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ON ALMOST CONTACT METRIC COMPOUND STRUCTURE

BY YOSHIHIRO TASHIRO AND IN-BAE KIM

Introduction. K. Yano and U.-H. Ki [8] have recently introduced the notion
°f (f> g> u> v> ιv> λ, μ, ^-structure in an odd-dimensional manifold M, which is
an abstraction of the induced structure in a submanifold of codimension 3 in an
almost Hermitian manifold, and studied conditions for such a structure to define
an almost contact structure in M and properties of pseudo-umbilical submanifold
of codimension 3 satisfying the conditions in a Euclidean space of even-dimen-
sion.

In the present paper, we shall introduce in § 1 the notion of metric com-
pound structure in a manifold M of dimension m, which is a generalization of
(/, g, u, v, w, λ, μ, v) and naturally induced in M if M is a submanifold in an
almost Hermitian manifold M of dimension n. In § 2, we shall seek for condi-
tions in order that a metric compound structure defines an almost contact metric
structure in M. After the definition of normality in §3, we shall consider in
§ 4 submanifolds having a normal contact metric compound structure in a Kaeh-
lerian manifold. In § 5, we shall disscuss properties and give geometrical charac-
terization of pseudo-umbilical submanifolds in a Euclidean space. In § 6, we
shall show that a metric compound structure possessing another property gives
an almost contact metric structure.

Throughout this paper, we put l=n — m and indices run the following ranges
respectively:

fc, λ, μ, v, ••• =1, 2, , n;

h, i, j, k, ••• =1, 2, •••, m

p, q, r, s, ••• = m+1, m+2, ••• ,n

A, B, C, D, ••• =1, 2, ••• , m, m+1, , n .

§ 1. Metric compound structure

Let M be an n-dimensional almost Hermitian manifold and (G, F) the almost
Hermitian structure, where G is the almost Hermitian metric and F the almost
complex structure of M. We denote by G ^ and Fλ

κ components of G and F
with respect to a local coordinate system (xκ). If I=(δλ

κ) indicates the identity
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tensor, then the structure satisfy the equations

(1.1) F 2 - - / ; Fμ

λFλ'=-δμ<

and

(1.2) *FGF=G Fv

λF/Gλκ=Gvμ .

If we put the covariant components of F as

(1.3) F*=GF; Fμχ = F/Gλκ,

then Fμχ is skew-symmetric in λ and μ.
Let M be an 7?ί-dimensional Riemannian manifold and suppose now that it

is immersed isometrically in M by the parametric equations

(1.4) xκ=xκ(yh)

by use of a local coordinate system (yh) of M.
We put

(1.5) BS^diX*

and denote by Cq

κ I mutually orthogonal unit normal vector fields of M. Then
the n vectors B%

κ and Cq

κ span the tangent space T{M) of M at every point of
M and the matrix

B=(BB*)=(Bt<, Cq<)

is regular. The metric tensor g of M is related with G of M by

(1.6) gjt=GμλB/Bt

λ .

Denoting the contravariant components of g by gίh, we put

Bhχ=gihGλκB%<,

CqX^=G χκCq

K .

Then the inverse matrix B'1 of B is given by

Cpχ.

Now we put
if ft —v ft

(1.7) F^B-ΨB; (FB

A)=(BB

λFχ*BA

κ)=i %

\Vpι fqp

Then the components of four kinds of F are given by

fh^-.nxpκjDh h—_rλpκr>κ
Jl •—ί->% I X LJ κ , Uq — \^q 1 X U κ f
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Since F*={F μλ) is skew-symmetric, we have the relations

(1.8) vpι=vp

h

μλ)

vpι=vp

hgih

and see that

(1.9) fji=B/Bt'FXκ

is skew-symmetric in i and j , and

(1.10) fqp=Cq

λCp*Pλκ

is also skew-symmetric in p and q. Thus the sets f=(fτ

h), v^=(vq

h) and f1 —
(fqp) compose a (1, l)-tensor, m vector fields and /(/—l)/2 scalar fields on M
respectively.

The transforms of the tangent vectors Bt

κ and the normal vectors Cq to
M by F are expressed in the form

(1.11) Fλ

κBι

λ=fι

hBh^vΊ)iC/

and

(1.12) F/Cq

λ = -vq

hBh*+fqpC/,

where and in the sequel summation convention is also applied to repeated lower
indices p, q, r, ••• on their own range m + 1 , m+2, ••• , n. Since the matrix (1.7)
satisfies the equation

F*=-I,

the quantities /, v and fL are in the relation

(1.13) UAh=-^h+vqjvq\

(1.14) fjxvpi=-vqjfqp=fpqvqj,

(1.15) Vr%fxh=-frqVq

h ,

(1.16) frqfqP=—δrpJrVr

lVpι .

