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1. Introduction.

A quaternion manifold (or quaternion Kaehlerian manifold [10]) is defined
as a Riemannian manifold whose holonomy group is a subgroup of Sp(l).
Sp(m)=Sp(l)xSp(m)/{±1}. The quaternion projective space QPm, its noncom-
pact dual and the quaternion number space Qm are three important examples of
quaternion manifolds. It is well-known that on a quaternion manifold M, there
exists a 3-dimensional vector bundle E of tensors of type (1, 1) with local
cross-section of almost Hermitian structures satisfying certain conditions (see § 2
for details). A submanifold N in a quaternion manifold M is called a quaternion
(respectively, totally real) submanifold if each tangent space of N is carried
into itself (respectively, the normal space) by each section in E. It is known
that every quaternion submanifold in any quaternion manifold is always totally
geodesic. So it is more interesting to study a more general class of submani-
folds than quaternion submanifolds. The main purpose of this paper is to
establish the general theory of quaternion Ci?-submanifolds in a quaternion
manifold which generalizes the theory of quaternion submanifolds and the theory
of totally real submanifolds. It is proved in section 3 that such submanifolds
are characterized by a simple equation in terms of the curvature tensor of a
quaternion-space-form.

In section 4 we shall study the integrability of the two natural distributions
on a quaternion Ci?-submanifold.

In section 5 we obtain some basic lemmas for quaternion Ci?-submamfolds.
In particular, we shall obtain two fundamental lemmas which play important
role in this theory. Several applications of the fundamental lemmas are given
in section 6.

In section 7 we study quaternion C7?-submanifolds which are foliated by
totally geodesic, totally real submanifolds.

In the last section we give an example of a quaternion Ci?-submanifold of
an almost quaternion metric manifold on which the totally real distribution is
not integrable.
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2. Quaternion Manifolds.

Let M be a 4m-dimensional quaternion manifold with metric tensor <, /.
Then there exists a 3-dimensional vector bundle E of tensors of type (1, 1) with
local basis of almost Hermitian structures /, /, K such that

(a) IJ=-JI=K, JK=-KJ=I, KI=~IK^J
(b) for any local cross-section ψ of E and any vector X tangent to M,

Ίxψ is also a local cross-section of E, where 7 denotes the covariant
differentiation on M.

Condition (b) is equivalent to the following condition (b') there exist local
1-forms p, q and r such that

(2.1)

Let X be a unit vector tangent to the quaternion manifold M. Then X,
IX, JX and KX form an orthonormal frame. We denote by Q(X) the 4-plane
spanned by them. We call Q(X) the quaternion section determined by X. For
any two vectors X, Y tangent to M, the plane X/\Y spanned by X, Y is said
to be totally real if Q{X) and Q(Y) are orthogonal. Any plane in a quaternion
section is called a quaternion plane. The sectional curvature of a quaternion
plane is called a quaternion sectional curvature. A quaternion manifold is called
a quaternion-space-form if its quaternion sectional curvatures are equal to a
constant. We shall denote M{c) (or Mm{c)) a (real) 4m-dimensional quaternion-
space-form with quaternion sectional curvature c.

It is well-known that a quaternion manifold M is a quaternion-space-form
with constant quaternion sectional curvature c if and only if the curvature
tensor R of M is of the following form [10]

(2.2) R(X, Y)Z=j{<Y, Z}X-<X, Z)Y+ Σ KψrY, Z}φrX

-<ψrx, Z)φrγ+2<xf ψjyφrZ-]),

where ψι—I, ψ2—J and ψz—K.
Let K(X, ψrX) denotes the quaternion sectional curvature of the quaternion

plane X/\(φrX). The quaternion-mean-curvature m(X) associated with a unit
vector X is defined by

(2.3) m(X)=~{K(X, s M Q + t a φ%X)+R(X, φ3X)}.



QUATERNION C#-SUBMANIFOLDS OF QUATERNION MANIFOLDS 401

3. Quaternion C7?-submanifolds.

Let N be a Riemannian manifold isometrically immersed in a quaternion
manifold M. A distribution 3): x->3>x^=TxN is called a quaternion distribution
if we have ψr(3))Q3), r=l, 2, 3. In other words, 3) is a quaternion distribution
if 3) is carried into itself by its quaternion structure.

DEFINITION 3.1. A submanifold TV in a quaternion manifold M is called a
quaternion CR-submanifold if it admits a differentiate quaternion distribution
3) such that its orthogonal complementary distribution 3>L is totally real, i.e.,
<pr(3>x)^TxN, r = l , 2, 3, for any x&N, where TXN denotes the normal space of
iV in M at x.

A submanifold N in a quaternion manifold M is called a quaternion sub-
manifold (respectively, a totally real submanifold) if dim«0£=O (respectively,
dim.^—0). A quaternion Cff-submanifold is said to be proper if it is neither
totally real nor quaternionic.

