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1. Introduction.

A quaternion manifold (or quaternion Kaehlerian manifold [10]) is defined
as a Riemannian manifold whose holonomy group is a subgroup of Sp(l).
Spm)=Sp(1)xSp(m)/{x1}. The quaternion projective space QP™, its noncom-
pact dual and the quaternion number space Q™ are three important examples of
quaternion manifolds. It is well-known that on a quaternion manifold M, there
exists a 3-dimensional vector bundle E of tensors of type (1, 1) with local
cross-section of almost Hermitian structures satisfying certain conditions (see § 2
for details). A submanifold N in a quaternion manifold M is called a quaternion
(respectively, totally real) submanifold if each tangent space of N is carried
into itself (respectively, the normal space) by each section in E. It is known
that every quaternion submanifold in any quaternion manifold is always totally
geodesic. So it is more interesting to study a more general class of submani-
folds than quaternion submanifolds. The main purpose of this paper is to
establish the general theory of quaternion CR-submanifolds in a quaternion
manifold which generalizes the theory of quaternion submanifolds and the theory
of totally real submanifolds. It is proved in section 3 that such submanifolds
are characterized by a simple equation in terms of the curvature tensor of a
quaternion-space-form.

In section 4 we shall study the integrability of the two natural distributions
on a quaternion CR-submanifold.

In section 5 we obtain some basic lemmas for quaternion CR-submanifolds.
In particular, we shall obtain two fundamental lemmas which play important
role in this theory. Several applications of the fundamental lemmas are given
in section 6.

In section 7 we study quaternion CR-submanifolds which are foliated by
totally geodesic, totally real submanifolds.

In the last section we give an example of a quaternion CR-submanifold of
an almost quaternion metric manifold on which the totally real distribution is
not integrable.
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2. Quaternion Manifolds.

Let M be a 4m-dimensional quaternion manifold with metric tensor {, ,.
Then there exists a 3-dimensional vector bundle £ of tensors of type (1, 1) with
local basis of almost Hermitian structures 7, J, K such that

(a) IJ=—]JI=K, JK=—KJ]=I, KI=—IK=]

(b) for any local cross-section ¢ of E and any vector X tangent to M,
€7X¢ is also a local cross-section of E, where V denotes the covariant
differentiation on M.

Condition (b) is equivalent to the following condition (b’) there exist local

1-forms p, ¢ and » such that
Vxl=r(X)]—qX)K,
2.1 VyJ=—r(X)I+p(X)K,
Vi K=q(X)[—p(X)].

Let X be a unit vector tangent to the quaternion manifold M. Then X,
IX, JX and KX form an orthonormal frame. We denote by Q(X) the 4-plane
spanned by them. We call Q(X) the quaternion section determined by X. For
any two vectors X, Y tangent to M, the plane XAY spanned by X, ¥V is said
to be totally real if Q(X) and Q(Y) are orthogonal. Any plane in a quaternion
section is called a quaternion plane. The sectional curvature of a quaternion
plane is called a quaternion sectional curvature. A quaternion manifold is called
a quatermon-space-form if its quaternion sectional curvatures are equal to a
constant. We shall denote M(c) (or M™(c)) a (real) 4m-dimensional quaternion-
space-form with quaternion sectional curvature c.

It is well-known that a quaternion manifold M is a quaternion-space-form
with constant quaternion sectional curvature ¢ if and only if the curvature
tensor R of M is of the following form [10]

@2) Rx, VZ=L {0, XX, DY+ R G, DX

'—<¢'7X» Z>¢TY+2<X’ ¢'r >¢TZ]} ’

where g/;l;tl, ¢,=J and ¢,=K.
Let K(X, ¢.X) denotes the quaternion sectional curvature of the quaternion

plane XA(¢.X). The quaternion-mean-curvature m(X) associated with a unit
vector X is defined by

(2.3) m(X):-%{I?(X, O X)+R(X, . X) KX, ¢, X)}.
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3. Quaternion CR-submanifolds.

Let N be a Riemannian manifold isometrically immersed in a quaternion
manifold M. A distribution 9: x—9,ST.N is called a quaternion distribution
if we have ¢ (9)S9, r=1, 2, 3. In other words, 9 is a quaternion distribution
if @ is carried into itself by its quaternion structure.

DEFINITION 3.1. A submanifold N in a quaternion manifold M is called a
quatermion CR-submanifold if it admits a differentiable quaternion distribution
D such that its orthogonal complementary distribution 9* is totally real, i.e.,
O DS TEN, r=1, 2, 3, for any x&N, where TN denotes the normal space of
N in M at «x.