The relation (1.6) is equivalent to

(1.17)

Now removing the almost Hermitian ambient manifold M, we consider an
m-dimensional Riemannian manifold M admitting a metric tensor g, a (1, l)-tensor
field /, m vector fields vq and /(/—1)/2 scalar fields fqp such that they satisfy
the relations (1.13), (1.14), (1.15), (1.16) and (1.17), and call the totality (f,g,v,fλ)
of these quantities a metric compound structure on M.

If we put
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(1.18, * = ( ' • ' - ' ) and C=l"
\Vpi fqpj \ 0 δq

then the set (F, G) defines an almost Hermitian structure in the product space
MxR1 of the manifold M with an /-dimensional Euclidean space Rι.

% 2. Almost contact metric compound structure

We shall suppose that the tensor field / together with the metric tensor g,
a contravariant vector field ξ=(ξh) and a covariant vector field Ύ]—(Ύ]X) compose
an almost contact metric structure on M. Then we have

(2.1) //ΛΛ

(2.2) Λ f t £ ι =0, f%

hηh=0,

(2.3) ξ*ηt=l

and

(2.4) fjkλhg

In this case we know that the dimension m of M is odd and the rank of / =
(ff) is equal to m—1.

Comparing (1.17) with (2.4), we have

(2.5) vqjvqι=Ύ]jηι.

This equation shows that the product of the matrix (vqτ) with the transpose is
of rank 1 and consequently that the matrix (vqι) by itself is of rank 1. There-
fore we may put

(2.6) vqι=vqηtf

where vq are proportional factors. Since vqivq

ι=ηιξ
ι=lf We have

(2.7) 1 ^ = 1

and the equations (1.15) and (1.16) are reduced to

(2.8) fqPVp=0

and

(2.9) frqfqp=—δrp + VrVP

respectively. The equations (2.7), (2.8) and (2.9) mean that the set (/x, g1, v)
forms an almost contact metric structure on Rι at every point of M, where
g1=(δqp), and we see that the dimension / of Rι is odd.
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Conversely, starting from the almost contact metric structure (f1, g1, v) on
Rι at every point of M, we can prove that the metric compound structure
(/> g> v, f1) introduces an almost contact metric structure (/, g, ξ, η) on M.
Thus we have

THEOREM 1. Let (/, g} v, f1) be a metric compound structure on M. In
order that f and g constitute an almost contact metric structure (/, g, ξ, η) on
M, it is necessary and sufficient that f1 and g1 constitute an almost contact metric
structure {f1, g1, v) on Rι at every point of M.

A metric compound structure satisfying the condition in the above theorem
is called an almost contact metric compound structure on M. In the following
we shall confine ourselves to such structures. From the above discussions we
can state the following

THEOREM 2. In order that a metric compound structure (f, g, v, f1) is almost
contact, it is necessary and sufficient that the matrix (v^) is of rank 1, that is,
the I vector fields vq are all parallel to each other.

§3. The Nijenhuis tensor

Denoting dj=d/dyJ and regarding dq as null operators, we define the Nijenhuis
tensor of the metric compound structure (1.18) in MxR1 by

Using (1.18), we can write down SCB
Λ as the followings;

(3.1)

If the metric compound structure (/, g, v, f1) gives an almost contact metric
structures (/, g, ξ, η) on M and (/±, g1, v) on R\ then the above expressions
are reduced to
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(3.2) SM

Λ==Kι(3i//-3,/l

Λ)-//3tf
ft]vβ--(//3ivς+Λ,3Jv,

because vqvq—\ and vqdjVq=0.
On the other hand, the Nijenhuis tensors of the almost contact metric struc-

ture (/, g, ξ, η) are given by ([4])

Comparing (3.2) with (3.3), we have the equations

(3.4)
Njh=Sjq

hvq, Nj=Sjqpvqvp.

Therefore we obtain, from (3.4), the following

THEOREM 3. Let (/, g, v, fL) be an almost contact metric compound structure
on M. In order for the almost contact metric structure (/, g, ξ, η) on M to be
normal, it is necessary and sufficient that Sjih=0.