The following result gives a characterization of quaternion Ci?-submanifolds
in a quaternion-space-form.

PROPOSITION 3.2. Let N be a submanifold of a quaternion-space-form M(c),
cΦO, and 3)x=TxNΓλI(TxN)ίΛj(TxN)Γ\K(TxN), x^N. Then N is a quaternion
CR-submanifold of M if and only if either N is totally real or 3 defines a
differenti'able distribution of positive dimension such that

where 3)L is the orthogonal complementary distribution of 3).

This proposition can be proved in a similar way as the proof of Theorem
6.1 of [3].

For a submanifold N in a quaternion manifold M we denote by <, > the
metric tensor of M as well as that induced on N. Let 7 be the induced
covariant differentiation on N. The Gauss and Weingarten formulas for N are
given respectively by

(3.1) $χY=VχY+σ(X, F),

(3.2) Vχξ=-

for any vector fields X, Y tangent to TV and any vector field ξ normal to ,Y,
where σ, Aξ and D are the second fundamental form, the second fundamental
tensor associated with ξ and the normal connection, respectively. Moreover, we
have

(3.3) <AξX, Y>=<σ(X, Y), £> ,

For the second fundamental form σ, we define the covariant differentiation
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7 with respect to the connection in TNφT±N by

(3.4) {ϊχσ){Y, Z)=Dxσ(Y, Z)-σ{lxY, Z)-σ{Y, 1XZ)

for X, Y, Z tangent to N. The Gauss, Codazzi and Ricci equations of N are
then given by

(3.5) R{X, Y Z, W)=R(X, Y Z, W)+(σ(X, W), σ{Y, Z)>

-<σ(X, Z), σ(Y,W)>,

(3.6) (R(X, Y)Zy={ϊxσ)(Y, Z)-{ϊγσ){X, Z),

(3.6) R(X, Y ξ, η)=R^X, Y f, V)-<lAξ, Λ^X, Y>

for X, Y, Z, W tangent to TV and ξ, η normal to N, where R and R1 are the
curvature tensors associated with 7 and D respectively, R (X, Y Z, W) =
{R{X, Y)Z, Wy, •••, etc, and _L in (3.6) denotes the normal component.

The mean curvature vector H of TV in M is defined by

(3.8) H=— trace σ,

where n denotes the dimension of N. If we have

(3.9) σ{X, Y)=<X, YyH

for any X, Y tangent to N, N is called a totally umbilical submanifold. In
particular, if σ=0 identically, TV is called a totally geodesic submanifold.

We mention the following known result for later use.

LEMMA 3.3. ([4], [8]). Every quaternion submanifold of a quaternion mani-
fold is totally geodesic.

From this lemma, it is more interesting to study more general submanifolds,
for example, quaternion Ci?-submanifolds in a quaternion manifold than quater-
nion submanifolds.

LEMMA 3.4. Let N be a quaternion CR-submamfold of a quaternion manifold
M. Then for any vector fields U, V tangent to M, X in 2) and Z in S)L we have

(3.10) R{U, V ψrX, ψrZ)=R{U, V X, Z).

Proof. From (2.1) we may prove that

R(U, V)IX=2{dr+pΛq}(U, V)JX-2{dq-p/\r}{U, V)KX+I(B(U, V)X),

Since <JX, IZy=(KX, 7Z>=0, this implies (3.10) for r = l . A similar argument
gives (3.10) for r=2 and 3.
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DEFINITION 3.5. Let N be a quaternion Ci?-submanifold in a quaternion

manifold M. Then N is called a QR-product if locally N is the Riemannian

product of a quaternion submanifold and a totally real submanifold of M.

4. Integrability.

In this section we discuss the integrability of the totally real distribution

2)L and the quaternion distribution 3).

By using (3.1), (3.2) and (3.3) we have the following

LEMMA 4.1. Let N be a quaternion CR-submanifold of a quaternion manifold

M. Then we have ΛφYZ=AφZY for any Y, Z G # and any section ψ in E.

By using this lemma we can obtain the following integrability Theorem for

quaternion Ci?-submanifolds similar to the integrability Theorem of Chen [5],

[6].

THEOREM 4.2. (Integrability of ΦL). The totally real distribution S)L of a

quaternion CR-submanifold N in a quaternion manifold M is always integrable.

Similarly, by using Lemma 3.3, (3.1) and (3.2) we also have the following

THEOREM 4.3. (Integrability of 2)). The quaternion distribution Q of a

quaternion CR-submanifold N in a quaternion manifold M is integrable if and

only if

5. Fundamental Lemmas.

In the following, we denote by v the subbundle of the normal bundle TLN

which is the orthogonal complement of IS)L®]2)L®KS)L

y i.e.

(5.1) TLN-=-lS)L®]S)L®KS)^v, <y, 0rίD
1>=O.