A submanifold N in a quaternion manifold M is called a quaternion sub-
manifold (respectively, a totally real submanifold) if dim 9:z=0 (respectively,
dim 9,=0). A quaternion CR-submanifold is said to be proper if it is neither
totally real nor quaternionic.

The following result gives a characterization of quaternion CR-submanifolds
in a quaternion-space-form.

PROPOSITION 3.2. Let N be a submanifold of a quatermion-space-form M(c),
¢#0, and D,=T ,NNIT . NN\J(T.NYNK(T.N), x&€N. Then N 1s a quaternion
CR-submanifold of M if and only if either N s totally real or @ defines a
differentiable distribution of positive dimension such that

R, 9; 94, 99=0,
where D* 1s the orthogonal complementary distribution of 9D.

This proposition can be proved in a similar way as the proof of Theorem
6.1 of [3].

For a submanifold N in a quaternion manifold M we denote by {,)> the
metric tensor of M as well as that induced on N. Let V be the induced
covariant differentiation on N. The Gauss and Weingarten formulas for N are
given respectively by

(3.1) ﬁxYZVXY—{“G'(X, Y),
3.2) Vyé= —A:X+Dx€

for any vector fields X, Y tangent to N and any vector field £ normal to N,
where o, A¢ and D are the second fundamental form, the second fundamental
tensor associated with £ and the normal connection, respectively. Moreover, we
have

(3.3) (AeX, Yo=<o(X, Y), &,

For the second fundamental form ¢, we define the covariant differentiation
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¥ with respect to the connection in TNOTN by
(34) (Vxo)Y, Z)=Dxo(Y, Z)—0(NxY, Z)—o(Y, V1 Z)

for X, Y, Z tangent to N. The Gauss, Codazzi and Ricci equations of N are
then given by

(3.5) RX,Y; Z W)=R(X, Y Z W)+<{a(X, W), oY, Z2)
—<a(X, Z), o(Y, W),

(3.6) (RX, VZ)*=Txo)Y, 2)—Tyo)X, Z),

(3.6) RIX, Y& P=R“X, Y ;& n—<As 4,1X, V)

for X, Y, Z, W tangent to N and &, » normal to N, where R and R* are the
curvature tensors associated with V and D respectively, R(X, Y ; Z, W)=
(R(X, Y)Z, W5, -, etc, and 1 in (3.6) denotes the normal component.

The mean curvature vector H of N in M is defined by

(3.8) H= %trace g,

where n denotes the dimension of N. If we have
3.9 o(X, Y)=<X, Y>H

for any X, Y tangent to N, N is called a totally wmbilical submanifold. In
particular, if ¢=0 identically, N is called a totally geodesic submanifold.
We mention the following known result for later use.

LEMMA 3.3. ([4], [8]). Ewvery quaternion submanifold of a quaternion mani-
fold 1s totally geodesic.

From this lemma, it is more interesting to study more general submanifolds,
for example, quaternion CR-submanifolds in a quaternion manifold than quater-
nion submanifolds.

LEMMA 34. Let N be a quaternion CR-submanifold of a quaternion manifold
M. Then for any vector fields U, V tangent to M, X mn D and Z in D* we have

(3.10) B, v;¢.X ¢,2)=RU, V; X, Z).

Proof. From (2.1) we may prove that
B, MIX=2{dr+pAqtU, V)JX—2{dg—pAr} U, WEX+IRU, V)X),

Since {JX, IZ)=<KX, IZ>=0, this implies (3.10) for »=1. A similar argument
gives (3.10) for »=2 and 3.
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DEFINITION 3.5. Let N be a quaternion CR-submanifold in a quaternion
manifold M. Then N is called a QR-product if locally N is the Riemannian
product of a quaternion submanifold and a totally real submanifold of M.

4. Integrability.

In this section we discuss the integrability of the totally real distribution
9* and the quaternion distribution 9.
By using (3.1), (3.2) and (3.3) we have the following

LEMMA 4.1. Let N be a quatermon CR-submanifold of a quaternion manifold
M. Then we have AgyZ=~AszY for any Y, Z€D* and any section ¢ m E.

By using this lemma we can obtain the following integrability Theorem for
quaternion CR-submanifolds similar to the integrability Theorem of Chen [5],

[6].

THEOREM 4.2. (Integrability of 9*%). The totally real distribution D* of a
quaternion CR-submanifold N in a quatermion manifold M s always integrable.

Similarly, by using Lemma 3.3, (3.1) and (3.2) we also have the following

THEOREM 4.3. (Integrability of @). The quaternion distribution 9 of a
quaternion CR-submanifold N wm a quatermon manifold M 1s integrable 1f and
only 1f o(D, D)=0.

