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ON SUBORDINATION OF SUBHARMONIC FUNCTIONS

BY SHOJI KOBAYASHI AND NOBUYUKI SUITA

Introduction. In the present paper we are concerned with analytic maps
from a Riemann surface into another which preserve the least harmonic majorant
of a subharmonic function.

Let R denote an open Riemann surface. Let S(R) be the class of all func-

tions subharmonic on R which admit harmonic majorants on R and S+(R)~

i/6S(/f): / is bounded below on R}. We denote by / the least harmonic

majorant of / for any /ε5(i?). Let Rj (j=l, 2) be open Riemann surfaces and

φ be an analytic map from Rx into R2. Little wood's subordination theorem (see

[3, p. 10]) shows that f φ^SiRx) and

J ° ψ ==/ ° ψ

on Rλ for any /ε5(i? 2 ) I n this paper we deal with the problem when equality
holds in (1).

In the case where R^OG, it is well known that there exist no positive
superharmonic functions but the constants on R (see for example [1, p. 204]).
Therefore we easily see that / — / = 0 for any / G S ( / ? ) , which means that S(R)
reduces to the harmonic functions. It is easily verified that if R^OQ and
R2&OG there exist no nonconstant analytic maps from Rx into R>. Hence, if
one of Rj (j—1, 2) is of class OG, equality always holds in (1) for any /eS(i? 2).

From now on we assume that Rj&OG for j = l , 2. Let G/z, t) denote the
Green's function of R3 with pole at t. Following Heins [4], we say that ώ is
of type Bl when G2(φ(z), t) majorates no positive bounded harmonic functions
for some t^R2, or equivalently for every t^R2 (see Theorem 4.1 of [4, p. 446]),
and we say that φ is of type Blλ when G2(φ(z), t) majorates no positive harmonic
functions for every t e R2. Let U denote the open unit disc and π} be a universal
covering map of R3. By applying the monodromy theorem, we can define an
analytic function φ in U which is bounded by 1 such that

An inner function is any function ψ analytic in U with the properties
\φ{z)\^l in U and \φ*(eiθ)\—l a. e. on dU, where ψ* denotes the Fatou's
boundary function of φ.
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1. Main results. First of all we state our results.

THEOREM 1. Let φ be an analytic map from Rx into R2y then the following
statements are equivalent:
(a) foφ=/7φ for every f^S+(R2).

(b) foφ—foφ for some f^S(R2) which is not harmonic on whole i?2

(c) There exists an inner function ψ such that φ°π1=π2°ψ.
(d) φ is of type Bl.

Remark. Theorem 1 is a generalization of a theorem of Ryff (Theorem 3 of
[7, p. 351]) which states the invariance of Hp norm of an analytic function in
U under composition by any inner function ψ with ^(0)=0.

THEOREM 2. Let φ be as in Theorem 1, then the following statements are
equivalent:

(a) f°φ=f^φ for every f^S{R2).
(b) There exists an inner function φ such that (φ(z) — a)/(l—άφ(z)) is a Blaschke

product for every a^U and such that φ°πx—π2°ψ.
(c) φ is of type Blλ.

2. Proof of the theorems. First we need a lemma.

LEMMA 1. Let R&OG and π be a universal covering map of R, then f°π~
/°τr holds for any f^S(R).

Proof. Since /°τr is a harmonic majorant of f°π, we easily see that /°τr^
/\

/°7Γ. We must show the inverse inequality. Let Γ be the cover transformation
/\

group under which π is invariant. Since f°π°T is a harmonic majorant of
foπ<>T=f°π for every T G Γ , we see that f°π^f°π°T. By composing T"1 from

/\ /\ /\
right, we obtain the inverse inequality /°7r^/°7r°T. Thus we see that f°π is
invariant under Γ. Therefore we can define a single-valued harmonic function
on R by f°π°π~ι, which is a harmonic majorant of /. Then we see that
f°π°π~1'^f, and hence f°π^f°π as desired.

Remark. Lemma 1 was essentially proved by Rudin [5, p. 48].

Proof of Theorem 1.
1. (a) implies (d). Suppose that (d) does not hold. Then there exists a

positive bounded harmonic function u which is majorated by G2(φ{z), t) on Rλ

for some ίej?2. Let g(z)=—min{G2(z, t), M}, where M=sup{u(z): z^Rx}, then
g^S+(R2) and g°φ^ — u. On the other hand, we see by (a) that g°φ=g°φ=0,
since # ^ ~ G2=0. This is a contradiction.
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2. (d) implies (b). For example, let f=~m'm{G2(z, /), 1} for some

then we see by (d) that /°0ΞΞOΞΞ/°0.
3. (b) implies (c). Suppose that (c) does not hold, then every analytic

function ψ in U bounded by 1 such that φ°π1=π2°ψ is not inner. Therefore
the set E—{Q}°. \φ*(eιθ)\ ^1—2*5} is of positive measure for a sufficiently small
positive number σ. By Egorov's theorem we can find a compact subset F of E
of positive measure on which ψ(reίθ) converges uniformly to φ*(eiθ) as r—»1.
Then, we have \ψ(reι0)\^l—δ for every eιθ^F and every r^?Ό for some r0

with 0 < r 0 < l . Let / be as in (b), then we see that / > / on R2, since / is not
harmonic on R.>. Let ε=inf {/(ζ)—/(ζ): ζ^π2{{\z\ ^1—δ})} >0, then we see that

(3) φπι*φ)(rexθ)

if r^?^o and eί0^F. Then, by (3), we see for r^

(4) ΦΦ*πm=φπ

LΊZ Jo

= } \2\f°π2<-ψ)(reιO)dθ+εm(F),
LJTZ J O

where m denotes the normalized Lebesgue measure. Letting r->l, we see
(/^^ 1)(0)>(/ o^2°^)(0). Then, using Lemma 1, we obtain f°φ>f°φ, as desired.