We give the following lemmas for later use

LEMMA 5.1. Let N be a quaternion CR-submanifold of a quaternion manifold

M. Then we have

(5.2)

(5.3) iσ{ψrX, Z), ξ> = <Dχ(ψrZ), ξ>=<ψrσ{X, Z), ξ) ,

(5.4) <DfrZ(ψ,Z), ξy = <Dχ(ψrψsZ), ξ) , rΦs , r, s=l, 2, 3,

for any vector fields X in 2), Z in S)L and ξ in v.
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Proof. From (2.1) and (3.1) we have, for any vector fields X, Y in <D, Z in
S)L and ξ in v

<σ(X, Y)9 φ£>=<$xY, ψrζ> = -<Vχ(ψrY), ξ> = -<σ(X, φτY), ξ>.

Hence we have

<σ(φsX, φτY), ξ> = <σ(X, Y), φ,ψrξ> = <σ(X, Y), φrφsζ> , r = s .

Since φsφr=—φrφs, this implies (5.2).
Moreover from (2.1) and (3.1) we also have

<σ(φrX, Z), ξy^<Slz{φrX), ξ>=-<ώrlzX, ξ)

Moreover we have

<σ(φrX, Z), f> = - < σ ( ^ , Z\ ψrξy = <φrσ{X, Z), £> .

These prove (5.3). Equation (5.4) follows from (5.3).
For any vectors fields X, Y in Q, we put

(5.5) ΊxY^lχY\a{Xy Y) f

where 1XY and σ(X, Y) are the ϋ)- and ^1-components of 1XY respectively.
For any vector Z in 3)L, (2.1) and (5.5) give

(5.6) <σ{X, φrY\ Z)=<$AφrY), Z> = <φr(VxY), Z>

^~{σ{X, Y), φrzy=<φMX, Y), zy r=i, 2,3,

for any vector fields X, Y in 3). Consequently we have

-<σ(X, X), Zy = (σ(X, φ*X\ Z> = (φrσ(X, φrX), Z>

^<φMφrx, X), zy=<ά(φrx, ψrx), zy.

Hence we obtain σ(X, X)= — σ(ψrX, ψrX) for r=l, 2, 3. Therefore

σ{X, X)=-σ{KX, KX)=-σ{IJX, IJX)=ά(JX, JX).

Since we already have σ(X, X)= — σ(JX, JX), this implies the following

LEMMA 5.2. Let N be a quaternion CR-submanifold in a quaternion manifold
M. Then for any vector field X in 2), we have σ(X, X)=0, i.e., 1

Remark, σ is not symmetric in general. In fact, σ(X, Y) is symmetric in
X and Y if and only if the distribution 3) is integrable.
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In the following we shall denote by σ' the second fundamental form of a
maximal integral submanifold NL of SD1 in N. For any vector fields X in W, Zy

W in <DL, we have

(5.7) <σ(X, Z\ φrWy^-<Sjz{ψrW), Xy = <$zW, ψrX>

=<vzw, ψrxy=w{z, w), φrx>.
This implies the following

LEMMA 5.3. Let N be a quaternion CRsubmanifold of a quaternion manifold
M. Then the leaf ArL of S)L is totally geodesic in N if and only if

<σ(&, S)L), ψr<DA>=0, r=l, 2, 3.

From (5.7) we may also obtain the following

LEMMA 5.4. Let N be a quaternion CR-submamfold of a quaternion manifold
M. Then for any vector fields X in Φ and Z, W in 3)L> we have

(5.8) <σ{ψrX, Z), ψsWy + <σ(ψsX, Z), φrW)=0,

for rΦs, r, s=l, 2, 3.

LEMMA 5.5. Let N be a quaternion CR-submamfold of a quaternion manifold
M. Then for any vector fields X in 3) and Z in S)L we have

<(A,,sZ-A(/,rZψt)X, <Z^>=0

where ψt=ψsφr, rφs.

Lemma 5.5 follows from Lemma 5.4.
Now, we give the following

LEMMA 5.6. (First Fundamental Lemma). Let N be a quaternion CR-sub-
manifold of a quaternion manifold M. Then for any vector fields X in 2) and
Z in S)L we have

(5.9) At8ZX=AfrZφtX,

(5.10) Af8ZφrX=-AφrZφ,X,

(5.11) A^zφsX=AφrZφrX

for rφs, where φt=φsφr.

Proof. From (5.6) we obtain

<AΨrZφsY, X} = -<φrσ(X, ψsY), Z} = -(σ(X, ψrψsY), Z>

= <ψsσ(X, φrY\ Z> = -(A^sZψrY, X}
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for rΦs and for any vector fields X, Y in 3), and Z in 3)1. Replacing Y by
ψrY we get (AψsZY, X}=<,AΦrZφtY, Xs). Combining this with Lemma 5.5 we
obtain (5.9).

Replacing X by ψrX in (5.9) we obtain (5.10). And replacing X by ψrψsX
in (5.10) we have (5.11).

