S. ISHIHARA AND M. KONISHI KODAI MATH. J. 5 (1982), 30-37

COMPLEX ALMOST CONTACT STRUCTURES IN A COMPLEX CONTACT MANIFOLD

By Shigeru Ishihara and Mariko Konishi

§1. Introduction

Let M be a complex manifold of odd dimension $2m+1 (\geq 3)$ covered by an open covering $\mathfrak{A} = \{O_i\}$ consisting of coordinate neighborhoods. If there is a holomorphic 1-form ω_i in each $O_i \in \mathfrak{A}$ in such a way that for any $O_i, O_j \in \mathfrak{A}$

(1.1, i)
$$\omega_i \wedge (d\omega_i)^m \neq 0$$
 in O_i ,

(1.1, ii)
$$\omega_i = f_{ij} \omega_j$$
 in $O_i \cap O_j \neq \phi$,

where f_{ij} is a holomorphic function in $O_i \cap O_j$, then the set $\{(\omega_i, O_i) | O_i \in \mathfrak{A}\}$ of local structures is called a complex contact structure and M a complex contact manifold, where ω_i is called the contact form in O_i .

On the other hand, suppose that there are given in each $O_i \in \mathfrak{A}$ a 1-form u_i , a vector field U_i and a tensor field G_i of type (1,1) satisfying the following condition (1.2, i) and (1.2, ii): for any O_i , $O_j \in \mathfrak{A}$

(1.2, i)
$$G_i^2 = -I + u_i \otimes U_i + v_i \otimes V_i, \qquad G_i F = -FG_i,$$
$$u_i \circ G_i = 0, \qquad u_i (U_i) = 1,$$

I and F being respectively the identity tensor field of type (1,1) and the complex structure of M, where v_i and V_i are defined in O_i respectively by

$$v_i = u_i \circ F$$
, $V_i = -FU_i$.

In $O_i \cap O_j \neq \phi$ there are functions a and b in such a way that

(1.2, ii)
$$u_i = a u_j - b v_j, \quad G_i = a G_j - b H_j, \\ v_i = b u_j + a v_j, \quad H_i = b G_j + a H_j, \quad \text{in } O_i \cap O_j,$$

where H_i is defined in O_i by

$$H_i = FG_i$$
.

Then the set $\{(u_i, U_i, G_i, O_i) | O_i \in \mathfrak{A}\}$ of local structures is called a complex

Received June 30, 1980.

almost contact structure and M a complex almost contact manifold.

It is the purpose of the present paper to discuss the relation between complex contact structures and complex almost contact structures and to prove

THEOREM Let M be a complex contact manifold of odd complex dimension $2m+1 ~(\geq 3)$. Then M admits always a complex almost contact structure of class C^{∞} .

This subject has been partially studied in [3] and proved that a complex almost contact manifold admits a complex contact structure if it is normal.

§2. Lemmas.

From now on, M is assumed to be a complex contact manifold of complex dimension $2m+1 \ (\geq 3)$ with structure $\{(\omega_i, O_i) | O_i \in \mathfrak{A}\}$. Then for any $O_i, O_j, O_k \in \mathfrak{A}$

(2.1)
$$\omega_i = f_{ij} \omega_j \quad \text{in} \quad O_i \cap O_j \neq \phi$$

and hence the cocycle condition

$$f_{jk}f_{ki}f_{ij}=1$$
 in $O_i \cap O_j \cap O_k$

holds. Then there is a complex line bundle \tilde{P} over M with $\{f_{ij}\}$ as its transition functions. Denote by P a circle bundle over M associated with \tilde{P} . Then there is a non-vanishing complex-valued function τ_i in $O_i \in \mathfrak{A}$ such that the function

$$(2.2) h_{ij} = \tau_i^{-1} f_{ij} \tau_j in O_i \cap O_j \neq \phi$$

is the transition function of P in $O_i \cap O_j$ and satisfies the condition

 $|h_{ij}| = 1$.