5. Fundamental Lemmas.

In the following, we denote by v the subbundle of the normal bundle T*N
which is the orthogonal complement of J9*PJI*EKD*, i.e.

(5.1) T*N=19*DJI*PKI*Pv, {y, ¢,D+>=0.
We give the following lemmas for later use

LEMMA 5.1. Let N be a quaternion CR-submanifold of a quaternion man:jold
M. Then we have

(5.2) (0(9, D), v»=0,
(6.3) {o($peX, Z), £ ={Dx(¢r2), E=<{¢r0(X, 2), &,
<5'4) <D5)TX<¢SZ)7 E>:<DX<¢T¢SZ)7 $> ) r#s y 7 S:-L 2} 3;

for any vector fields X in @, Z in D* and & in v.
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Proof. From (2.1) and (3.1) we have, for any vector fields X, ¥ in @, Z in
Dt and & in v

<J(X: Y)) ¢T§>:<ﬁl’yy ¢r§>:—_<f7,'l'<¢ry)’ §>:; 7"\0‘(X’ (/}7‘)/>’ ;: .
Hence we have
<0(¢SX’ (leY)’ 5>:<0<X’ Y)’ ¢3¢T5>:<0(X: Y)’ ¢T¢a€> s r==S.

Since ¢sh,=—¢,¢s, this implies (5.2).
Moreover from (2.1) and (3.1) we also have

<0-(¢’er Z>) E>:<ﬁz(¢'rX>y $>:<€berXy $>
==X, ),80=—xZ, §,6)
=y, Z), &=LDx(},2), & .

Moreover we have
Ko (X, 2), & =—<0(X, Z), p,6)=<X,0(X, Z), &) .

These prove (5.3). Equation (5.4) follows from (5.3).
For any vectors fields X, Y in 9, we put

(5.5) VY=YV -+46(X,Y),

where VyY and 6(X, Y) are the 9- and @*-components of Vx} respectively.
For any vector Z in 9+, (2.1) and (5.5) give

(5.6) (X, §,Y), Zy=x(§.Y), Z>=(p(VxY), Z)
=—(o(X,Y), $;2>=<J,0(X, Y), Z) r=1,2,3,

for any vector fields X, Y in @. Consequently we have

—(6(X, X), Z)=(6(X, $1X), Z>=LPr0(X, ¢ X), Z)

={pra(: X, X), Z5=Ca(p, X, 0, X), Z) .

Hence we obtain ¢(X, X)=—3d(.X, ¢.X) for r=1, 2, 3. Therefore

(X, X)=—6¢(KX, KX)=—¢(JX, I]X)=6(JX, JX).
Since we already have ¢(X, X)=—¢(JX, JX), this implies the following

LEMMA 5.2. Let N be a quaternion CR-submanifold in a quaternion manifold
M. Then for any vector field X in 9, we have 6(X, X)=0, i.e., Vx X 9D.

Remark. ¢ is not symmetric in general. In fact, (X, ¥) is symmetric in
X and Y if and only if the distribution @ is integrable.
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In the following we shall denote by ¢’ the second fundamental form of a
maximal integral submanifold N+ of ©* in N. For any vector fields X in 9, Z,
W in @', we have

(5.7 o(X, Z), pWy=—s(p, W), X>=CU W, . X>
=W, . X>=Lo"(Z, W), . X>.

This implies the following

LEMMA 53. Let N be a quatermion CR-submanifold of a quaternion manifold
M. Then the leaf N* of D* is totally geodesic in N if and only 1f

(o(D, DY), ,9>=0, r=1,2,3.

From (5.7) we may also obtain the following

LEMMA 54. Let N be a quaternion CR-submanifold of a quaternion manifold
M. Then for any vector fields X in D and Z, W in D*, we have

(5.8) Kol X, Z), g W>+La(¢s X, Z), . W»=0,

for r#s, r, s=1, 2, 3.

LEMMA 5.5. Let N be a quatermion CR-submanifold of a quaternion manifold
M. Then for any vector fields X mn D and Z in D* we have

<(Ag’st'_Ag’er¢t)Xr ‘@L>:O
where =, 5.

Lemma 5.5 follows from Lemma 5.4.
Now, we give the following

LEMMA 5.6. (First Fundamental Lemma). Let N be a quaternion CR-sub-
manifold of a quaternion manifold M. Then for any vector fields X mn 9D and
Z in D+ we have

(5.9) Ay zX=Au,z¢0. X,
(5.10) Ag’vsng?'X: —Ag."TZSL'SX ’
(5.11) Apzps X=Ag, 2. X

for v#s, where ¢y=¢sy.
Proof. From (5.6) we obtain
Ay, 20:Y, Xp=—{g0(X, §sY), Z)=—<6(X, §uhsY), Z)
={ps0(X, ¢;Y), Zy=—CAgp2drY, X>
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for r#s and for any vector fields X, ¥ in 9, and Z in 9*. Replacing ¥ by
&Y we get <A, zY, X)>=<(Ay,24.Y, X>. Combining this with Lemma 55 we
obtain (5.9).