For each AφsZ we define an endomorphism

AφsZ : 3)->3)

to be the ^-component of AφsZ, i.e., ΆφsZX<^£> with

(5.12) <AψiZX, Y> = <AΦsZY, X}

for any X, Y in 3). Then it is clear that AφsZ is a self-adjoint endomorphism
of 3).

From (5.9) we have

(5.13) ΆφsZ=AφrZφt rΦs, ψt^ψsψr.

Since ΆφsZ is self-adjoint and φt satisfies (φtX, Y}— — (X, ψtY} for any X, Y
in 3), we have

(5.14) ΆψrZψt=-ψtΆφrZ.

Consequently, we have

(5.15) Ά0rZψr=Άφrzψtψs = ψtφsAψrz = ψrA0rz ,

where φt—φsφr. Hence we have the following

LEMMA 5.7. (Second Fundamental Lemma). Let N be a quaternion CR-sub-
manifold of a quaternion manifold M. Then for any vectors X, Y in 3) and Z
in 3)1 we have

(5.16) <AφrZφtX, Y>=-<ψtAφrZX, y>, rΦt,

(5.17) <AΦrZφrX, Y>=<ψrAφrZX, F> .

As a corollary of Lemma 5.7 we have the following

COROLLARY 5.8. Let N be a quaternion CR-submanifold of a quaternion
manifold M. We have

(5.18) σ(X, X)+ Σ σ(φrX, ψrX)=Q
r=l

for any vector X in 3).

Proof. From Lemma 5.7 we have
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<σ(ψtX, Y), ψrZ}=<σ(X, ψtY), ψrZ> , rΦt,

<σ(ψrX, Y), ψrZy = -<σ(X, ψrY), φrZ} .

Thus we have

(5.19) <σ(X, X), ψrZ} = <σ(ψrX, ψrX), ψrZ} = -<σ(ψtX, φtX), ψrZ> , rΦt.

Combining this with Lemma 5.1 we obtain (5.18).

6. Some applications of Fundamental Lemmas.

In this paper we shall apply the fundamental lemmas repeatly.
In this section we shall apply them to obtain the following

THEOREM 6.1. Every totally umbilical proper quaternion CR-submanifold in
a quaternion manifold is totally geodesic.

Proof. If N is a proper quaternion Cff-submanifold and N is totally um-
bilical, then we have

(6.1) σ(Y, Z)=<Y, Z>H

for any vectors Y, Z tangent to N. Hence from Lemma 5.1, H lies in Σ ψr@
λ

r = l

Assume that N is not totally geodesic. Then there exist a ψs, s = l, 2 or 3
and a unit vector Z in S)L such that

(6.2) λ=<φsZ, H)ΦO.

From which together with the fundamental lemmas and (6.1) we get

λ=<Aφ,zX, X> = <ΛorzψtX, X>=-<ψtAψrZX, Z>=<Z, ψtXXH, φrZ)=0.

This contradicts (6.2).

PROPOSITION 6.2. Let N be a totally geodesic quaternion CR-submamfold in
a quaternion manifold M. Then N is locally the Riemannian product of a
totally geodesic quaternion submamfold Nτ and a totally geodesic totally real
submanifold N1.

The proposition follows from Lemma 3.3, Theorems 4.2, 4.3 and Lemma 5.3.
Let iV be a quaternion Ci?-submanifold in a quaternion manifold M. Then

N is said to be of minimal codimension if the subbundle v is trivial, i.e., TλN

We suppose that N is a totally geodesic proper quaternion Ci?-submanifold
of minimal codimension in a quaternion manifold M. Then for any U, V, W
tangent to N, Z in 3)L and using the equation of Codazzi we have
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(6.3) R(U, V, W, φ
r
Z)=-0 r=l, 2, 3.

On the other hand, for any vector fields X, Y in 2) and Z, W in 2)L, the
equation of Bianchi, Lemma 3.4 and (6.3) give

(6.4) 8(X, Y ψrZ, ψ8W)=R(φrZ, X; ψsY, W)+8(Y, φrZ φ8X, W)

=-R(φ8r, w, x, ψrz)+K(φsx, W) Y, ψrz)=o.

As N is totally geodesic in M, the equation of Gauss gives

(6.5) R(X, Y; Z, W)=0.

Let iVτ be any leaf of 2). Then from Lemma 3.3, Nτ is totally geodesic in
M. So, the equation of Ricci of iVτ in M is given by R(X, Y ξ, η)~
Rk(X, Y;ξ,y) for X, Y in 2) and f, rj in T^^^^φI^φJ^^K^)1. Then
from (6.4) and (6.5) we have that the normal connection of Nτ in M is flat,
i.e., Rτ=0, and using [1], we obtain that M and Afτ are Ricci flat.

From this and Theorem 6.1 we obtain the following

THEOREM 6.3. The only quaternion manifolds which admit totally umbilical
proper quaternion CR-suhmanifolds of minimal codimension are Ricci flat quater-
nion manifolds.