On putting

 $\pi_i = \tau_i^{-1} \omega_i$ in O_i ,

we have by using (2.1) and (2.2)

(2.3)
$$\pi_i = h_{ij}\pi_j, \quad |h_{ij}| = 1 \quad \text{in} \quad O_i \cap O_j.$$

Let σ be a connection in the circle bundle *P*. Then there is a local real 1-form σ_i in each $O_i \in \mathfrak{A}$ such that

(2.4)
$$\sqrt{-1} \sigma_i = \sqrt{-1} \sigma_j + \frac{dh_{ij}}{h_{ij}} \quad \text{in} \quad O_i \cap O_j.$$

The condition $\omega_i \wedge (d\omega_i)^m \neq 0$ implies

(2.5)
$$\pi_i \wedge (d\pi_i)^m \neq 0 \quad \text{in } O_i$$

and hence

(2.6) $\pi_i \wedge \mathcal{Q}_i^m \neq 0 \quad \text{in } O_i,$

where \mathcal{Q}_{\imath} is defined by

(2.7)
$$\Omega_i = d\pi_i - \sqrt{-1} \sigma_i \wedge \pi_i \quad \text{in } O_i.$$

Thus \mathcal{Q}_\imath is a local 2-form of rank 2m in each \mathcal{O}_\imath and

(2.8) $\Omega_i = h_{ij} \Omega_j$ in $O_i \cap O_j$

holds because of (2.3) and (2.4). Thus we have

LEMMA 2.1. There is in each $O_i \in \mathfrak{A}$ a 2-form Ω_i of rank 2m and of class C^{∞} satisfying (2.8).

We now put

(2.9)
$$u_i = \frac{1}{2} (\pi_i + \bar{\pi}_i), \quad v_i = \frac{1}{2\sqrt{-1}} (\pi_i - \bar{\pi}_i)$$

which are local real 1-forms in each $O_i \in \mathfrak{A}$. Then we obtain

$$(2.10) v_i = u_i \circ F,$$

F being the complex structure of M. Using (2.5), we get

(2.11)
$$u_i = a u_j - b v_j, \quad \text{in } O_i \cap O_j, \quad v_i = b u_j + a v_j,$$

where $h_{ij} = a + \sqrt{-1}b$. The relation (2.5) implies

$$(\pi_i + \bar{\pi}_i) \wedge (d\pi_i + d\bar{\pi}_i)^m \neq 0, \qquad (\pi_i - \bar{\pi}_i) \wedge (d\pi_i - d\bar{\pi}_i)^m \neq 0,$$

or equivalently

(2.12)
$$u_i \wedge v_i \wedge (du_i)^{2m} \neq 0, \qquad u_i \wedge v_i \wedge (dv_i)^{2m} \neq 0.$$

On the other hand, we obtain from (2.7) and (2.9)

(2.13)
$$\frac{\frac{1}{2}(\Omega_i + \bar{\Omega}_i) = du_i - \sigma_i \wedge v_i,}{\frac{1}{2\sqrt{-1}}(\Omega_i - \bar{\Omega}_i) = dv_i + \sigma_i \wedge u_i.}$$

Therefore (2.12) and (2.13) imply

$$(2.14) u_i \wedge v_i \wedge (\hat{G}_i)^{2m} \neq 0, u_i \wedge v_i \wedge (\hat{H}_i)^{2m} \neq 0,$$

where

(2.15)
$$\hat{G}_i = du_i - \sigma_i \wedge v_i, \qquad \hat{H}_i = dv_i + \sigma_i \wedge u_i.$$

Thus (2.8), (2.11), (2.12) and (2.13) imply

LEMMA 2.2. There are in each $O_i \in \mathfrak{A}$ skew-symmetric local tensor fields G_i and \hat{H}_i of rank 4 m such that

(2.16)
$$\hat{H}_i(X, Y) = \hat{G}_i(FX, Y), \quad \hat{G}_i(X, Y) = -\hat{H}_i(FX, Y) \quad in \quad O_i$$

for any vector fields X and Y and

(2.17)
$$\hat{G}_i = a\hat{G}_j - b\hat{H}_j, \quad \hat{H}_i = b\hat{G}_j + a\hat{H}_j, \quad in \quad O_i \cap O_j,$$

where $h_{ij} = a + \sqrt{-1}b$.

We now state two more lemmas which are essential in the proof of our theorem (cf. [1], [2], [4]). Let O(n) be the orthogonal group acting on n variables, H(n) be the space consisting of all positive definite symmetric (n, n)-matrices and $GL(n, \mathbf{R})$ be the general linear group acting on n variables.