4. (c) implies (a). Let f^S+(R2) and we assume that (c) holds. Without
loss of generality, we may assume that / is nonnegative on R2. Let p be fixed
with 0</?<l and let Mp=$up{(f°π2)(z): \z\ 1kρ). By Egorov's theorem, for
every ε>0, there exists an open subset 0 of the unit circle such that

(5) m(O)<ε/Mp

and that ώ\rdiU) converges uniformly to ψ*(eί0) on Oc. Therefore there exists
r with 0 < r < l such that

(6) \φ(reiθ)\>p

for eι0& O, since |<^*(£^)|=1 a. e. on dU. Let up be the least harmonic majorant
of f°π2 in Ap={z: \z\ <p}. Let Dp~ψ~\Δp) and Ωp be the connected component
of DorΛr containing 0. Then, by (6), we see that
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(7) dΩpΓ\Γrdr0~ {reίθ: et0*=O}

Let ω be the harmonic measure of rO in Δr, then by (5)

(8) w(0)ύε/Mp .

Let hp~f°π2°φ—Up°φ, then we easily see that

(9) hP^0 on dΩp-dAr,

and

(10) hp^—Mp on dΩpr\dΔr.

Therefore, by the maximum principle, we obtain

(11) hp^—MpW in Ωp,

and hence /z«(0)^ — ε. Since ε is arbitrary, we see that /?o(0)^0. Letting ρ->l,
we obtain

(12) f°π2°φl^f°π2°φ

since lim up=f°π2. Using Lemma 1, we obtain foφ7^f°φ, as desired.

Proof of Theorem 2.
1. (a) implies (b). Suppose that (b) does not hold, then there exists a(ΞU

such that (φ(z)~a)/(l—άφ(z)) is not a Blaschke product. Let S denote its
singular part, then 5 is represented as

(13)

where /ι is a positive singular measure on dU (see [3, p. 24]). Let f(z)~
-Glz, π2(a)\ then f^S(R2) and

(14) Σ log
Ί\z)-a

Ί-άT(z)

by Myrberg's theorem (see [8, p. 522]). Therefore

(15) (f>φ>πά.z)={f πt>φXz)

(T°ψ){z)-u
= Σlog

Γ

=log -,

l-ά(Tφ)(z)

φ(z)-a
l-άψ(z)

z) I

" J o Re
ei0+z

dμ{θ),
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and hence

(16) f φ π^-PίμKQ,

where P\_μ] denotes the Poisson integral of μ. Using Lemma 1, we have

f°φ<f°φ from which we see that (a) does not hold.
2. (b) implies (c). The following lemma is well known, for the proof, for

example see [6, p. 335].

LEMMA 2. Let B be a Blaschke product, then

(17) lim} [27:log\B(reί0)\dθ=0.
r-i ΔK Jo

Remark. (17) means

(18) U>g\B\=0

in our language, since the left-hand side of (17) is the value at 0 of the least
harmonic majorant of log\B\.

Let f(z)= — G2(z, t) for arbitrarily fixed t^R2. Then, by Myrberg's theorem,

(19) (/ τr2)U)= Σ log
T(z)-a
l-άT(z)

where a is a point in U with π2(a)—t. Therefore we see

- Σ log
τ<=r

= Σ log|SΓ(z)|

=log\B(z)\,

where Bτ=(T°ψ—α)/(l—άT°φ), which is a Blaschke product by (b) for every
T^Γ, and B= Π Bτ. Using Lemma 2, we obtain

T<ΞΓ

(21) foφ°π1=log\B\=Q.

Then, by Lemma 1, we see that f°φ~0, which means that φ is of type Bl1} as
desired.

3. (c) implies (a). Any superharmonic function s on a Riemann surface
R&OG which is represented as

(22) s(z)=\ G(z, t)dμ(t),
J R

where G is the Green's function of R and μ is a nonnegative measure on R, is
called a (Green's) potential. By Riesz's theorem (Satz 4.6 and Folgesatz 4.6 of
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[2, pp. 41-42]), a nonnegative superharmonic function is a potential if and only
if its greatest harmonic minorant is 0. Let f^S(R2), then /—/ is a potential on
R2, i. e.

(23) / ( U O - / ( M O = J G2(u/, ζ)dm(ζ),

where w is a nonnegative measure on R2. By (c) G2(φ(z), t) is a potential on
R± for any ίe/? 2 , i. e.

(24) G2(φ(z), t)=[ Gfc, τ)dvt(τ),

where vt is a nonnegative measure on Rλ for every / e R2. It is known that vt

is the sum of the point masses at points s such that φ(s)=t counting with
multiplicity (see [4, p. 440]). Therefore we can easily see that for any compact
KdR1} vt(K) is upper semi-continuous as a function of t. Define a nonnegative
measure v on R2 by

(25) v(K)=\ vt{K)dm(t),
JR2

for any compact KdRlt From (23), (24) and (25) we obtain

(26) φφ)(z)-(foφXz)=[ Gyίz, τ)dv{τ),

which means that f°φ—f°φ is a potential on Rlf and hence its greatest harmonic

minorant is 0 by Riesz's theorem cited above (cf. [4, pp. 449-451]). Therefore

we obtain f°Φ—f°φ, as desired.
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