THEOREM 6.4. Let N be a quaternion CR-submanifold of a quaternion-space-
form M(c). Then the quaternion mean curvature of N satisfies

(6.6) m(X)^c

for any unit vector X in <D. The equality of (6.6) holds for any unit vector X
in £D tf and only if the quaternion distribution 2) is integrable.

Proof. From (5.2) of Lemma 5.1 and the equation of Gauss, we obtain

K(X, ψrX)=K(X, φrX)+ Σ J2 <ΛΦsZaX, XXAΦsZ(<ψrXy ψrX)~-\\σ(X, φrX)F,

where K denotes the sectional curvature on N, X is a unit vector in 0 and
Zu ••• , Zp an orthonormal basis of £DL. Hence by (5.16) and (5.17) of Lemma
5.7 we have

(6.7) K(X, ψrX)^cΛ- Σ <AφrZaX, Xy- Σ Σ <AφgZaX, Xy~\\σ(X, φrX)\\2.

Therefore the quaternion mean curvature of JV satisfies

(6.8) ?n(X)=c-j jS Σ <AΦrZaX, X>2-jΣ \\σ(X, φrX)\\2^c .

Combining Theorem 4.3 and (6.8) we see that m(X)=c for all unit vector X in
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3) if and only if 3) is integrable.

PROPOSITION 6.5. Let N be a quaternion CR-submanifold of a quaternion
manifold M. If the leaves of 3)L are minimal in M, then N is minimal in M.
This proposition follows from Lemma 5.1 and Corollary 5.8.

We may use the fundamental lemmas to give the following estimate for the
length of curvature tensor R1 on the normal bundle.

THEOREM β.β Let N be a quaternion CR-submamfold of a quatermon-space-
form M(c), c^O. Then we have

(6.9) \\Rψ^?>pqc\

where g=dimρ£) and ^^dim^u) 1. If the equality of (6.9) holds, then N is a
QR-product, i.e., N is locally the Riemannian product of a quaternion submanifold
Nτ and a totally real submanifold N1 of M(c).

Proof. Let X and Z be unit vectors in 3) and 3)L respectively. Then, for
rΦs, the equation (3.7) of Ricci implies

(6.10) J=^x> ^ X ; ΨsZ> Ψ^)=RA(X, φrX; ψsz, ψtZ)

Thus by Lemma 5.6 we have

(6.11) RKX, φrX; ψsZ, φtZ)=± ^

Thus the length of the normal curvature tensor R1 satisfies

(6.12) | | i M | 2 ^ Σ Σ {R±(Xl9 X,\SA, ?*)}2

l,j = l A,B=1

> Σ, Σ Σ {Rί(XuφrXr,ψ.Za,ψtZa)}S, φt=φeψr
a = l ι = l r,s,t = l

where {Xlf ••• , Z 4 J , {Z1} ••• , Zp} and {ξlf •••, ξN} are orthonormal bases of 3),
3)1 and TλN respectively. Combining (6.11) and (6.12) we obtain (6.9).

If the equality sign of (6.9) holds, then we have

(6.13) Af,zX=0

for any X in 3) and Z in 3)1. Thus by Theorem 4.3 and Lemma 5.1, we may
conclude that the quaternion distribution is integrable, and each leaf A^τ is
totally geodesic in M(c) by Lemma 3.3. So in particular, 7VT is totally geodesic
in N. Therefore N is a Q#-product by Theorem 4.2, Lemma 5.3 and (6.13).
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7. Quaternion Ci?-submanifolds foliated by totally geodesic, totally real
leaves.

Let N be a quaternion Ci?-submanifold in a quaternion manifold M. Then
$)L is always integrable. In this section we shall study the case in which the
leaves of totally real distribution S)L are totally geodesic in N. For this case,
Lemma 5.3 gives

(7.1) <σ(W, 2)L), ψr^)1>=0, r=l, 2, 3.

In others words, we have

(7.2) A
φ

for any vectors X in Q and Z, W in 3)L.
For any unit vector fields X, Y in 3) and Z, W in W1, equation (3.6) of

Codazzi gives

(7.3) R(X, Y; Z, φrW)=<Dxσ(Y, Z)-σ{lxY, Z)~σ(Y, 1XZ), ψrW>

-φγσ(X, Z)-σ(lγX, Z)-σ(X, 1YZ), φrW) .

From (2.1), (3.1), (3.2) and (7.1) we have

(7.4) <Dxσ(Y, Z), ψrW)=-(σ(Y, Z), V'x(ψrW)> = -<σ(Y, Z), ψrVxW}

= -<σ(Y, Z),ψrσ{X,W)y.

So, in particular, we have from (5.3) that

(7.5) φxσ{φrX, Z), φrZ} = -{σ(φrX, Z), φrσ(X, Z)> = -| |σ(X, Z)ψ

Similarly, we may also prove that

(7.6) <DφrXσ(X, Z), φrZ} = \\σ(X, Zψ .