% 4. Submanifolds of codimension / of an almost Hermitian manifold

In this section we assume that M is an m-dimensional submanifold of codi-
mension / of an almost Hermitian manifold M and Cv—(Cv

λ) are mutually
orthogonal unit vector normal to M in M, that is,

(4.1) GμλC/Bτ>=0, GμλC/Cp

λ=gqp^δqp,

and that ttie induced metric compound structure (/, g, v, f1) on M from the
almost Hermitian structure (G, F) on M defines an almost contact structure.
The vector field Nλ defined by

(4.2) Nλ = vPCP

λ

is unit normal to M in M because GμλN
μNλ = l. The transforms of the tangent

vectors Bx

λ and the normal vectors Cp

λ by F is given by

(4.3) Fμ

λBi^=fι

hBh

λ + ViN
λ
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and

(4.4) Fμ

λCq"=-v£hBh*+fqpCp

λ

respectively.
It is well-known that the submanifold M of an almost Hermitian manifold

satisfying (4.3) is semi-invariant with respect to Nλ and we call Nλ the dis-
tinguished normal to M [6].

From (4.2) and (4.4) we have

(4.5) Fμ

λN^-ξhBh

λ,

and hence the transform of the distinguished normal Nλ by the almost complex
structure F of M is tangent to M.

Conversely suppose that the submanifold M of codimension / of the almost
Hermitian manifold M is semi-invariant with respect to a unit normal Nλ whose
transform by F is tangent to M, then we have (4.3) and (4.5) for a vector ζh

and a 1-form γj% =zgihζ
κ of M. Applying F to (4.3) and (4.5), we obtain

We also have, from (1.2), (1.6) and (4.3),

Therefore we see that the set (/, g, ξ, η) defines an almost contact metric struc-
ture. As we have seen in § 2, the induced set (f1, g-1, v) also defines an almost
contact metric structure. Then we have

THEOREM 4. In order for an induced metric compound structure (f,g,v,fL)
on a submanifold M of codimensional I of an almost Hermitian manifold M to
be an almost contact, it is necessary and sufficient that the submanifold M is semi-
invariant with respect to a unit normal vector field whose transform by F is
tangent to the submanifold.

Now denoting by 13 the operator of van der Waerden-Bortolotti covariant
differentiation with respect to gju we have the Gauss equation for M in M

(4.6) VjBt

λ = hjipCp

λ ,

where hJίp is the second fundamental tensor with respect to the normal Cp

λ.
The mean curvature vector is defined by

where hιι

v—g2ihHv. The Weingarten equation is given by
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(4.8) VA>" = -Λ,/5» ;+/,MCΛ

where ljpq is the third fundamental tensor. Differentiating (4.1) covariantly and
making use of (4.6) and (4.8), we have

(4.9) hjq

l

gll=h}iq,

(4.10) W=~W

We put hjiPvv=-hjV

hgihvp—hji and call hμ the intrinsic second fundamental
tensor of M. Differentiating Nλ covariantly and using (4.8), we find

(4.11) VjN^-hSBS+WjVp+vJwKj,*.

Now we assume that the ambient manifold M is Kaehlerian. Differentiating
(4.3) covariantly and taking account of (4.4), (4.6), (4.8) and (4.11), we have

from which follow the equations

(4.12) 7 j Λ Λ = - λ , i £
Λ + ? 1 A

(4.13) (Vjr]ι)vP+r]i(VjVp):=hjiqfqp—fι

Transvecting (4.13) with vp and ξ\ we obtain

(4.14)

(4.15)

Also, differentiating (4.4) covariantly and taking account of (4.3), (4.4), (4.6) and
(4.8), we have

qp)Cp

x+fqr(-h

from which follow the equations

(4.16)

(4.17)

Suppose that the almost contact metric structure (/, g, ξ, η) on M is normal,
that is,

Then, substituting (4.12) and (4.14) into this equation, we have the equation
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and, transvecting this equation with ξ%,

(4.18) fW-hSfS^-ξWffη,.

Transvecting (4.18) with fk

3 and with fh

ι successively, we have the equations

and

(4.19) fklh^-hk

ιfι^=VιhJ

ιfkψ-7]kξ
ίhι

hfh\

Comparing (4.19) with (4.18), we find ηthjlfk

jξι=O or equivalent^ ξιht

ιfι

J=O.
Moreover, substituting this equation into (4.18), we have

(4.20) f/h^h/fS.

Thus we have

THEOREM 5. Suppose that the submanifold M of codimension I of a Kae-
hlenan manifold M admits an almost contact metric compound structure (/, g, v,fL).
Then, in order for the almost contact metric structure (/, g, ξ, η) on M to be
normal, it is necessary and sufficient that the intrinsic second fundamental tensor
h and f commute.

