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ON THE FIRST BOUNDARY VALUE PROBLEMS FOR

SOME DEGENERATE SECOND ORDER ELLIPTIC

DIFFERENTIAL EQUATIONS

BY HARUKI YAMADA

§ 1. Introduction.

Let ΩdRn be an bounded open domain with C°°-boundary Σ—dΩ. We con-
sider the following so called "first boundary value problem".

f L(u)=(ak>uXk)Xj+bkuXk + cu=f in Ω,
[P] * '

I u\Σ=0,

where uXk=du/dxk, etc., and the summation convention such as (akJuXk)Xj

= Σ (akjuXk)Xj are used. Without loss of generality, we can assume that akJ=ajk

(see the following condition [A.I]). Throughout this paper, we pose the follow-
ing assumptions:

[A.I] akJ, b\ c, ftΞCrφ) and real valued.

[A.2] akjξkξj^O for all (x, ζ)^ΩxRn.

[A.3] c < 0 , c~bk

Xk<0 on Ω.

[A.4] akjξkξj>0 for all (x, ξ)^Σx(Rn\0).

Under some additional assumptions for the boundary behavior of the coefficients
replaced by [A.4], Kohn-Nirenberg [5], [β] and Oleinik [7], [8] proved several
existence, uniqueness and regularity theorems for the problem [P]. For example,
from their results we have the following theorem, (see e. g. [8] Chap. I, § 5).

THEOREM 1.1. // in addition to [A.I], [A.2], [A.3], we assume that

[A.5] akJvkVj>0 for all XΪΞΣ,

where v=(vlf •••, vn) is the unit normal vector for Σ at x, then for any f^C°°(Ω),
there is a uniquely determined weak solution u^L\Ω) of [P]. Moreover, there
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is a constant C independent on f such that

\\u\\o.Q^C\\f\\o.Ω.

Here the weak solution of [P] is defined by the following manner: Let
be the adjoint of L, i.e.

J

Then

DEFINITION 1.2. u^L\Ω) is called the weak solution of [P] if

\ uL*(v)dx=\ vfdx

is verified for all v^C°°(Ω) with v | ^ = 0 .

Of course the weak solution equals the classical (strong) solution if we
C\Ω)r\C\Ω).

The solution whose existence is guaranteed in Theorem 1.1 is known as the
weak limit of the solutions uεGC°°(Ω) as ε-*+0 of the following approximate
elliptic boundary value problems [P ε ] :

ί Lε(u)=L(u)+edu=f in Ω,
[P.]

[u\Σ=0.

Several facts are known concerning the regularity of the weak solution u^L2(Ω)
of [P] (see especially [6], [8]). Among those results it is remarkable that in
order to assure that u<BCm(Ω), c must sufficiently be small (i.e. c^—c0 on Ω for
sufficiently large co>O) and the modulus c0 of the smoothness are determined by
m and the values of the derivatives of akJ (resp. bk) up to order 2 (resp. 1).
Especially, in general, c0 is an increasing function of m and we cannot assert
u<=C°°(Ω) for finite c0.

EXAMPLE. Let Ω—{x^Rn; | * | = 1 } and let L be given by

Lu=\x\2Ju+cu=0.

By a result of [8] it is easy to see that for any m^N there is a constant co=
co(m) such that

(1.1) if cS—Co on Ω, then the weak solution u^L\Ω) is in Cm{Ω).

But there are no £0>0 for which (1.1) is true for m=oo. In fact, if we take
u=\x\a—1 (α>0), it is clear that u is the weak solution of [P] for c— — a(a—2)
—an. Note that u^Cίocl+\Ω) unless
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The aim of this paper is to find a sufficient condition for the weak solution
to be u^C°°(Ω). In doing so, we use the ZΛmethod which was used in [5] rather
than the maximum principle method used in [7]. Our main result is stated in
§3 as Theorem 3.1.

In § 2 we shall prove some estimates for the solutions wεeC°°(i2) of the appro-
ximate problems [P ε ] . In § 3, by using those estimates, we shall give a sufficient
condition for weC°°(i2). In §4, as applications, we show examples of smoothness
and non-smoothness of solutions of some simple boundary value problems. The
relations between regularity of solutions of boundary value problems and hypoel-
lipticity of operators will also be noted. Our examples contain a case where the
operator is not hypoelliptic but all the solutions of the boundary value problem
belong to C~(Ω).