Replacing X by ¢,X in (5.9) we obtain (5.10). And replacing X by ¢,¢X
in (5.10) we have (5.11).

For each A, .z we define an endomorphism

zz%z  D—9D
to be the 9-component of A, 7 i.e., ﬁ%zXeg) with
(5.12) Az X, Y>=CAp2Y, XD

for any X, Y in ©. Then it is clear that Zlgr,sz is a self-adjoint endomorphism
of 9.
From (5.9) we have

(5.13) A~¢sz:ﬁ¢,.z¢'z vYFS, ¢t:¢s§br~

Since ;19532 is self-adjoint and ¢, satisfies <¢, X, Y>=—<(X, ¢,Y) for any X, Y
in 9, we have

(5.14) Ay zpi=—Pi Ay, 7.
Consequently, we have
(5.15) Ag,’vrzs-/)'r:Agﬁrzsblsbs:¢5¢5ﬁ¢rzz¢";‘9'rz ’

where ¢,=¢,¢,. Hence we have the following

LEMMA 5.7. (Second Fundamental Lemma). Let N be a quaternion CR-sub-
manifold of a quaternion manifold M. Then for any vectors X, Y m D and Z
m D we have

(5.16) (A, 2z X, Yo=—LPi Ay, 2X, Y, r#t,
(5.17) (g, o: X, V=L Ag X, Y.
As a corollary of Lemma 5.7 we have the following

COROLLARY 5.8. Let N be a quatermon CR-submanifold of a quaternion
manifold M. We have

(5.18) o(X, X0t 2 o X, §.X)=0
for any vector X in 9D.

Proof. From Lemma 5.7 we have
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ol X, V), 9 25=Ca(X, $.Y), $.Z),  r#t,
o, X, Y), 9 Z>=—La(X, 4.Y), ¢ 2.
Thus we have
(619 <e(X, X), 9, 2>=Xa(p,X, . X), ,Z)=—La(P: X, . X), o 2>, vt

Combining this with Lemma 5.1 we obtain (5.18).

6. Some applications of Fundamental Lemmas.

In this paper we shall apply the fundamental lemmas repeatly.
In this section we shall apply them to obtain the following

THEOREM 6.1. Every totally wmbilical proper quaternion CR-submanifold in
a quaternion manifold is totally geodesic.

Proof. 1f N is a proper quaternion CR-submanifold and N is totally um-
bilical, then we have

6.1) oY, Z)=Y, Z>H

for any vectors Y, Z tangent to N. Hence from Lemma 5.1, H lies 1n > O D*.
r=1

Assume that N is not totally geodesic. Then there exist a ¢, s=1,2 or 3
and a unit vector Z in 9* such that

(6.2) A=Y Z, HY+#0.

From which together with the fundamental lemmas and (6.1) we get
A=CAp,z X, X>=C Ay, 20X, Xp=—LP1 Ay, 2z X, X>=LX, $, X)<{H, $,Z=0.

This contradicts (6.2).

PROPOSITION 6.2. Let N be a totally geodesic quaternion CR-submanifold in
a quaternion manifold M. Then N 1s locally the Riemannian product of a
totally geodesic quaternion submamifold NT and a totally geodesic totally real
submanifold N*.

The proposition follows from Lemma 3.3, Theorems 4.2, 4.3 and Lemma 5.3.
Let N be a quaternion CR-submanifold in a quaternion manifold M. Then
N is said to be of minimal codimension if the subbundle v is trivial, i.e., T*N
=19*DJI*DKD*.
We suppose that N is a totally geodesic proper quaternion CR-submanifold
of minimal codimension in a quaternion manifold M. Then for any U, V, W
tangent to N, Z in 9* and using the equation of Codazzi we have
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(6.3) Ru,v,w, ¢,2)=0  r=1,2,3.

On the other hand, for any vector fields X, Y in @ and Z, W in 9%, the
equation of Bianchi, Lemma 3.4 and (6.3) give

(6.4) RX, Y, 0.2, pWV)=R(p.Z, X; Y, W)+R(Y, ¢, Z; . X, W)
=Ry, W, X, 0, Z)+RpX, W, Y, ¢ Z)=0.
As N 1s totally geodesic in A, the equation of Gauss gives
(6.5) B(X,Y; 7z W)=0.