Suppose that the almost contact metric structure (/, g, ξ, η) on M is normal
contact, that is, it satisfies (4.20) and

(4.21)

Then, substituting (4.14) into the equation (4.21), we have

-h3lf%

ι+htιf,
ι=2f3i,

from which follows the equation

Substituting (4.20) into this equation, we have

(4.22) A, '/ ,*=//,

and, transvecting with ζJ,

f'ΛJ

ι/i f t=O.

Transvecting this equation with fh

ι, we obtain ξ1hJ

ι=aξι, where we have put

(4.23) a=ξ'?h1%.

Transvecting (4.22) with fh

%, we have
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or equivalently

(4.24) h J % = g V η

In this case we say that the submanifold M is η-umbilical with respect to the
distinguished normal Nλ.

Conversely if the submanifold M is ^-umbilical, we can easily obtain the
equations (4.20) and (4.21) by the transvection of (4.24) with /.

In particular, if the distinguished normal Nλ to M is concurrent, that is,
ljNλ = —τBjλ for some function τ, then we have form (4.11)

Since the first of these equations is expressed as

(4.25) hji=τgji,

then, from (4.23), we find a—τ. Substituting (4.25) and a=τ into (4.24), we have

which implies r = l . Consequently we have hji=gji. Thus we have

THEOREM 6. Suppose that the submanifold M of codimension I of a Kae-
hlenan manifold M admits an almost contact metric compound structure (/, g, v,fL).
In order for the almost contact metric structure (/, g, ξ, η) on M to be normal
contact, that is, Sasakian, it is necessary and sufficient that M is η-umbilical with
respect to the distinguished normal Nλ. In addition, if the distinguished normal
Nλ to M is concurrent, then M is umbilical with respect to Nλ.

§ 5. Submanif olds of codimension / of an even-dimensional
Euclidean space

In this section we assume that M is a submanifold of codimension / of an
even-dimensional Euclidean space En and an almost contact metric compound
structure (/, g, v, f1) is induced on M. Then the Gauss, Codazzi and Ricci
equations are given by

W l) Kkjih — h khphjip — hjftph kip ,

(5.2) VkhJiq—Vjhkιq= — lJqphkhp+lkqphjip,

(5.3) Vkljqp~~^jlkqp=hj qhklp—hk qh3lp~\rIkqrljrp~~Ijqrlkrp

respectively, where Kkji
h=ghlKkjιι is the curvature tensor of M.

Now we shall prove
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THEOREM 7. Let M be a submanifold of dimension ra>3 in an even-dimen-
sional Euclidean space En and assume that the induced metric compound structure
(/> g> v> fL) is almost contact. Then, in order for the submanifold M to be um-
bilical with respect to the distinguished normal Nλ and Nλ parallel to the mean
curvature vector of M in En, it is necessary and sufficient that the distinguished
normal Nλ is concurrent. In this case the mean curvature of M is constant.

Proof. If the submanifold M is umbilical with respect to the distinguished
normal Nλ and Nλ is parallel to the mean curvature vector Hλ of M, we have

(5.4) hji^pgji,

(5.5) hι

ι

p=hι

ιvp=mpvp

for a certain scalar function p. By means of (5.4) the equations of (4.14) and
(4.12) have the following expressions

(5.6) V,ηx=pfji9

(5.7) ^kfji=p(ηjgki—ηίgkj)

respectively.
Substituting (4.15) and (5.6) into (4.13), we have

(5.8) p

and, transvecting this equation with gjU

ξψhjiqfqp=hί

ι

qfqp=0.
This equation implies

ξψhJiq=Avq,

where A=ζjξιhji=p and consequently

(5.9) ζjξιhjίq=pvq.

If we transvect (5.2) with vq and make use of (4.15), we have

(5.10) "7khji-
r7Jhkv=ξιhklqhJlpfqp-ζιhjlqhHpfqp

or, by means of (5.4),

(5.11) (^kp)gji—(^jp)gkι=ξιhkιqhjίpfqp—ξιhjlqhklpfqp.

Differentiating (5.6) covariantly and using (5.7), we have

from which, using the Ricci identity,
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From this, by the Bianchi identity, we obtain

(5.12) Wkp)fji+Wjp)f

Transvecting (5.12) with fjί, we get

Moreover the transvection of (5.12) with ξιfkJ yields ξιΊtρ=0. Therefore we
see that p is constant for m>3.