Our assumption [A.4] in Theorem 3.1 seems to be too restrictive. In fact,
as will be indicated in § 4, without [A.4], one will be able to prove regularities
of solutions of the boundary value problem on a certain set containing the neigh-
bourhood of Σ2 and ΣB as long as we assume that Σ2, Σs and Σ0UΣ1 are dis-
joint. (For definitions of ΣQ, •••, Σz see e.g. [8]). One powerful method for the
proof of this fact will be the method of the stochastic differential equations (pro-
bability methods). In this connection, we refer to [2], [3] and [9]. In this paper,
however, we have used only the ZΛmethod. Hence our condition (3.2) for the
regularity of solutions may only be interesting on the set where all the vector
fields Xo, Xl9 •••, Xn degenerate. (For the definition of Xo, •••, Xn and the rela-
tions between Xo, •••, Xn and the regularity problem see [4], [8] and §4 of this
paper).

I would like to express my sincere gratitude to professor Yoshikazu Hirasawa
for his encouragements and advices.

§ 2. Inequalities.

In this section we shall prove some basic inequalities by using mainly the
technique used in [5]. Though, in [5], [6], it is proved that for any meiV, there
is a sufficiently large constant co>O such that if c^ — c0 on Ω, then [P] has a
unique solution weCm(i5), the modes of dependence of c0 with respect to akJ, bk

are not clarified. Especially, it is not possible to decide whether the solution be-
longs to C°°(Ω) or not. We shall somewhat clarify this situation by accurate
estimates. But in doing so, we have to pose rather strong restriction [A.4] for
the behavior of the coefficients akJ near the boundary.

We shall use the following standard notations:

(u, t))=(u, t>)fl=

Σ \\d«u\\lΩ,
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where da=da

1

1 ••• dϊn, dj=d/dxr If we write

we have

As in [5], we introduce the following bilinear form Qε associated with Lε:

(2.1) Q,(u, ^

Note that when it, t)eC°°(i2), u\Σ=0, Ϊ>\Σ=0, then by partial integrations, we have

(2.2) Qε(u, b)=—(Lε(u), D).

Remark 1. In what follows, all the functions u, uε which appear as solutions
of the boundary value problems are real valued. But since, in §2, we have to
consider the functions Auε where A is a differential operator with a complex
coefficient, we use the above notation (*) instead of

(u, v)=\ u v dx .

In the followings, when we use the roman letters u, uε to represent functions, it
always means that they are real valued functions.

By [A.2] and [A.3], we have

(2.3) C1\\u\\l^(-j(2c--bij)u, u^Qε(u, u) for any U(ΞC°°(Ω),

where d is a positive constant. Further, if there are an open set UaΩ, some
positive constant C2 and some m, O^m^n—1, such that

(2.4) aVξtξ&C, Σ fj for all (x,

then we have

(2.5) C2 Σ l | 9 ^ I I U + ( - | - ( 2 c - ^ , ) W , w

for all

Note that if L is elliptic on t/ (i.e. m=0), then

C2||M||f,j7^Qe(w, M) for all

Remark 2. If m=rc, the condition (2.4) is meaningless. Then, by the condi-
tion (2.4), we shall understand that we do not impose any conditions at all.
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When we estimate ||u\\μ>Ω} it is convenient to introduce the following operators:

Σ

where φ is a real valued function in C°S(Ω) and Da=D°[ι ••• D£n, Dj=l/ιd/dxj.
Further we have used the following abbreviations:

and the sum Σ means that j are taken from all possible indices which appear

in a=(a1, •••, an) counting its multiplicities a3. Accordingly we have

Σ Dj(p-Da-J= Σ ajDjψ'D^ ••• D r1 - Di* .

In Lemma 2.5, it will also be used the following abbreviations:

Da-j+k—Da~Wk=Da

ί

1 ••• Dp'1 ••• Dp+1 ••• Dln .

LEMMA 2.1 (c. f. [8]). Let M and N be differential operators of order not
higher than 1 with real coefficients. Then for any u^C°°(Ω), we have

2{{MAu, NAu)-(Mu, NA*Au)}

=2([M, A]u, IN, Alu)+((A-A*)Mu, IN, Alu)+(Mu, IN, A-A^Au)
(2.6)

- ( M M , [[AT, Al, A1U)+((A-A*)NU, [M, A~]U)+(NU, [M, A-A^AU)

-{Nu, [[M, A~], Alu)+(MA*Au, Nu)-{Mu, NA*Au),

where by definition £X, Y~]=XY—YX for any two operators X and Y.