Let N7 be any leaf of 9. Then from Lemma 3.3, N7 is totally geodesic in
M. So, the equation of Ricci of N7 in M is given by R(X,Y;§, 7)=
R{X,Y ;% p for X,V in 9 and §, » in T*N'=9*QI9*DJP*DKD*. Then
from (6.4) and (6.5) we have that the normal connection of N7 in M is flat,
i.e., R+=0, and using [1], we obtain that M and N7 are Ricci flat.

From this and Theorem 6.1 we obtain the following

THEOREM 6.3. The only quaternion manifolds which admit totally wmbilical
proper quaternion CR-submanifolds of munimal codimension ave Ricci flat quater-
nion manifolds.

THEOREM 64. Let N be a quaternion CR-submanifold of a quaternion-space-
form M(c). Then the quaternion mean curvature of N satisfies

(6.6) m(X)=c

Jor any unit vector X in 9. The equality of (6.6) holds for any umit vector X
in D 1f and only if the quaternion distribution 9 is integrable.

Proof. From (5.2) of Lemma 5.1 and the equation of Gauss, we obtain
3 D
KX, ¢ X0=RX, g X0+ B 3 Ay, X, X4 Ag,0, 00X, 6, X0—N0(X, 6, X1,

where K denotes the sectional curvature on N, X is a unit vector in 9 and
Zy, -, Z, an orthonormal basis of 9*. Hence by (5.16) and (5.17) of Lemma
5.7 we have

M'a

67 KX, ¢ X)=ct 2 A, X, Xoi— 8 3 A, X, Xt —o(X, 6Kl

1 SET

a

Therefore the quaternion mean curvature of N satisfies
D 3 1 3
(6.8) m(X)= c—— Z:) PIRCLIIIR.¢ XY”@Q lo(X, ¢ X)*=c.

Combining Theorem 4.3 and (6.8) we see that m(X)=c for all unit vector X in
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@ if and only if 9 is integrable.

PROPOSITION 6.5. Let N be a quatermion CR-submanifold of a quaternion
manifold M. If the leaves of D+ are mumimal in M, then N is mmmmal in M.
This proposition follows from Lemma 5.1 and Corollary 5.8.

We may use the fundamental lemmas to give the following estimate for the
length of curvature tensor R* on the normal bundle.

THEOREM 6.6 Let N be a quatermion CR-submanifold of a quaternion-space-
form M(c), ¢=0. Then we have

6.9) [R][*=3pqc*,

where ¢=dimgD and p=dimzD*. If the equality of (6.9) holds, then N is a
QR-product, 1.e., N is locally the Riemannian product of a quaternion submanifold
N7 and a totally real submanifold N* of M(c).

Proof. Let X and Z be unit vectors in 9 and 9* respectively. Then, for
r+s, the equation (3.7) of Ricci implies

(6.10) 5=RX, 6. X; $uZ, pD)=R (X, $:X; $.2Z, $u2)
_<EA¢SZ) Ag’}lZ]X) (/)TX> ’ ¢L:¢S¢T-
Thus by Lemma 5.6 we have

(6.1) RHX, $,X; 2, i 2)=5 +1Ap 2 X1+ Ag 2 X P2

Thus the length of the normal curvature tensor R* satisfies

4q N
(6.12) [RHP= > > {RY(X, X,;&4 Ep)}°
1,9=1 A,B=1
Y4 4q 3 -
=2 2 3 R g X diZe G LIV, b=
where {X,, -, Xy}, {Z, -+, Z,} and {§,, ---, Ex} are orthonormal bases of 9,

9+ and T+N respectively. Combining (6.11) and (6.12) we obtain (6.9).
If the equality sign of (6.9) holds, then we have

(6.13) Ay zX=0

for any X in @ and Z in ©*. Thus by Theorem 4.3 and Lemma 5.1, we may
conclude that the quaternion distribution is integrable, and each leaf N7 is
totally geodesic in M(c) by Lemma 3.3. So in particular, N7 is totally geodesic
in N. Therefore N is a QR-product by Theorem 4.2, Lemma 5.3 and (6.13).
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7. Quaternion CR-submanifolds foliated by totally geodesic, totally real
leaves.

