 37) / 2$, fundamental unit $=6+\sqrt{37}=7+2 \omega$

	2		3	5	7		11		13	17	19	23	29
		$2-\omega$ $3+\omega$			1- ω	$2+\omega$	$4-\omega$	$5+\omega$					
$g_{k}(\mathfrak{p})$	3	1	1	2	1	1	1	1	$2 \cdot 3$	2^{3}	3^{2}	11	$2 \cdot 5 \cdot 7$
31	37	41		43	47		53		59	61			
	$1+2 \omega$	$8+3 \omega$	$5-3 \omega$		7- ω	$8+\omega$	$4-3 \omega$	$7+3 \omega$					
$3 \cdot 5$	3^{2}	1	1	$3 \cdot 7$	1	1	1	1	29	$2 \cdot 3 \cdot 5$			

e) $k=Q(\sqrt{ } 5 \overline{3}), \omega=(-1+\sqrt{ } 53) / 2$, fundamental unit $=(7+\sqrt{53}) / 2=4+\omega$

	2	3	5	7		11		13		17		19	23
				$2-\omega$	$3+\omega$	1- ω	$2+\omega$	ω	$1+\omega$	$5-\omega$	$6+\omega$		
$g_{k}(\mathfrak{p})$	1	1	2	3	3	1	1	2	2	2	2	3^{2}	$3 \cdot 11$
2		31	3	7	41			4	7	53			
6- ${ }^{\text {a }}$	$7+\omega$		$5+2 \omega$	$3-2 \omega$		7- ω	$8+\omega$	$7-3 \omega$	$10+3 \omega$	$1+2 \omega$			
1	1	$3 \cdot 5$	1	1	$2^{2} \cdot 5$	3	3	1	1	13			

f) $k=Q(\sqrt{61}), \omega=(-1+\sqrt{61}) / 2$, fundamental unit $=(39+5 \sqrt{61}) / 2=22+5 \omega$

	2	3		5		7	11	13		17	19		23
		$4+\omega$	$3-\omega$	4-w	$5+\omega$			1- ω	$2+\omega$		$11-3 \omega$	$14+3 \omega$	
$g_{k}(\mathfrak{p})$	1	1	1	1	1	3	5	$2 \cdot 3$	$2 \cdot 3$	2^{3}	1	1	$3 \cdot 11$

29	31	37	41	43	47	53	59	61	67		
			$7-\omega$	$8+\omega$		$11+3 \omega$	$8-3 \omega$			$1+2 \omega$	
$2^{2} \cdot 7$	$3 \cdot 15$	$2 \cdot 3^{2}$	2^{2}	2^{2}	$3 \cdot 7$	1	1	$2 \cdot 3 \cdot 13$	$5 \cdot 29$	$3 \cdot 5$	$?$

g) $k=Q(\sqrt{2} \overline{1}), \omega=(-1+\sqrt{ } 2 \overline{1}) / 2$, fundamental unit $=(5+\sqrt{ } 2 \overline{1}) / 2=3+\omega$

	2	3	5		7	11	13	17	19	23	29	31
		$1-\omega$	$1+\omega$	ω	$3-\omega$			$3+2 \omega$	$1-2 \omega$			
$g_{k}(\mathfrak{p})$	1	1	1	1	3	$2 \cdot 5$	$2^{2} \cdot 3$	1	1	$2^{2} \cdot 3^{2}$	$2 \cdot 3 \cdot 11$	$2^{2} \cdot 3 \cdot 7$

37		41	43	47	53	59	61		
$6-\omega$	$7+\omega$	$1-3 \omega$	$4+3 \omega$	$9+2 \omega$	$7-2 \omega$	$2+3 \omega$	$1+3 \omega$		$7+4 \omega$
2	2	1	1	1	1	1	1	$2^{2} \bullet 13$	1

h) $k=Q(\sqrt{69}), \omega=(-1+\sqrt{ } 6 \overline{9}) / 2$, fundamental unit $=(25+3 \sqrt{ } 6 \overline{9}) / 2=4+3 \omega$

	2	3	5		7	11		13		17		19	23
		4- ω	$3-\omega$	$4+\omega$		$2-\omega$	$3+\omega$	5- ω	$6+\omega$	ω	$1+\omega$		$10-3 \omega$
$g_{k}(\mathrm{p})$	1	1	1	1	$2 \cdot 3$		1	2	2	1		$2 \cdot 3^{2}$	11