Proof. First note that by definition and partial integrations,

(Au, v)=(u, A*υ).

By using further partial integrations,

2{(MAu, NAu)-{Mu, NA*Au)}

={MAu, NAu)-(Mu, NA*Au)+(MAu, NAu)

-(MA*Au, Nu)+(MA*Au, Nu)-(Mu, NA*Au)

=&M, A~]u, NAu)-(Mu, [TV, A^Au)+(MAu, [TV, Alu)

-([M, A*lAu, Nu)+{MA*Au, Nu)-(Mu, NA*Au).

From the second and the third term in the right hand side, we have
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{MAu, IN, A~]u)-(Mu, IN, A*]Au)

=([M, A~\u, {N, Alu)+((A-A*)Mu, IN, A]u)

+(Mu, IN, A-A*lAu)-(Mu, UN, A~], A~]u).

From the first and the fourth term in the right we have a similar formula.
Combining these formulas we have (2.6).

LEMMA 2.2. Let (2.4) be true for some m, O^m^n—1 and some UcΩ. Then
for any a, \a\—μ, ψ^C%(Ό) and solutions u — uε^C°°(Ω) of [P ε ], there is a con-
stant C>0 such that

n

.7 = 771 + 1

Proof By (2.5), it is sufficient to prove that

I Qε(φdau, φdau)\ ^C(| |/ | |^,^+| |w| | jί.cr).

Let A=φDa. Then Qε(φdau, φdau)=Qε(Au, Au) and

Qε(Au, Au)=Qε(Au, Au)-Qε(u, A*Au)+Qε(u, A*Au)

= Qε(Au, Au)-Qε{u, A*Au)-(f, A*Au).

Note that

2

Next, we have to estimate the term

(2.7) Qε(Au, Au)-Qε(u, A*Au).

This term can be decomposed into the several terms of the form

(2.8) (MAu, NAu)-(Mu, NA*Au)

according to (2.1). Here the possible pairs of M and Λf are the followings:

iVl IV Oj , IVl -A-j, iV Oj , IVί -Λ-o> •** •*- }

M=l, N=X0 M=(2c-bk

Xk, N=l ; = 1 , 2, •••, n .

Thus it is enough to estimate these terms of the form (2.8) appearing in (2.7).
If we note that A—φDa, \a\=μ, φ^C°S(U) and the fact that M, N are opera-

tors of order not higher than 1, we have, by Lemma 2.1,

\(MAu, NAu)-(Mu, NA*Au)\

S C\\u\\2

μ,σ+\\(MA*Au, Nu)-(Mu, NA*Au)\.



FIRST BOUNDARY VALUE PROBLEMS 347

In fact, in (2.6), each terms except the term (MA*Au, Nu)—(Mu, NA*Au) can
be estimated by CWuW^u by means of partial integration. Further, if we note

a

kJ=ajk, we have that, in (2.7), the term of the form (MA*Au, Nu)—(Mu, NA*Au)
may only appear when M = l , N=X0 and M=X0, N=l. But then, we have

\(Xou, A*Au)-(u, X0A*Au)\^\(£A*, XQ~]Au, u)\ + \(£A, X,~]u, Au)\

This proves the lemma.

C O R O L L A R Y 2.3. Let a=(alt •••, am, am+1, •••, an), v— Σ ak> Then, for the
k=l

solution u = ue^C°°(Ω) of [P£], we have

(2.9)

Especially, if (2.4) is valid for m—0, then

(2.10) l

Proof. Easy by Lemma 2.2 and the induction arguments.

The following lemma, which is trivial from Corollary 2.3 when V(^Ω, is a
well known fact in the theory of elliptic boundary value problems and we shall
omit the proof, (see e.g. [1] §9).

LEMMA 2.4. Let VcΩ be an open subset {we may allow the case when
ΦQ). Suppose L is elliptic on V. Then for the solution z/ = wεeC°°(i2) of [ P e ] , we
have

\\u\\*.V^C\\f\\*.Q,

where C is independent on ε.

Let ω(ZΩ be the maximal set on which L is not elliptic. In what follows,
we shall call this set the non-elliptic set of L in Ω. By the assumption [A.4],
we can take a sufficiently small neighbourhood ώ of ω such that

LEMMA 2.5. Suppose that (2.4) is valid for some m, O^m^n, and for IJ—Ω.
Then for any fixed (small) δ>0, any a=(au •••, am, 0, •••, 0), \a\=μ, and solu-
tions u=uε^Cco(Ω) of [ P e ] , we have the following inequality.