LEMMA 2.3. Any real non-singular (n, n)-matrix ρ can be written in one and only one way as the product $\rho = \alpha\beta$ with $\alpha \in O(n)$ and $\beta \in H(n)$. The mapping $\phi: GL(n, \mathbf{R}) \rightarrow O(n) \times H(n)$ defined by this decomposition gives a homeomorphism.

Remark. Since O(n) and H(n) are real analytic submanifolds of $GL(n, \mathbf{R})$, $\phi: GL(n, \mathbf{R}) \rightarrow O(n) \times H(n)$ is a real analytic homeomorphism, i.e. any $\rho \in GL(n, \mathbf{R})$ can be decomposed analytically in one and only one way as $\rho = \alpha \beta$, where $\alpha \in O(n)$ and $\beta \in H(n)$, (See Hatakeyama [2] for example).

LEMMA 2.4. Let $\mathfrak{A} = \{O_i\}$ be an open covering of M by coordinate neighborhoods. Suppose that there is in each $O_i \in \mathfrak{A}$ a local tensor fields α_i of type (0.2) and of class C^{∞} . Choose a field of orthonormal frames in each $O_i \in \mathfrak{A}$ and let γ_i , be the transformations of these fields of orthonormal frames in $O_i \cap O_j$. Then $\{\alpha_i\}$ defines globally a tensor field of class C^{∞} in M if and only if $\gamma_{ij}\alpha_j t \gamma_{ij} = \alpha_i$ holds in $O_i \cap O_j$ for any O_i , $O_j \in \mathfrak{A}$.

§3. Proof of theorem

Let \hat{G}_i and \hat{H}_i be the skew-symmetric tensors appearing in Lemma 2.2. If we put for any $p \in O_i$ ($\in \mathfrak{A}$)

$$D_i(p) = \{Y \in T_p(O_i) : \hat{G}_i(Y, X) = 0 \text{ for any } X \in T_p(O_i)\},\$$

then we get in O_i a local distribution $D_i: p \mapsto D_i(p)$. Lemma 2.2 implies $D_i(p) = D_j(p)$ for any $p \in O_i \cap O_j$. Hence the local distributions D_i defined in O_i determines a global distribution D in M, which is of real dimension 2.

LEMMA 3.1. There is a unique local basis $\{U_i, V_i\}$ of the distribution D in each $O_i \in \mathfrak{A}$ such that

$$u_{i}(U_{i})=1, \quad u_{i}(V_{i})=0, \quad v_{i}(U_{i})=0, \quad v_{i}(V_{i})=1, \\ \hat{G}_{i}(U_{i}, X)=\hat{G}_{i}(V_{i}, X)=\hat{H}_{i}(U_{i}, X)=\hat{H}_{i}(V_{i}, X)=0, \quad \text{in} \quad O_{i} \cap O_{j}$$

for any vector field X and

 $U_i = aU_j - bV_j$, $V_i = bU_j + aV_j$ in $O_i \cap O_j$.

Proof. If we put for any $p \in O_i$ ($\in \mathfrak{A}$)

$$A_i(p) = \{Y \in T_p(O_i) : v_i(Y) = 0\}$$

then we get a distribution $A_i: p \mapsto A_i(p)$ in O_i . The distribution $D \cap A_i$ is 1-dimensional in O_i because of (2.14). Thus there is a unique vector field U_i in O_i such that U_i spans $D \cap A_i$ and $u_i(U_i)=1$, i.e. such that

 $\hat{G}_i(U_i, X) = 0$, $u_i(U_i) = 1$, $v_i(U_i) = 0$ in O_i

for any vector field X. Lemma 2.2 implies

 $\hat{H}_i(U_i, X) = 0$

for any vector field X. Putting in O_i

$$(3.1) V_{i} = -FU_{i}$$

and using Lemma 2.2 and (2.10), we get

$$\hat{G}_i(V_i, X) = \hat{H}_i(V_i, X) = 0$$
, $v_i(V_i) = 1$, $u_i(V_i) = 0$

for any vector field X. Therefore $\{U_i, V_i\}$ is in O_i a local basis of the distribution D. As a consequence of (2.11), we have

$$U_i = aU_j - bV_j$$
, $V_i = bU_j + aV_j$, in $O_i \cap O_j$.

Thus Lemma 3.1 is proved.

We shall now prove the theorem stated in §1.