29	31	37	41	43	47	53	59	61	67	
	$11+2 \omega$	$9-2 \omega$					$5+2 \omega$	$3-2 \omega$		
$2^{2} \cdot 7$	1	1	$2^{2} \cdot 3^{2}$	$2^{3} \cdot 5$	$2 \cdot 3 \cdot 7$	$2^{2} \cdot 23$	1	1	$2^{2} \cdot 3 \cdot 29$	$2^{2} \cdot 3 \cdot 52 \cdot 3 \cdot 11$

i) $k=Q(\sqrt{7 \overline{7}}), \omega=(-1+\sqrt{77}) / 2$, fundamental unit $=(9+\sqrt{77}) / 2=5+\omega$

	2	3	5	7		13		17		19		23	
				$3-\omega$	$5-\omega$		$3+\omega$	1- ω	$2+\omega$	ω	$1+\omega$	6- ω	$7+\omega$
$g_{k}(\mathfrak{p})$	1	2	2^{2}	3	5	1			1	1	1	1	1

29	31	37		41	43	47	53	59
		$7-\omega$	$8+\omega$	$7+2 \omega$	$5-2 \omega$			$8-\omega$
	$9+\omega$							
$2^{2} \cdot 7$	$2 \cdot 3 \cdot 5$	2	2	1	1	$2^{2} \cdot 3 \cdot 7$	$2^{2} \cdot 23$	2

j) $k=Q(\sqrt{93}), \omega=(-1+\sqrt{93}) / 2$, fundamental unit $=(29+3 \sqrt{93}) / 2=16+3 \omega$

	2	3	5	7	11		13	17		19	
		$4-\omega$		$5-\omega$	$6+\omega$	$3-\omega$	$4+\omega$		$2-\omega$	$3+\omega$	$6-\omega$
$g_{k}(\mathfrak{p})$	1	1	2^{2}	1	1	1	1	$2^{2} \cdot 3$	1	1	1

23		29	31	37	41	43	47	53	59	61		
ω	$1+\omega$	$9+2 \omega$	$7-2 \omega$	$14-3 \omega$					$14+3 \omega$	$11-3 \omega$		
1	1	7	7	$3 \cdot 5$	$2^{2 \cdot 3^{2}}$	$2^{3} \cdot 5$	$2^{2} \cdot 3 \cdot 72 \cdot 3 \cdot 23$	1	1	$2 \cdot 29$	$2^{2 \cdot 3 \cdot 5}$	
:---												

§ 5. Construction of genus field.

For a finite abelian group G, we denote by $|G|$ the order of G, ex (G) the exponent of G, that is, the smallest positive integer which annihilates G. For integer m and $n, n \mid m^{\infty}$ means that $n \mid m^{t}$ for sufficiently large t.

THEOREM 8. Let k be a finte algebraic number field of class number one, G any finte abelian group, and m a positive integer such that ex $(G) \mid m$ and $m \|\left. G\right|^{\infty}$. Then there exist infintely many cyclic extensions F of k of degree m such that

$$
C_{F} / C_{F}^{1-\sigma} \cong G\left(F^{*} / F\right) \cong G
$$

where C_{F} is the ideal class group of F on which $G(F / k)$ acts in usual way and σ is one of the generators of cyclic group $G(F / k)$.

To prove this theorem, we use the following lemma proved in [7]. For a rational prime number l and a positive integer n, we put

$$
k(l, n)=k\left(\zeta, \varepsilon_{1}^{1 / l^{-n}}, \cdots, \varepsilon_{r}^{1 / l^{-n}}\right)
$$

where l^{δ} is the number of l-power roots of unity in k, ζ is a primitive $l^{\delta+n}$-th root of unity, and $\left\{\varepsilon_{1}, \cdots, \varepsilon_{r}\right\}$ is the fundamental units of k. Then we have

LEMMA 9. Let k be a finite algebraic number field. For a rational prime number l such that $l \nmid h_{k}$, a positive integer n, and a finite prome \mathfrak{p} of k, the following three conditions are equivalent;

1) Let S be the ray class field modulo \mathfrak{p} of k. Then there exists an intermediate field L of S / k such that $(L: k)=l^{n}$.
2) l^{n} divides $\phi(\mathfrak{p}) /\left(U_{k}: U_{k}(\mathfrak{p})\right)$.
3) $\mathfrak{p} \nmid l$ and \mathfrak{p} splits completely in $k(l, n)$.

When these three equivalent conditions are fulfilled, L is a cyclic extension of k and \mathfrak{p} is totally ramified in L. Therefore the intermediate field of 1) is unique.