(~{2c-b>xj)d°u, d'uY^δ Σ

(2.11) + Σ ΣW-'+*w,9βκ)i
k=i sea s
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+ 4 Σ Σ (αS^a-'+'u, 3α-s+sM)s
Z ft,j = l s, i(Ξa s L

where the constant C>0 zs independent on ε.

Remark 3. For the meaning of the condition of the above lemma when
m=n, see Remark 2 of this section.

Proof. Take and fix a real valued function φ^C°S(Ω) with ^ = 1 on ώ and
^ 0 on β. Then from (2.3),

^Qε(φdau, φdau).

Let A=φDa. Then Qε(φdau, φdau)=Qε(Au, Au) and

QεG4u, Λw)=QεUw, ^w)-ρ ε(w, i4Mw)+0β(M, A*An)

= Qε(Au, Au)-Qε(u, A*Au)-(f, A*Au).

Note that for any <5>0,

In what follows, the symbol δ generically stands for a positive constant which
can be taken as small as we like. Further, by using (2.10) of Corollary 2.3, we
have

Thus it is sufficient to estimate the term (2.7), i. e.

{Q,(Au, Au)-Qε{u} A*Au)}.

This term can be decomposed into several terms of the form (2.8) where the
possible pairs of M and TV are the same as in the proof of Lemma 2.2. Thus we
shall estimate each terms of the form (2.8) appearing in (2.7). Since φ=l on ώ,
we have A—A*=0 on ώ. Combining this fact and Corollary 2.3, we can estimate
all the terms of (2.6) containing A—A* by C(\\f\\lΩ+\\u\\2

μ-1>Ω). (Integration by
parts was used in obtaining these estimates). Thus it is enough to estimate the
terms of the following form:

Λ=([M, Alu, IN, Alu), I2=(Mu, UN, Al,

Is=(Nu, [[M, A], A^u), h=(MA*Au, Nu)-{Muy NA*Au).
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i) Suppose M=dr From d}ψ=O on ώ, we have [d}, A]u=Q on ώ. Thus

Alu, IN, A2u)0\ = \(ίd)f A]u, ί

Here we have used the fact that [3 ;, A], [_N, A] are operators of order \a\=μ
and we have used Corollary 2.3. The same estimates are true when M—d3 is
replaced by N—d3. Next, in the case N=l or M = l , it is easy to see that

Thus the term Iλ is harmless.
ii) The term I2 is also harmless. In fact, when Λ^=3^ or N=l, the term

[iV, A~]u vanishes on ώ. Hence these terms can be estimated by C(||/||£,£+||w||jί-i,β).
On the other hand, when N=X0, we have M = l . So clearly this term can be
estimated by

δ Σ H3^IIS.s+-|llM|li-i.fl,
\β\=μ 0

for any small fixed d>0.
iii) The term 73 can be easily estimated by C(||/||^,β+||w||^-i,ko) except when

M=Xj and N=d3. When M=X,, N=dp we have

(Nu, [[M, A], Alu)=(-iy(dju, ίίak^dk> φdal, φdalu)Q

=(-1)^M, [- Σ

sea

S, iGci

= - Σ {da~ι+Ju, a
Here [*] are the terms which can be estimated by the quantity
Thus, when we note (2.1) and (2.6), the total contribution of Iz in (2.7) is

- \ Σ O*-ί+'M, ak

x'8Xιd
a-+ku)ϊ+l*l.

Z s, ie.a

iv) If we note akj=ajk we have that, in (2.7), the term 74 may only appear
when M = l , N=X0 and M = Z 0 , N=L Thus when we note (2.1) and (2.6), the
total contribution of IA in (2.7) is

j{(A*Au, Xou)-(u, X0A*Au)}-j{(X0A*Au, u)-{X,u, A*Au)}

=j{(XoU, A*Au)-(u, XQA*Au)}
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u)+(£A, Xolu, Au)}

dau, u)Ω+(ίφda,

dau, u)Ω+

Here [*] are the terms which can be estimated by j
Combining the above results, we have for any small δ>0,

(~(2c-b>xj)φdau, φdau

•f-Σ Έ(bk

Xsd
a-s+ku,

4--— V V

+C(| |/Hί, ί ? +| | t t | | ί- 1 , f l ),

where the constant C may depends on δ but is finite for each fixed δ>0. Note
that when m + l ^ j ^ n or m+l^k^n, we can estimate the terms

\β\ = μ °'ω' XS ' ^ XsXl

by a quantity of the form

a\\nia+\\u\\l-i.o)+δ Σ = / ( l|3"M||ί.s,

by using (2.9) of Corollary 2.3. Thus we have the desired estimate and this
proves the lemma.