Proof of theorem. Let \tilde{g} be a Hermitian metric in M such that $\tilde{g}(U_i, X) = u_i(X)$ and $\tilde{g}(V_i, X) = v_i(X)$ for any vector field X. Take an orthonormal adapted frame $\{E_1, FE_1, \dots, E_{2m}, FE_{2m}, U_i, V_i\}$ with respect to g in each $O_i \in \mathfrak{A}$. Then by Lemma 3.1 \hat{G}_i has components of the form

$$(3.2) \qquad \qquad \varPhi_{i} = \begin{pmatrix} \varPhi_{i}^{\prime} & O \\ \vdots & O \\ O & \vdots \\ \vdots & 0 & 0 \end{pmatrix}$$

with respect to the frame $\{E_a, FE_a, U_i, V_i\}$ in O_i , where Φ'_i is a nonsingular real skew-symmetric (4m, 4m)-matrix. By Lemma 2.3 Φ'_i can be written in the form

$$(3.3) \qquad \qquad \varPhi_i' = \alpha_i' \cdot \beta_i'$$

with $\alpha'_i \in O(4m)$ and $\beta'_i \in H(4m)$. If we put

(3.4)
$$\alpha_{i} = \begin{pmatrix} \alpha'_{i} & O \\ \vdots & 0 & 0 \\ O & \vdots & 0 & 0 \end{pmatrix}, \qquad \beta_{i} = \begin{pmatrix} \beta'_{i} & O \\ \vdots & 0 & 0 \\ O & \vdots & 0 & 0 \end{pmatrix},$$

then α_i and β_i define tensor fields of class C^{∞} in O_i . Since Φ'_i is skew-symmetric,

 $\beta_i' \!\cdot^t \! \alpha_i' \! = \! - \alpha_i' \!\cdot \beta_i'$

and hence

$$\beta_i' = -\alpha_i' \cdot \beta_i' \cdot \alpha_i' = -\alpha_i'^2 \cdot {}^t \alpha_i \beta_i' \alpha_i'.$$

As is easily seen, $-\alpha_i'^2 \in O(4m)$, ${}^t\alpha_i' \cdot \beta_i' \cdot \alpha_i' \in H(4m)$. Thus, by the uniqueness of the decomposition, we obtain

$$\alpha_i^{\prime 2} = -I_{4m}$$
,
 ${}^t\alpha_i^{\prime} \cdot \beta_i^{\prime} \cdot \alpha_i^{\prime} = \beta_i^{\prime}$, i.e. $\beta_i^{\prime} \cdot \alpha_i^{\prime} = \alpha_i^{\prime} \cdot \beta_i$,

 I_{4m} being the unit (4m, 4m)-matrix. Consequently, we have

$$(3.5) \Phi_i = \alpha_i \cdot \beta_i ,$$

(3.6)
$$\alpha_{i}^{2} = -\begin{pmatrix} I_{4m} & O \\ \vdots & 0 & 0 \\ O & \vdots & 0 & 0 \end{pmatrix} = -I_{4m+2} + \begin{pmatrix} O & \vdots & O \\ \vdots & 0 & 0 \\ O & \vdots & 0 & 1 \end{pmatrix},$$

On the other hand, the complex structure F has components of the form

(3.7)
$$\Gamma = \begin{pmatrix} \Gamma' & O \\ \cdots & \cdots & \cdots \\ 0 & \vdots & 0 & -1 \\ 0 & \vdots & -1 & 0 \end{pmatrix}, \quad \Gamma' = \begin{pmatrix} 0 & -1 & O \\ 1 & 0 & & \\ 0 & \vdots & 0 \\ 0 & 1 & 0 \end{pmatrix} \in O(4m)$$

with respect to the adapted frame $\{E_a, FE_a, U_i, V_i\}$ in O_i . Hence Lemma 2.2 implies that \hat{H}_i has components of the form

(3.8)
$$\Psi_{i} = \begin{pmatrix} \Psi_{i}' & O \\ \cdots & 0 & 0 \\ O & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Psi_{i}' = \Gamma' \Phi_{i}' = -\Phi_{i}' \Gamma'.$$