Proof of Theorem 8. Suppose first that G is l-primary for a rational prime number l. Then we have

$$
G=G_{1} \times \cdots \times G_{t}, \quad m=l^{e_{t+1}}
$$

where G_{\jmath} is cyclic group of order l^{e} and $1<e_{1} \leqq, \cdots, \leqq e_{t} \leqq e_{t+1}$. By Lemma 9 ,
there exist distinct finite primes $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{t+1}$ of k such that $l^{e}{ }^{e}$ divides $\phi\left(\mathfrak{p}_{j}\right) /\left(U_{k}: U_{k}\left(\mathfrak{p}_{j}\right)\right)$. Let S, be the ray class field modulo \mathfrak{p}_{j} of k, L_{\jmath} the intermediate field of S_{j} / k such that $\left(L_{j}: k\right)=l^{e_{j}}$, and σ_{\jmath} a generator of cyclic group $G\left(L_{j} / k\right)$. Put $K=\prod_{j=1}^{t+1} L_{j}$ composite field, then we have

$$
G(K / k)=G\left(L_{1} / k\right) \times \cdots \times G\left(L_{t+1} / k\right)
$$

Let H be the subgroup of $G(K / k)$ generated by $\left\{\sigma_{j} \sigma_{t+1}^{L^{n-e} \jmath}:(1 \leqq \jmath \leqq t)\right\}$, and F the fixed field of H (the construction of F is due to [7]). Then $G(F / k)=G(K / k) / H$ is a cyclic group of order m whose generator is $\sigma_{t+1} H$, and σ, generates the inertia group of \mathfrak{p}_{\jmath} in K / k, for $1 \leqq \jmath \leqq t+1$. Therefore K is unramified over F, and hence $K \subset F^{*}$. Since $h_{k}=1$, we have $(K: k) \geqq\left(F^{*}: k\right)$ by the genus number formula, and hence $K=F^{*}$. Then we have

$$
G\left(F^{*} / F\right)=H \cong G_{1} \times \cdots \times G_{t}=G
$$

For general G, we have

$$
G=G_{1} \times \cdots \times G_{s}, \quad m=q_{1} \cdots q_{s}
$$

where G_{\jmath} is the l_{\jmath}-primary part of G for a rational prime number l_{\jmath}, and q_{\jmath} is a power of l_{j}. Then there exists a cyclic extension F_{j} of k of degree q_{j} such that

$$
G\left(F_{\jmath}^{*} / F_{\jmath}\right) \cong G_{\jmath}
$$

Let $F=\prod_{\jmath=1}^{s} F_{\jmath}$ composite field. Then, by Lemma 6, we have $F^{*}=\prod_{\jmath=1}^{s} F_{\jmath}^{*}$ composite field. By the genus number formula, $\left\{\left(F_{j}^{*}: k\right):(1 \leqq \jmath \leqq s)\right\}$ are mutually prime, therefore we have

$$
G\left(F^{*} / F\right) \cong G\left(F_{1}^{*} / F_{1}\right) \times \cdots \times G\left(F_{s}^{*} / F_{s}\right) \cong G_{1} \times \cdots \times G_{s}=G
$$

The infinity of F is follows from the way of construction of F and from Lemma 9. The fact that the Artin mapping gives the isomorphism $C_{F} / C_{F}^{1-\sigma}$ $\cong G\left(F^{*} / F\right)$ is proved in [8].

References

[1] M. Bhaskaran, Construction of genus field and some applications. J. Number Theory 11 (1979), 488-497.
[2] Y. Furuta, The genus field and genus number in algebraic number field. Nagoya Math. J. 29 (1967), 281-285.
[3] R. Gold and L. Madan, Some applications of Abhyanker's lemma. Math. Nachr. 82 (1978), 115-119.
[4] M. Ishida, Some unramified abelian extensions of algebraic number field. J. Reine Angew. Math. 268/269 (1974), 165-173.
[5] M. Ishida, The genus fields of algebraic number fields. Springer Lecture Note 555 (1976).
[6] M. Ishida, On the genus fields of pure nuumber fields. Tokyo J. Math. Vol. 3 No. 1 (1980), 163-171.
[7] O. Yahagi, Construction of number fields with prescribed l-class group. Tokyo J. Math. Vol. 1 No. 2 (1978), 275-283.
[8] H. Yokoi, On the class number of relatively cyclic number field. Nagoya Math. J. 29 (1967), 31-44.

Department of Mathematics
Tokyo Institute of Technology