§ 3. A sufficient condition for regularity of solutions.

In this section we shall prove the following theorem.

THEOREM 3.1. Consider the problem [P] under the conditions [A.I.], [A.2],
ΠA.3] and [A.4]. Further we assume that (2.4) is true for some m, O^m^n
and for U=Ω. If

( 3 . 1 ) \ k J

[ a % * r = 0 , b x = 0 , k , ; = 1, 2 , •••, m , k Φ s , l ; jΦs,l,
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is valid on the non-elliptic set ωdΩ of L, then the weak solution u^L2(Ω) of [P]
belongs to C*(Ω).

Proof. The weak solution u^L\Ω) of [P] is given by the weak limit of the
solutions uε^C°°(Ω) of [P ε ] in L\Ω). Thus, if we prove for any sufficiently small
ε>0 and any μeiV, that

we have

and by the well known Sobolev's lemma we have u^C°°(Ω). (see e.g. [1]).
Now we shall take and fix a function φ^C°S(Ω) such that φ=l on ώ, φ^O

on Ω, where ώ is a small neighbourhood of ω such that ώr\dΩ—0. Then we
have

and the second term of the right can be estimated by C\\f\\2

μ,Ω by Lemma 2.4.
Next we shall prove that

In doing so, by Lemma 2.2, it is sufficient to prove

for a=(au •" , am, 0, •••, 0), \a\ =μ. Now, from the assumption (3.1) and Lemma
2.5, we have: For any small δ>0, we may take a neighbourhood ώ of ω so
small that

(3.2)

Further, we may assume that there is a positive constant d0 such that

-4(2c-#»)-(-ί Σ a^+ Σbiλ^doX) on ώ.

Of course it may be necessary to choose ώ small enough for each fixed μ but
such ώ will exist. Thus if we take δ so small and if we take the sum of (3.2)
all over a, \a\=μ, we have

where δ can be taken so that dQ—δ>0. Note that, though the constant C depends
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on δ and C->co as δ—>0, once we fix a small δ>0, then C is determined as a
finite positive constant. Thus we have proved that

Σ \\dauΛlz^C(\\n*.Ω+\\uA2

μ-i.Q)
\a\ = μ

and by induction we have

\a\ = μ

for some constant C not depending on ε. This proves the theorem.

Remark. In the proof of the theorem, the condition [A.4] was used to get
the estimate

Thus, if we can prove this inequality by one or other methods without supposing
[A.4], the proof of the theorem runs the same. Especially, this will be possible
if L can be written locally by the second order ordinary differential equations in
each neighbourhoods of the points in Ω\ω by taking appropriate local coordinates.

Finally we show a simple example which is an extension of the example in § 1.

Example. Let ΩdRn, O^Ω and

Lu = a{x)ΔuJrc{x)u=f.

Suppose that i) a(x)>0 if xΦO, α(0)=0, ii) c(0)<0. Then jf iii) aXkXβ)=0 for
all k, i = l , 2, •••, n, the weak solution of [P] belongs to C°°(Ω). In fact L can be
written in the form

Note that from i) and iii), we can write

a(x)= Σ aax
| α | = 4

Hence it is clear that aXk(0)=0 and hence the conditions of the theorem are
fulfilled.

§ 4. Examples and comments.

Before showing examples, we shall recall some results on the hypoellipticity
of operators of second order. Suppose

=djXjU-{-Xou-\-cu=f
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satisfies t h e condi t ions [ A . I ] a n d [ A . 2 ] . W h e r e Xj=a*Jdk, j=l, 2, •••, n, Xo=
bkdk. Let

X=X(X0) XU ••• , Xn)

=Ύhe Lie algebra with the Lie bracket [A, B~]=AB-BA

generated by Xo, Xu •••, Xn.

Then it is known that:

Let i°Gfl be a point. If we can take n elements

(4.1) in X which are linearly independent at x°,

then L is hypoelliptic near x°.