Moreover, from (2.1), (3.1), (7.2) and Lemma 5.7 we have

(7.7) <σ(lxY, Z), φrWy=<AφrWZ, VxY>=<φrAφrWZ, Vx(φrY)>

= <φrAφrWZ, σ{X, φrY)) = <AφrUφrY, X}=-<AΦrUY, φrX>

= -<σ{Y, φrX), φrAΦrWZ},

where U^=AφrWZ. In particular, we have from (7.2) and Lemma 5.7 that

(7.8) <σC7xφrX, Z), φrZy=-<σ(X, X), φrAφrZZy

(7.9) <σ{lΦrXX, Z), φrZy = <σ(X, X), φrAΦγZZy .

From (2.1), (3.1) and (7.2) we also have
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(7.10) <σ(Y, 1XZ), ψrW}=<AφrWY, lxZ>=<.ψrAψrWY, Vγ(^rZ)>

= -<ψrAtrWY,AφrgX>.

Hence, in particular, from (7.2) and Lemma 5.7 we obtain

(7.11) <σ(φrX, 1XZ), φrZy=\\AφrZX\\\

(7.12) <σ(X, lφrXZ), ψrZy=-\\AφrZXΓ.

Combining (7.3), (7.5), (7.6), (7.8), (7.9), (7.11) and (7.12) we get

(7.13) R{X, ψrX; Z, φrZ)=-2\\σ(X, Z)|| -2||Λ,, r*Y||«+2<σ(*, X), φrAφrZZ} .

T Oj- y γ γ γ γ γ . rγ γ . τsγ γ .
l̂ CL \Λ-l) '" ) y±q, Λ.q+ι— 1 Λ.\, '" , Λ-2q+l — JΛ-i, '" , y\%q+i —-tlyl i , , ^i.45-

be an orthonormal basis of 3). Then by Corollary 5.8 and (7.13) we get
4q ^ 4q

σ 1 Λ\ "V Όί V t. V Ύ f Ύ\ O *SΓ^ ill ίV 'ΎλW 2 ι II A V II 2\

.14; ZJ -K\Λι, ψrΛτ , Z, ψrZ,)=—Z 2 J ill^v^t) £)\\ ~r II-̂ ώ z^iW )

On the other hand, by equation of Bianchi and Lemma 3.4 we have

(7.15) R(X, φrX; Z, ψrZ)=-K(X, Z)-K(X, ψrZ).

Thus (7.14) and (7.15) imply

(i-f Λ C\ "̂ "̂  ill / "V r7\\\2 I II Λ "V II21 >JΓΛ ( TV'/ ΛS /y\ \ T/"ί V ! 7 \ 1

(/.ID) ZJ {\\σ(Xif Z)\\ -\-\\Aψ zXi\\ \ = -?r ΣJ \K{Xlf Z)JrK(Xl, ψΎZ)\ .
ι=l Δ ι=l

From this we obtain the following

THEOREM 7.1. Let N be a quaternion CR-submamfold in a non-positwely
curved quaternion manifold M. If the leaves of 3)1 are totally geodesic in N,
then we have

(1) K{X, Z)=0 for any vectors X in 3) and Z in 3)1,
(2) N is a QR-product, and
(3) σ(3>, 3>λ)=0, i. e., N is mixed totally geodesic.

This theorem follows immediately from Lemma 3.3, Theorem 4.2 and equation
(7.16).

From Theorem 7.1 we obtain the following

COROLLARY 7.2. Let N be a quaternion CR-submamfold in a quaternion-
space-form M(c), c^O. If the leaves of 3)L are totally geodesic in N, then c=0
and N is a QR-product. In particular, locally N is the Riemannian product of a
totally geodesic quaternion submanifold and a totally real submanifold.

Let QPm(4) be the quaternion projective space of quaternion sectional curva-
ture 4. If N is a quaternion CK-submanifold of <3Pm(4) such that the leaves of
3)1 are totally geodesic in N, then (2.2) and (7.13) imply
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(7.17) \\σ(X, Zψ+\\AφrZXΓ=l + <σ(X, X), φrAφr

for any unit vectors X in 2) and Z in 3)L.

On the other hand, from Lemma 5.1 and (7.1) we have

(7.18) \\σ{φtX, ZW=\\σ{X,ZW.

From Lemma 5.7 and (7.2) we have

(7.19) \\AΦrZX\\*=\\AφrtφtX\\*.

Moreover, from (5.19) and (7.2) we also have

(7.20) (σ{X, X) + σ(ψtX, ψtX), ψrAΦrZZ>=0, rΦt.

Combining (7.17), (7.18), (7.19) and (7.20) we obtain the following

LEMMA 7.3. Let N be a quaternion CR-submanifold in QPm(i). If the leaves
of S)L are totally geodesic in N, then we have

(7.21) \\σ(X, Zψ+\\ΛφrZX\\2^l,

(7.22) <σ{X, X), φrAψrZW>=Q

for any unit vectors X, Y in 3) and Z, W in £Dλ.