From (5.11) and the above result we have

ζ h klqhjipfqp = £ hjiqh kipfqp ,

and, transvecting with ξ3 and using (5.9),

(5.13) ξιhkιqξ
Jhjίpfqp=O.

Transvecting (5.8) with ζJξkhkhp and using (5.13), we have

Aιξjhjlpξ
khkhp=0,

and, transvecting with fm

ι and using (5.9),

(5.14) ςιhlJPξ
khhιp=p%v%.

Let H be the matrix (ξιhίJP). Then (5.14) means that tHH=p2(ηJ7}t), where ιH
is the transpose of H. Since the rank of matrix (τ]jη%) is 1, then the rank of
H is also 1. Therefore we may put

(5.15) ξιhuP=ρy'iv'p.

Comparing the transvection of (5.15) with ξι and (5.9), we see that vp=Λvp,
where A=ξιη[. Hence we have

(5.16) ξιhltpfpq=O

or equivalently, from (4.15),

(5.17) V Λ + » P W = 0 .

Finally we see, from (5.6) and (5.17), that the distinguished normal Nλ is con-
current.

Conversely if the distinguished normal Nλ is concurrent, that is, VjNx =
—τB/ for a certain function τ, then we have hji—τgjU which shows that M
is umbilical with respect to Nλ, and (5.17). Substituting (4.14) and the above
equations into (4.13), we have

fιιhjlp=hjiqfqp-τfjivpf

and, transvecting with gji,
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hi qfqp — 0 ,

which implies

Therefore the distinguished normal Nλ is parallel to the mean curvature vec-
tor Hλ.

In this case we easily see that the mean curvature of M is constant. This
completes the proof.

Now we assume that the mean curvature vector Hλ is parallel to the dis-
tinguished normal AM of M, that is, Hλ~ρNλ for a certain function p. Then
we have (5.5).

If the submanifold M is pseudo-umbilical, we have

(5.18) Gλμh3i

λHv=p*g3i

because \ρ\ is the length of Hλ. From (5.5) and (5.18) we find that hμ— \ρ\g^y

which means that M is umbilical with respect to the distinguished normal Nλ.
Conversely if the submanifold M is umbilical with respect to Nλ, we have

(5.18) from (5.4) and (5.5). Thus we have

THEOREM 8. Let M be a submanifold of codimension I with the induced
almost contact metric compound structure (/, g, v, fL) of an even-dimensional
Euclidean space En and the mean curvature vector Hλ of M parallel to the dis-
tinguished normal Nλ of M in En. Then, in order for the submanifold M to be
pseudo-umbilical, it is necessary and sufficient that M is umbilical with respect to
the distinguished normal Nλ.

It is well-known that pseudo-umbilical submanifolds in a Euclidean space
with the mean curvature vector parallel in the normal bundle are minimal sub-
manifolds of a hypersphere [7]. From Theorem 7, we see that the mean cur-
vature vector is parallel in the normal bundle. Therefore it follows from Theo-
rems 7 and 8 that the submanifold M of dimension ra>3 is contained as a
minimal submanifold in a hypersphere in En.

On the other hand, we see that the direct sum of the tangent space of M
and the distinguished normal Nλ is invariant because of (4.3) and (4.5). There-
fore M is an intersection of a complex cone with generator Nλ on M and an
(n — l)-dimensional sphere.

Thus we have the following

THEOREM 9. Let M be a submanifold of codimension I with the induced almost
contact metric compound structure (/, g, v, fx) of an even-dimensional Euclidean
space En. If the submanifold M satisfies one of the followings

(1) M of dimension m>3 is umbilical with respect to the distinguished normal
Nλ, and Nλ parallel to the mean curvature vector,

(2) M of dimension m>3 is pseudo-umbilical submanifold and the distinguished



26 YOSHIHIRO TASHIRO AND IN-BAE KIM

normal Nλ parallel to the mean curvature vector,
(3) The distinguished normal Nλ is concurrent,
then M is the intersection of a complex cone with generator Nλ and an

(n — ϊ)-dimensίonal sphere.

We now assume that the metric compound structure (/, g, v, f1) induced
on a submanifold M of codimension / of an even-dimensional Euclidean space
En defines a normal almost contact metric structure (/, g, ξ, η) on M and the
distinguished normal Nλ is parallel in the normal bundle of M. Then we have
the equation (4.20), that is,

(5.19) hjlfι

ι+hιlf/=O.