Let N be a quaternion CR-submanifold in a quaternion manifold M. Then
Pt is always integrable. In this section we shall study the case in which the
leaves of totally real distribution 9+ are totally geodesic in N. For this case,
Lemma 5.3 gives

(7.1) Ka(D, 94), $,D+>=0, r=1, 2, 3.
In others words, we have
(7.2) Ay, zX€D, Ay, WED*

for any vectors X in @ and Z, W in 9*.
For any unit vector fields X, Y in 9 and Z, W in 9*, equation (3.6) of
Codazzi gives

(7.3) RX,Y; Z, §W)=(Dxa(Y, Z)—0o(VxY, Z)—a(Y, VxZ), $;W>
—Dyo(X, Z)—ao(VyX, Z)—0(X, Vv 2), $;W> .
From (2.1), (3.1), (3.2) and (7.1) we have
(7.4) Dxo(Y, 2), g W>r=—<a(Y, 2), Vx(pW)=—<a(Y, Z), :VxW>
=—<aY, 2), ¢,a(X, W)>.
So, in particular, we have from (5.3) that
75  (Dxo@,X, 2), 9, Z>=—C0(:X, 2), pro(X, Z)y=—]a(X, Z)i*
Similarly, we may also prove that
(7.6) {Dy,x0(X, 2), p.Z>=|a(X, Z)|*.
Moreover, from (2.1), (3.1), (7.2) and Lemma 5.7 we have
17 <e(WxY, Z), pW>=CAg wZ, VxYV>=L, Ay wZ, Vx(,Y)>
=LAy wZ, (X, ¢ Y )y=CAywd,Y, Xo=—CAy0Y, ¢.X>
=—<aY, . X), prApwZ>,
where U=A,, wZ. In particular, we have from (7.2) and Lemma 5.7 that
(7.8) Ko(Vx¢, X, 2), ¢ Z>=—{a(X, X), $rAp,2Z>
(7.9) Co(Vy,xX, 2), ¢ 2>={a(X, X), $rAg,22> .
From (2.1), (3.1) and (7.2) we also have



QUATERNION CR-SUBMANIFOLDS OF QUATERNION MANIFOLDS 411
(7.10) oY, VxZ), pW>=CAgwY, Vx Z>=LPprAg,wY , Vx(, Z))
=P Ag,wY, Ap,z X5 .
Hence, in particular, from (7.2) and Lemma 5.7 we obtain
(7.11) oleX, Vx2), e Z5=| Ay, 2 X",
(7.12) o(X, Ny, x2), prZ>=—||Ag,2XII”.
Combining (7.3), (7.5), (7.6), (7.8), (7.9), (7.11) and (7.12) we get
(7113)  R(X, 0.X; Z, $,Z)=—2| (X, D)P—=2| A,z X 24+20(X, X), $,Ag,22) .
Let {Xi, -, Xoy X1 =1Xy, -, Xog=JX1, -, Xsgri=KX,, -+, Xyq=KX,}
be an orthonormal basis of ©. Then by Corollary 5.8 and (7.13) we get
(7.14) 2RO 9:X05 Z, 4, 2=-2 3 o, DI+ 45,2507

On the other hand, by equation of Bianchi and Lemma 3.4 we have
(7.15) RX, ¢.X; Z, . 2)=—KX, 2)-K(X, $.Z).

Thus (7.14) and (7.15) imply

@16 3 (lo(Xy DIHIdp XA =5 3 (RX, 21 KX, 9,.2))

1=

Do

-

From this we obtain the following

THEOREM 7.1. Let N be a quatermon CR-submanifold in a non-posttively
curved quaternion manifold M. If the leaves of D* are totally geodesic in N,
then we have

1) KX, 2)=0 for any vectors X in D and Z in D+,

(2) N is a QR-product, and

Q) 0D, D)=0, 1.e., N 1s muxed totally geodesic.

This theorem follows immediately from Lemma 3.3, Theorem 4.2 and equation

(7.16).
From Theorem 7.1 we obtain the following

COROLLARY 7.2. Let N be a quatermon CR-submanifold :n a quaternion-
space-form M(c), ¢=0. If the leaves of D* are totally geodesic in N, then ¢=0
and N is a QR-product. In particular, locally N s the Riemanman product of a
totally geodesic quaternion submanifold and a totally real submanifold.

Let QP™(4) be the quaternion projective space of quaternion sectional curva-
ture 4. If N is a quaternion CR-submanifold of QP™(4) such that the leaves of
D+ are totally geodesic in N, then (2.2) and (7.13) imply
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(7.17) lo(X, D)+ A4y, z2XIIP=1-+<0(X, X), $r A 22>

for any unit vectors X in 9 and Z in 9*.
On the other hand, from Lemma 5.1 and (7.1) we have

(7.18) lo(g X, Z)I*=lle(X, 2)]|*.