(7.22) follows from (7.17), (7.21), linearity and Lemma 4.1.

LEMMA 7.4. Under the same hypothesis of Lemma 7.3 we have

(7.23)

Proof. For each r = l , 2, 3 we put <=vr={AφrZW/Z,W<Ξ£)$. Then Φ r ,
Ύ—\, 2, 3 are linear subspaces of S)L

X by (7.2). Let °^r be the orthogonal com-
plementary subspace of ajr in £>i. Then Lemma 7.3 implies

(7.24)

On the other hand, by Lemma 4.1 we have

(7.25) 0-<Z r , AφrVW}=<AΦrZrV, W> = <σ(V, W). φrZr>

for any vectors Zr in q;^ and V, W in ^)Λ

L.

Combining (7.24) and (7.25) we obtain (7.23).

THEOREM 7.5. Let N be a quaternion CR-submamfold in QPm(4). If the
leaves of S)L are totally geodesic in N, then for any unit vectors X in S) and Z
in S)L we have
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(7.26) K(X, Z ) ^ 0

The equality sign holds if and only if the quaternionic distribution ΰ) is integrable.

Proof. From the equations of Gauss we have

K(X, Z)=l + <σ(X, X), σ{Z, Z)>-\\σ(X, Z)ψ.

Thus by Lemma 7.3 we have

K(X, Z)=<σ(X, X), σ{Z, Z)y + \\ΛφrZX\\\

Combining this with Lemma 7.4 we obtain

(7.27) K(X, Z)=\\ΛΨrZX\\*^0.

It is clear that K(£), 2)1)=0 if and only if AψrΦ

L2)—0. Thus by Lemma 5.1 and
(7.2), K{β), £>λ)=Q if and only if σ(3), ^))=0. Therefore the equality of (7.26)
holds if and only if W is integrable by Theorem 4.3.

As a immediate consequence of Theorem 7.5 we obtain the following

COROLLARY 7.6. Let N be a proper quaternion CR-submanifold of QJDm(4).
// N is negatively curved, then N is not foliated by totally geodesic totally real
submanifolds.

Now we shall apply Lemma 7.3 to obtain the following result for QR-
products.

THEOREM 7.7. Let N be a QR-product in ζ)Pm(4). Then we have
(1) \\σ{X, Z)|| — l for any unit vectors X in 2) and Z in g)L,
(2) m^p+q+pq, where p~dim^ί, q=άimQβ)x.

Proof. If N is a QivNproduct in QPm(4), then both distributions Π) and S)L

are integrable and the leaves of S) and S)L are totally geodesic in TV. Thus we
have AφrzX~® for any unit vectors X in β) and Z in <Dλ. From Lemma 7.3
we obtain

(7.28) <σ(X, Z\ σ(X, Z)> = 1.

Thus by linearity we see that for any orthonormal vectors X, Y in S) and Z,
W in S)L

(7.29) <σ(X, Z), σ(Y, Z)> = <σ(X, Z), σ(X, W)} = 0.

Therefore we also have

(7.30) <σ(X, Z), σ{Y, W)> + <σ(X, W), σ(Y, Z)>=0.

On the other hand, by equations of Gauss and (2.2) we obtain
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(7.31) <σ(X, Z), σ(J, W)}-(σ(X, W), σ(Y, Z)>=0.

Combining (7.28), (7.29), (7.30) and (7.31) we see that, for orthonormai bases
{Xlt ••• , X4q} a n d {Zlf ••• , Zp} of 3) a n d 4)L,

{σ(Xt, Za)/ΐ=l, - , 4q, α = l , ••• , p]

are orthonormai vectors in T±N. On the other hand, (7.1) shows that these
3

vectors are perpendicular to Σ ώr2)L. From these we conclude that the quater-
r=i

nion dimension of QPm(4) is greater than or equal to p+q + pq.

8. A Counterexample.

An almost quaternion metric manifold [10] is a Riemannian manifold with
a 3-dimensional vector bundle F of tensors of type (1, 1) with local basis of
almost Hermitian structures /, /, K satisfying IJz=—JI=K, JK=—KJ=I and
KI=-IK=J.

The purpose of this section is to give an example of a quaternion CR-sub-
manifold of an almost quaternion metric manifold on which W1 is not integrable.

Let 7 be a symmetric connection on a differentiable manifold M and X a
vector field on M. Let / be an arbitrary C°° function on M and Z in TM. We
define the horizontal lift of X to TM to be the vector field XH on TM given
by [11] (XHdf)(Z)=(yxdf)Z, where on the right 7 X is acting on the 1-form
df and on the left df is regarded as a function on TM. The vertical lift Xv

of X is independent of the connection and is simply defined by Xvω=ω(X)-Π',
77 is the natural projection from TM onto M and ω a 1-form on M.