(see e. g. [8] Chap. II, § 6). __If L satisfies [A.I], [A.2], [A.3], [A.5] and it is
hypoelliptic at each points on Ω, we can assure that the weak solution belongs
to C°°(Ω) without any further conditions on the coefficients of L. But we must
distinguish the local regularity of solutions and the regularity of solutions of
boundary value problems. In fact they have both similar aspects and different
aspects. For example, on one hand, the condition (4.1) is related to the deriva-
tives of the coefficients akJ, bk up to any order, on the other hand, in the known
regularity theorems of the boundary value problems, the order of regularity is
measured by a constant which depends only on the derivatives of akJ, resp. bk,
up to order 2, resp. 1. Neverthless, there seems to be a similar aspects. That
is, it seems that, in the boundary value problems, the flow determined by the
vector fields Xo, Xlf •••, Xn have an essential role in the propagation of regularity
of the solutions. As have already been pointed out in [8] in connection with the
global hypoellipticity, it seems that the integral manifolds of Xo, Xίf •••, Xn and
the directions of Xo (we have to distinguish positive and negative directions of
Xo) have a certain role in the propagation of regularity (especially they will carry
the regularity of the boundary data to the interior regularity of solutions).

We conjecture that the following type of results will be valid:

Assume the conditions [A.I], [A.2], [A.3] and [A.5]. Further assume
that the following conditions are satisfied: For any i o e f l we can find a
curve C joining x° with some point x1^! such that

i) C can be constructed by joining finitely many integral curves U, •••, ls

of Xo, Xlf •••, Xn

[C] ii) If lj is an integral curve of Xo, the direction of Xo and the direction
of the curve C(x1—>x°) must coincide.

iii) If there is a singular point x° of all the vector fields Xo, Xl} •••, Xnt

then x° must be a limit point of the flow of Xo of positive directions.
Then the weak solution u^L\Ώ) of [P] belongs to C°°(Ω).

Now we shall study some examples. For the simplicity we restrict our con-
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siderations to the two dimensional case.
Let

Ω={(x, y)£ΞR2;x2+y2<4}, Ω^{{xt y)^R2; x2+y2<l}

Take and fix a function φ^C°°{Q) such that φ>0 on Ω2, φ=0 on Ωx. Let NczΩ
be the non-elliptic set of L.

Example 4.1. Let

H e r e Xy={φ+x*k)dx, X2=dy, X0=bιdx+b2dy a n d N={(x, y);x=0, \y\^l}. Sup-
pose that b\ b2 and c satisfy [A.3]. If bιΦΰ on N, we have that L is hypoelliptic
on Ω. Thus we shall restrict to the case bι—ΰ on N. Then the sufficient con-
ditions for u to belongs to C°°(Ω) in Theorem 3.1 is

(x2k)xx=2k(2k-l)x2k-2=0, bl^O onN.

The first condition is valid if k>l. Note that the second condition means that

b\χ, y)=-β(y)χ + 0(x2), β(y)^0 on N.

Further, for simplicity, consider the case when

b\χ, y)=b\x)=-βx+0(x2), b\x, y) = 0 ,

where β is a positive constant. Then in terms of the flows of the vector field
Xo, it can be stated that:

.Near N, all the flows determined by Xo flow into N.

Note that if x°^Ω\N, x° can be joined with some point xx^.Σ by an integral
curve of X2=dy. Further, if x°^N, it can be joined with some x1^Σ by an
integral curve of Xo such that the direction x^x° coincides with the direction
of Xo and x° is a limit point of the integral curve (c.f. our conjecture [C]).

In this case, L is not hypoelliptic on N. But by our theorem, the weak solu-
tion belongs to C°°(Ω).

Example 4.2. Let

Here X1=(φ+y2k)dx, X2=dy, X^b'd^b'd, andiV={(x, y); y=0, \x\^l}. Since
we have [Z 2 , IX2, C ' [ Z 2 , X{] '--^(d2

y

kφ+(2k) \)dx, L is hypoelliptic on Ω. Hence
2&-times _

the weak solution is in C°(Ω). On the other hand, the condition of Theorem 3.1
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is bx^Q on N. Of course it is not necessary. Note that if our conjecture [C] is
true, the unnecessity of the condition bx^0 on N will follow.