Therefore Ψ'_i can be decomposed as

(3.9)
$$\Psi_{i}^{\prime} = (\Gamma^{\prime} \cdot \alpha_{i}^{\prime}) \cdot \beta_{i}^{\prime} = \delta_{i}^{\prime} \cdot \beta_{i}^{\prime}, \qquad \delta_{i}^{\prime} = \Gamma^{\prime} \cdot \alpha_{i}^{\prime}.$$

Denote by γ_{ij} the transformation of adapted frames $\{E_a, FE_a, U_i, V_i\}$ and $\{E'_a, FE'_a, U_j, V_j\}$ in $O_i \cap O_j$. Then Lemmas 2.2 and 2.4 imply

$$\Phi_{i} = \gamma_{ij} \cdot (a \Phi_{j} - b \Psi_{j}) \cdot {}^{t} \gamma_{ij}.$$

Substituting (3.5) and (3.9) into this, we have

$$\begin{aligned} \alpha'_{i} \cdot \beta'_{i} &= \gamma'_{ij} \cdot (a \, \alpha'_{j} - b \delta'_{j}) \cdot \beta'_{j} \cdot {}^{t} \gamma'_{ij} \\ &= (\gamma'_{ij} \cdot (a \, \alpha'_{j} - b \delta'_{j}) \cdot {}^{t} \gamma'_{ij}) \cdot (\gamma'_{ij} \cdot \beta'_{j} \cdot {}^{t} \gamma'_{ij}), \end{aligned}$$

where γ'_{ij} denotes the element of O(4m) such that

$$\gamma_{ij} = \begin{pmatrix} \gamma'_{ij} & O \\ \vdots & a \\ O & a \\ \vdots & b & a \end{pmatrix}.$$

Since $\gamma'_{ij} \in O(4m)$ and the decomposition is unique, we get

(3.10) $\alpha'_{i} = \gamma'_{ij} \cdot (a\alpha'_{j} - b\delta'_{j}) \cdot {}^{t}\gamma'_{ij},$

(3.11)
$$\beta'_{i} = \gamma'_{ij} \cdot \beta'_{j} \cdot {}^{t}\gamma'_{ij}.$$

The equation (3.11) shows by means of Lemma 2.4 that $\{\beta_i\}$ defines a global tensor field g of class C^{∞} , which is a Hermitian metric in M.

Denote by G_i the local tensor field of type (1, 1) having components α_i with respect to the adapted frame $\{E_a, FE_a, U_i, V_i\}$ in O_i . Thus (3.4) implies

$$(3.12) G_i U_i = G_i V_i = 0, \quad u_i \circ G_i = v_i \circ G_i = 0 \quad \text{in} \quad O_i$$

and (3.6) implies

$$(3.13) G_i^2 = -I + u_i \otimes U_i + v_i \otimes V_i in O_i.$$

Furthermore, using (3.3) and (3.4), we have

(3.14)
$$g(G_{i}X, Y) = \hat{G}_{i}(X, Y) \\ g(U_{i}, X) = u_{i}(X), \quad g(V_{i}, X) = v_{i}(X)$$
 in O_{i}

for any vector fields X and Y.

Next, we denote by H_i the local tensor field of type (1, 1) having components $\Gamma \cdot \alpha_i$ with respect to the adapted frame $\{E_a, FE_a, U_i, V_i\}$ in O_i . Then

$$(3.15) H_i = FG_i in O_i$$

holds. Then (3.10) implies

$$(3.16) G_i = aG_j - bH_j, \quad H_i = bG_j + aH_j, \quad \text{in } O_i \cap O_j$$

Summing up Lemma 3.1, (3.12), (3.13), (3.15) and (3.16), we see that $\{(u_i, U_i, G_i, O_i): O_i \in \mathfrak{A}\}$ is a complex almost contact structure in M. Thus the Theorem is proved.

36

Bibliography

- $\left[\ 1 \ \right]$ Chevalley., C., Theory of Lie groups I, Princeton Univ. Press, 1946.
- [2] HATAKEYAMA, Y., On the existence of Riemannian metrics associated with 2-form of rank 2r, Tôhoku Math. J. 14 (1962), 162-166.
- [3] ISHIHARA, S. and M. Konishi, Real contact 3-structure and complex contact structure, Southeast Asian Bulletin of Math., 3 (1979), 151-161.
- [4] SHIBUYA, Y., On the existence of a complex almost contact structure, Kodai Math. J. 1 (1978) 197-204.

TOKYO INSTITUTE OF TECHNOLOGY