For a tensor field Ψ of type (1, 1) on M its horizontal lift ΨH may be
defined by ΨHXV=(ΨX)V and ΨHXH=(ΨX)H^

Recall the connection map ϋC: TTM-+TM given by iΓ(Zg)=Zτ7(z), . 0 ^ = 0 ,
[9]. If G is a Riemannian metric on M and 7 its Levi-Civita connection, we
define the Sasaki metric g on TM by g(X, Y)=G(Π*X, Π*Y)+G(KX, KY) for
any vectors X, Y tangent to TM. The Levi-Civita connection 7 of g is given
in terms of 7 and the curvature tensor R of M by

Φx«YH)z={ϊχY)%-\{R(X, Y)Z)r,

$z=<$zγyz~{R{Y, z)xγ',

(R

Now, let Mbe a quaternion manifold with quaternion structure (G, ψu ψ.it ψs),
where φ1=I, ψz^J and ψs=K. Let ψ? be the horizontal lift of ψr to TM and
g the Sasaki metric on TM. It is easy to check that (g, ψ?, φ{', ψl1) is an
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almost quaternion metric structure on TM.

THEOREM 8.1. Let M be a quaternion manifold. Then TMwith {g, ψ?, φl1', φ$)
is a quaternion manifold if and only if M is flat.

Proof. Let (G, ψlf φ2, φs) be the quaternion structure of M. Then there
exist local 1-forms qrs on M such that

(^xφr)Y= Σ qrs(X)φsY , r = l , 2, 3,

and qrs-rqsr^O, [10].
Hence, we have

(8.1) l(%Hφ?)Y*lz=( Σ qVrs{XH)φl\YH)) + ~ {φτR(X, Y)Z-R(X, ψrY)Z}v ,
\ S—l / Z tj

(8.2) ί(VXHψ?)Yvlz=( Σ qvrλX")ψ?{Yy)) + -J- iφrR(Y, Z)X-R{ψrY, Z)X]H ,
\ S — l / Z Li

(8.3) ίΦχvψ?)Y"lz=j{ψrR(X, Z)Y-R(X, Z)ψrY}H ,

(8.4) l($χvφ?)Yrlz=0 r=ί, 2, 3.

If M is flat, these imply that

(8.5) ($sφ?)Ϋ= Σ qUX)ψ? Ϋ r= 1, 2, 3,

for any vector fields X, Ϋ tangent to TM. Thus TM is also a quaternion
manifold.

Conversely, if TM with (g, ψ", ψ", ψ") is a quaternion manifold, then there
exist local 1-forms qrs on TM such that

Ϋ and $ r , + $ , r = 0 ,

for any vector fields X, Y tangent to TM. From (8.1)—(8.4), we obtain

(8.6) ( Σ qrS(XH)φ?(Y"))z=( Σ qUXu)ψ?iXH)

(8.7) ( Σ qr.(Xπ)φ?(Yr))z=( Σ qUX")ψ»(Yv))z

+ j{φrR(Y, Z)X-R{ψrY, Z)X}«,
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(8.8) ( Σ qrλXv)ψ?{YH)) = Y {φMX, Z)Y-R{X, Z)ψrY}" ,
\ S —1 / Z Li

(8.9) ( Σ qrs(Xv)ψ?(Yv))z=0 r = l , 2, 3.

From (8.6)—(8.9) it follows that qrs=qv

rs and R(X, Y)ψrZ=φrR{X, Y)Z=
R(X, ψrY)Z, r , s = l , 2, 3. Hence we get

G(R(X, ψrY)Z, W)=G(R(X, Y)ψrZ, W)=G(R(ψrZ, W)X, Y)

= G(R{Zy W)ψrX, Y)=G(ψrR(Z, W)X, Y)=-G(R(Z, W)X, ψrY)

= -G(R(X,ψrY)Z,W).

Since this is true for any vectors X, Y, Z, W tangent to M, M is flat.
Now, let M be the quaternion projective space QPm(4) and TV be the real

projective space RPm(l) imbedded in QPm(4:) as a totally geodesic, totally real
submanifold. Let N be the set of fibres of T(QPm(4)) over the points in
RPm(l). By Theorem 8.1, T{QPm{^)) is an almost quaternion metric manifold
which is not a quaternion manifold. Since RPm(l) is totally real in QPW(4)
and φ? acts invariantly on the fibres of T(QPm(A)), N is a quaternion Ci?-sub-
manifold of T(QPm(4)). Let X and Y be tangent to RPm(l). Then XH and
YH are both in 2)*- of N. From (2.2) we have

-(R(X, Y)Z)v=lx, Y2S

, Z)X~G(X} Z)Y+ΣlG(ψrY, Z)ψrX-G{ψrX,

For orthonormal X and Y and Z—YΠiZ) this implies that the vertical part
does not vanish. Hence the totally real distribution 3)L is not integrable.
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