Example 4.3. Let

We have iV={(0, 0)}. If b\0, 0)=0, we cannot use the sufficient condition (4.1)
for hypoellipticity. On the other hand, the condition of Theorem 3.1 is bx(0, 0)
^0, that is, b\x, y)=-β(y)x+0(x2), β(y)^0 on N. For simplicity, if we con-
sider the case when b\x, y)=—βx+0(x2, \y\), b\x, y)=0, in terms of the flow
determined by Xo, this can be stated that:

Near the origin, all the flows of Xo must flow into the jy-axis.

Note that if our conjecture [C] is true, since X2=dy, all the weak solution
u^L\Ω) will belong to C°°(Ω) provided that the condition [A.3] is satisfied (and
no other conditions concerning b1 and b2 will necessary).

In the same way we can treat the equation

In this case, if 6(0, 0)=0 or b2(0, 0)=0, the sufficient condition (4.1) cannot be
used. The condition of Theorem 3.1 is bx^Q, by^0, bl=bx=O at (0, 0). Especially,
this condition is satisfied if b1^—ax+0{x2jry2)} b2=-βyJ

Γ0(x2jry2) where a, β
are positive constants. Thus the vector field Xo can be apploximated by — axdx

—βydy and thus the above condition can be restated that:

Near the origin, all the flows of Xo must flow into the origin.

Note that, in this case too, we can relate the above facts with the conjecture [C].

Example 4.4. Consider the equation

Lu = φάuJrb(x)ux-\-cu=f.

By Theorem 3.1, if bx^0 on Ωlf all the weak solution is in C°°(Ω) provided that
c—bx^0 on Ω. For example, this is valid if ^Ξconst. But it is not applicable if
e.g. b(x)=x2+l. It is quite likely that for this equation, all the weak solution is
in C°°(£?) provided that c<0 and c—bx<0 on Ω.

Example 4.5. Consider the equation

First note that L is not hypoelliptic on Ω^ The condition of Theorem 3.1 is

(4.2) bl^O
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Now, as the simplest case of the above equation, we shall consider the following
four equations:

i) Lj does not satisfy the condition (4.2). In this case we can assure that
there are no co>0 such that the following statement is true:

[W] If c^-co, all the weak solution U<ΞL\Ω) of [P] belongs to C^Ω).

In fact, let us first consider Lλ on Ω2. Then dΩ=Σ belongs to 2^ and dΩ2\Σ
—dΩλ belongs to Σ1 with respect to Ω2 (for the definitions and properties of Σly

Σ2, Σ3, see e. g. [8] Chap I, § 1). Thus the problem

(4.3) £ i t t = / on Ω2, u\Σ=0

has a unique solution u^C°°(Ω2). Since dΩx belongs to Σ2 if we consider Lλ on
Ωlf we have to solve the problem

(4.4) i i w = / on Ωlf u\dΩl=g,

where g is defined by the solution u of (4.3) by g=u\dΩ1 Now from [10], it is
known that in order that, for any g^C°{dΩ^)f (4.4) has a unique solution in
Cm(Ω), it is necessary and sufficient that c(0, 0)+7-n<0. (More precisely, we have
#eC°°(J2i\0) but in general u is not C°° at the origin). Thus for Llf the condition
[W] cannot be valid for any c. Note that the vector field Zo—xd x+yd y deter-
mines the flows which flow out from the origin.

ii) L2 satisfies the condition of Theorem 3.1. Thus the weak solution is in
C°°(Q) provided that c<0 on Ω. In this case, first consider L2 in Ω2. Then Σ~
Σz, dΩ1=Σ2. By [10],

L2u=f on Ωλ

has a unique solution u^C'iΩ^ without any boundary conditions. Now define
^eC°°(3i2i) by g=u\ΰQ1 and solve

L2u=f on Ω2, M|V=0, ulΰΩ^g-

Thus we have a unique C°°-solution of

L2u=f on Ω, u\Σ=0.

Note that near the origin all the flows of Xo flow into the origin.

iii) The operator L3 does not satisfy the condition of Theorem 3.1, i.e. bx =
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—KO, but &J=l>0. In this case, the degeneracy on the j -axis seems to be

essential and the set on which the solution is not C00 is expected to coincide with

{(*, y); x=0, \y\^l}.

iv) The operator L4 also does not satisfy the condition of Theorem 3.1 since

bl=0, bl=0, bl=±l, bl=±L By [10], it seems that since Xo has periodic

orbits, some sorts of regularity of solutions will occur. But general pictures are

not clarified yet.
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