Transvecting (5.19) with fk

ι and taking the skew-symmetric part, we have

which means that we may put

(5.20) hsιξ
ι=aη39

where a=^ςJςιhji. Differentiating (5.20) covariantly and substituting (4.14) into
this equation, we have

and, taking the skew-symmetric part and using (5.19), the equation

(5.21) ^khjι-7jhkι)

On the other hand, since Nλ is parallel in the normal bundle of M, we have
(5.17) or equivalently (5.16). From (5.10) and (5.16) we find

(5.22) 7 * * ^ - 7 ^ ^ = 0 .

Substituting (5.22) into (5.21), we have

(5.23) 2h3

ιhι%fk

%={lkά)r3J-{l3a)ηk+2ahjιfk

ι,

and transvecting (5.23) with ξι and using (5.20),

(5.24) Vha=Aηk,

where A=ξιlta. Thus (5.23) implies

hjlhι%fk

x=ahjιfk
l.

If we transvect this equation with fh

k and make use of (5.20), we obtain

(5.25) hjιhι%=ahJt.

Differentiating (5.24) covariantly and substituting (4.14) into this equation, we



ON ALMOST CONTACT METRIC COMPOUND STRUCTURE 27

have

and, transvecting with ξJ and using (5.19),

The two equations above show that Ah3lfk

ι=§. Transvecting this equation
with ft

k and using (5.20), we have

(5.26) j η j η

Now suppose that M is locally irreducible. Then we have A=Q from (5.26).
In fact, if A^O, we have hji=aηjτ]ι. Substituting this equation into (4.14), we
find 7j7]τ=0, which means that ξh is parallel vector field. This contradicts to
the local irreducibility of M. Therefore we see that a is constant from (5.24).
Moreover this constant is nonzero. In fact, if α=0, we have hjτ=Q from (5.25)
and finally we also have ^jr]ι=0.

Differentiating (5.25) covariantly, we have

From this equation, taking the skew-symmetric part with respect to i and k
and using (5.22), we have

Since the sum of this equation and one with exchanged j and k is

(5.27) 2{!khjl)hι

ι=alkh3i

by means of (5.22), then we have, transvecting (5.27) with hh

ι and using (5.25)
and

(5.28) (Vkh^h^O.

Therefore, from (5.27) and (5.28), we have

(5.29) Vkhji=0.

By the irreducibility of M, it follows from (5.29) that hμ is proportional to g3i

and from (5.25) that the proportional factor is equal to a, that is,

(5.30) hji=agji.

Consequently we see, from (5.17) and (5.30), that the distinguished normal Nλ

is concurrent.
Thus, from Theorem 9, we have

THEOREM 10. Let M be a locally irreducible submamfold of codimension I
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with an induced metric compound structure (/, g, v, fL) of a Euclidean space En

such that the distinguished normal Nλ is parallel in the normal bundle. If the
metric compound structure (/, g, v, f1) defines a normal almost contact metric
structure (/, g, ξ, η) on M, then M is the intersection of a complex cone with
generator Nλ and an {n — l)-dimensional sphere.

§6. Metric compound structure (/, g, v, f1) in which / L = 0

Let the set (/, g, v, f1) be a metric compound structure on M and assume
that the tensor field f1 on Rι vanishes identically. Then, from (1.14), (1.15)
and (1.16), we have

(β.l) f,lvp%=0, V Λ A = 0 ,

(6.2) vq

ιvpι=δqp.

We assume that M is odd-dimensional and put l=2α + l.
We choose one of the / vector fields vpι as τjιt for example,

(6.3) Vι = V2α + l,ι

and put ζh—gihηx. Then, by means of (6.2), we have

(6.4) ξl7]r=l.

Now we put

(6.5) φih=fxh-( Σ vPiVph- tvpiVP

h),

where p^α+p. Then, using (6.1) and (6.2), we have

which implies, from (1.13),

(6.6) φ,xφιh=-δ,h+η£h

From (6.3) and (6.5) we also have

(6.7) φsξ>=φsVτ=Q.

Using (6.1) and (6.2), we also have

φjkφihgkh=fjkfιhgkh + VpjVp

which implies, from (1.17),

(6.8) φjkφihgkh—gji—ηj'ηι
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Thus we have the following

THEOREM 11. Let (/, g, v, f1) be a metric compound structure on an odd-

dimensional manifold M. If the tensor f1 on Rι vanishes identically, then the

manifold M admits an almost contact metric structure (φ, g, ζ, η), where rj is

one of I vector fields v and φ is given by (6.5).
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