From Lemma 5.7 and (7.2) we have

(7.19) [Ag,zX|*=]Ag, .0 X"

Moreover, from (5.19) and (7.2) we also have

(7.20) Ko(X, X)+o( X, 0. X), ¢ Ay,22>=0,  r#t.
Combining (7.17), (7.18), (7.19) and (7.20) we obtain the following

LEMMA 7.3. Let N be a quaternion CR-submanifold in QP™4).
of D* are totally geodesic in N, then we have

(7.21) lo(X, 2)|*+]A4y,2X[*=1,
(7.22) o(X, X), ¢rAp,zW>=0
for any unit vectors X, Y i @ and Z, W in 9D*.
(7.22) follows from (7.17), (7.21), linearity and Lemma 4.1.

LEMMA 7.4. Under the same hypothesis of Lemma 7.3 we have

(7.23) a(D, D), 0(D*+, D*)>=0.

Proof. For each r=1,2,3 we put «V,={A,W/Z, Wedi}.

1f the leaves

Then <V,

r=1, 2, 3 are linear subspaces of 9% by (7.2). Let <V} be the orthogonal com-

plementary subspace of ¢V, in 9;. Then Lemma 7.3 implies
(7.24) 0(D, D)EO),V DY,V sDD; Vi .

On the other hand, by Lemma 4.1 we have

(7.25) 0=<Z,, ApoWr=<{Ap,2,V, W, =La(V, W). ¢ 2>
for any vectors Z, in <V+ and V, W in D},

Combining (7.24) and (7.25) we obtain (7.23).

THEOREM 7.5. Let N be a quatermon CR-submanifold im QP™4). If the
leaves of D* are totally geodesic in N, then for any unit vectors X in @ and Z

m D+ we have
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(7.26) KX, Z2)=0

The equality sign holds 1f and only if the quaternionic distribution D is integrable.

Proof. From the equations of Gauss we have
KX, Z2)=1+<o(X, X), o(Z, Z))—|o(X, Z)|I*.
Thus by Lemma 7.3 we have
KX, Z)=<o(X, X), a(Z, Z))+| Ay, 2 X]"*.
Combining this with Lemma 7.4 we obtain
(7.27) KX, Z2)=||As,2X11*P=0.

It is clear that K(9, 9*)=0 if and only if Ay ¢*9=0. Thus by Lemma 5.1 and
(7.2), K@, 9%)=0 if and only if (9, 9)=0. Therefore the equality of (7.26)
holds if and only if 9 is integrable by Theorem 4.3.

As a immediate consequence of Theorem 7.5 we obtain the following

COROLLARY 7.6. Let N be a proper quaternion CR-submanifold of QP™4).
If N is negatively curved, then N is not foliated by totally geodesic totally real
submanifolds.

Now we shall apply Lemma 7.3 to obtain the following result for QR-
products.

THEOREM 7.7. Let N be a QR-product in QP™4). Then we have
@ Ne(X, 2)|=1 for any unit vectors X in 9 and Z in D*,
2) m=p-+q+pq, where p=dimgDt, ¢=dimy9D,.

Proof. 1f N is a QR-product in QP™(4), then both distributions @ and 9*
are integrable and the leaves of 9 and 9* are totally geodesic in N. Thus we
have A,,,X=0 for any unit vectors X in @ and Z in 9*. From Lemma 7.3
we obtain

(7.28) Ko(X, Z), o(X, Z))=1.

Thus by linearity we see that for any orthonormal vectors X, Y in 9 and Z,
W in 9+

(7.29) (o(X, Z), oY, Z))=Xo(X, Z), o(X, W))=0.
Therefore we also have
(7.30) Ko(X, Z), oY, W)H+<a(X, W), oY, Z)y=0.

On the other hand, by equations of Gauss and (2.2) we obtain
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(7.31) Ko(X, Z), oY, W))—<o(X, W), oY, Z)>=0.

Combining (7.28), (7.29), (7.30) and (7.31) we see that, for orthonormal bases
{Xy, -+, Xyt and {Z,, -+, Z,} of 9 and D+,

{0'<X1,, Za)/Z:]., TN 4(], a:ly - p}
are orthonormal vectors in 7*N. On the other hand, (7.1) shows that these

3
vectors are perpendicular to X ¢,9*. From these we conclude that the quater-
r=1

nion dimension of QP™(4) is greater than or equal to p-+q+ pg.

8. A Counterexample.

An almost quaternion metric manifold [10] is a Riemannian manifold with
a 3-dimensional vector bundle F of tensors of type (1, 1) with local basis of
almost Hermitian structures I, J, K satisfying I J=—JI=K, JK=—KJ=I and
KI=—IK=].

The purpose of this section is to give an example of a quaternion CR-sub-
manifold of an almost quaternion metric manifold on which 9* is not integrable.

Let ¥ be a symmetric connection on a differentiable manifold M and X a
vector field on M. Let f be an arbitrary C* function on M and Z in TM. We
define the horizontal lift of X to T'M to be the vector field X¥ on TM given
by [11] (X#df)Z)=xdf)Z, where on the right Vy is acting on the I-form
df and on the left df is regarded as a function on T M. The vertical lift XV
of X is independent of the connection and is simply defined by XYw=w(X)-II
IT is the natural projection from TM onto M and w a l-form on M.

For a tensor field ¥ of type (1,1) on M its horizontal lift ¥ may be
defined by ¥#X"=(¥X)" and THXT=(TX)".

Recall the connection map K: TTM—TM given by K(X%) =Xz, KX7=0,
[9]. If G is a Riemannian metric on M and ¥V its Levi-Civita connection, we
define the Sasaki metric g on TM by g(X, )=GUI X, H*Y)+G(KX KY) for
any vectors X, Y tangent to TM. The Levi-Civita connection ¥ of g is given

in terms of ¥ and the curvature tensor R of M by

@Y 1, =TV — 5 (R, V)Z),
TV )=V (R, 2,

Fer¥V 1), =— 2 (R, DY), (Ter¥")=0.

Now, let M be a quaternion manifold with quaternion structure (G, &y, Doy Pa),
where =1, ¢»=] and ¢,=K. Let ¢ be the horizontal lift of g[), to TM and
g the Sasaki metric on TM. It is easy to check that (g, ¢, ¢¥, ¢if) is an
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almost quaternion metric structure on 7M.

THEOREM 8.1. Let M be a quaternion manifold. Then TM with (g, ¢, P¥, H)
s a quaternion manifold 1f and only 1f M is flat.

Proof. Let (G, ¢, e, g_b3) be the quaternion structure of M. Then there
exist local 1-forms ¢,; on M such that

(VXSAT)Y: s=z)l QTS(X)¢SY ’ r=1, 2,3,

and grs+¢q5-=0, [107.
Hence, we have

B1) [ Teng? )V 7T,=( 3 ghXMgH™) + 3 1g.RX, )Z~R(X, 6,1)2)",
82 [ Tengi¥ 1= 3 ghXIGH") +5 GRY, DX-R@Y, D)X)¥,

83) [T g )Y 1= (9. RX, 20V —R(X, )91},

(8.4) (MY 1,=0  r=1,2,3.

If M is flat, these imply that
(85) TagihF = 3 gnRgl 7 r=1,2,3
for any vector fields X, ¥ tangent to TM. Thus TM is also a quaternion
manifold. _

Conversely, if TM with (_g, o gH, o) 1s a quaternion manifold, then there
exist local 1-forms §,, on T M such that

gtV = 3 3KV and GrutGer=0,
§=1

for any vector fields )?, g tangent to TM. From (8.1)—(84), we obtain

(86) (Z anxmgrrm) =(E auxmgiarn)
5 R, NZ-RX, 62},
87) (E anxmgram) =( 2 guxnet (),

g RO, DX=R@Y, DX},
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88) (3 3nXNGHT™) =2 4R, 2V ~R(X, D)gY) 7,
89) (5 a.(X0g80M) =0 r=1,2,3,

From (8.6)—(8.9) it follows that §,=¢l; and R(X, Y)¢,Z=¢.R(X, Y)Z=
R(X, ¢,Y)Z, r,s=1,2,3. Hence we get

G(R(X, $,Y)Z, W)=G(R(X, ), Z, W)=GR(¢,Z, W)X, ¥)
=GR(Z, W) X, V)=G.R(Z, W)X, Y)=—GR(Z, W)X, ¢.Y)
=—GR(X, o, Y)Z, W).

Since this is true for any vectors X, Y, Z, W tangent to M, M is flat.

Now, let M be the quaternion projective space QP™@4) and N be the real
projective space RP™(1) imbedded in QP™(4) as a totally geodesic, totally real
submanifold. Let N be the set of fibres of T(QP™4)) over the points in
RP™1). By Theorem 8.1, T(QP™(4)) is an almost quaternion metric manifold
which is not a quaternion manifold. Since RP™(l) is totally real in QP™(4)
and ¢F acts invariantly on the fibres of T(QP™4)), N is a quaternion CR-sub-
manifold of T(QP™4)). Let X and Y be tangent to RP™(1). Then X% and
Y# are both in 9* of N. From (2.2) we have

(X7, Y7],=[X, Y —(R(X, )2 =[X, Y ¥
—lew, px-6x, 27 + 16wy, 29 X-6.X, 24,7}

For orthonormal X and Y and Z=Y (5 this implies that the vertical part
does not vanish. Hence the totally real distribution 9* is not integrable.
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