
BUT AN TON
KODAI MATH. J.
3 (1980), 96—113

ON THE INITIAL-VALUE PROBLEM FOR COMPRESSIBLE

FLUID FLOWS WITH VANISHING VISCOSITY

BY BUI AN TON

Introduction.

It is the aim of this paper to establish the existence of a unique local solu-
tion of the Cauchy problem for the fundamental system of equations describing
the motion of viscous compressible heat conducting fluids. The solution obtained
is analytic in the space-variables and converges in an appropriate sense to the
solution of the limiting system as the viscosity tends to zero. We shall ap-
proximate the equations by a system of nonlinear equations of Sobolev-Galpern
type. Estimates, in the quasi-norms of the generalized Gevrey spaces of Leray
and Ohya are obtained by comparing solutions of some simple ordinary differ-
ential equations.

Let u be a vector-function and let p, θ be scalar functions. Consider the
initial-value problem

(0.1)

^ p £ ) = 0 , pe(x,t) and θe(x, t)>0 on (0, T)xR

u£(x,0)=uo(x), p£(x,0)=p0(x) and θe(x,0)=θo(x) on R*.

A is the linear elliptic operator y4w=Δw + grad(div u) and B is the nonlinear
operator Bu=(duι/dxk-\-duk/dxι)

2 with the usual summation convention.
The equations describe the motion of compressible fluids with viscosity ε.

The velocity, the density and the absolute temperature of the fluid are denoted
by uε, ρε and θs respectively. The coefficient of heat conduction is 1.

Unlike the case of incompressible fluids with constant density, there are
few mathematical works on viscous compressible ones. In 1959, Serrin [9]
proved a uniqueness theorem for solutions of (0.1) on bounded domains using
the energy method. The problem of the existence of a local solution of (0.1)
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was first studied by Nash [6] in 1962. He used a characteristic transformation,
an iteration method and together with estimates for fundamental solutions of
parabolic equations solved a nonlinear parabolic system at each step. In [10],
Tani has casted some doubts on the validity of Nash's proof. During the last
few years, Itaya [1] and Tani [10] have shown the existence of a unique local
solution of (0.1). In both works, as done earlier by Nash, the characteristic
transformation and estimates for fundamental solutions of a parabolic equation
are used. Itaya applied the Tikhonov fixed point theorem where as Tani used
the iteration method. The above approaches involve delicate computations.

The purpose of this paper is two-fold. We shall prove the existence of a
unique local solution of (0.1), analytic in the space variables. We shall show
that as the viscosity tends to zero, the solution of (0.1) will converge in an
appropriate sense to the unique solution of the initial-value problem:

dt

(0.2)

9e__i_^;,,Λ,Λ)=o, p(χ, t) and θ(x, t)>0 on (0,T)xR3

dt

u(x,O)=uo(x), p(x,0)=po(x) and 0(*, O)=0O(*) on R3.

The solution of (0.2) is analytic in the space variables.
The method used in this paper is different from that of Nash as well as

that of Itaya. We shall approximate the solution of (0.1) by those of a system
of nonlinear evolution equations of Sobolev-Galpern type. Estimates, in the
quasi-norms of Leray and Ohya [2], for the approximating solutions are obtained
by comparing solutions of a differential inequality with that of a differential
equation.

The notations, simple propositions and the main results of the paper are
given in Section 1. The existence of a local solution of a system of nonlinear
evolution equations of Sobolev-Galpern type is proved in Section 2. Proofs
of the main theorems are carried out in Section 3.

Section 1. Let x=(xlt x2, x*) and let Dό—d/dxj. For each triple a=(alt a2, a3),
of non-negative integers we write:

Da=TLD«j with | α | = Σ α , .

The inner product and the norm in H=L2(R3) are denoted by (.,.) and by
|| || respectively. The Sobolev space

Hm={u: u in H, Dau in H for \a\^m}
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is a Hubert space with the norm

.={ Σ

and the usual inner product.
The following result of the Sobolev imbedding theorem will be used

throughout the paper

H2dC°'r(R3) 0<r<l/2 and H'CZLKR3).

The above natural injection mappings are all continuous and C° r(R3) is the
space of Holder continuous functions on R3 with exponent γ. It is known that
H2 is an algebra with respect to pointwise multiplication.

Let ?,>0 and let k be a positive integer. Set:

(1.1) | | |M; λ, k\\\= Σ ~ s u p | | £ ^ | | 2 ) 2 ; \u;λ,k\= Σ ^γ sup \\D°u\\c%nR»
.7=0 J ! \a\=j .7=0 J I \a\=j

whenever the right hand sides of (1.1) are defined. It is not difficult to check
that ||| λ, &||| and | λ, k\ are quasi-norms. We shall write:

(1.2) \\\u;λ\\\=\\\u;λ, co|| | a n d \u; λ\ = \u; λ, <χ>\.

P R O P O S I T I O N 1.1. 1) Suppose that \\\u λ\\\ and \\\υ ^||| are finite for some
, then:

( i )

(π) ~^\\\u λW^dλ-λ^Wu ^||| for some

2) Suppose that \\\u; λ, k\\\ and %υ λ, k\l are finite for some λ>0 and for a
finite k, then: \\\uv λ, k\\\^C\\\u λ, k\\\ \\\v;λ, k\\\. C is independent of k.

Proof. The first part of the assertion has been proved by Leray and Ohya
[3], p. 108-109. With j=l, we have by using the definition of derivative:

0< -jγWlu λ\\\^ε+(\\\u λ\\\-\\\u ΛIIDW-Λ)"1

dλ

for 0<λ-λ1<τj(ε).
Since \\\u λS is positive,

-%y\\\u λMe+\\\u λWiλ-λ^QWu λ\\\Kλ-λ1)dλ

for (Xλ-λ^ηiε).
Repeated applications of the argument give (ii). The last assertion is

shown in exactly the same way except that we stop at k instead of going to
infinity.

PROPOSITION 1.2. Suppose that \\\u; λ, k\\\ and \v;λ, k\ are finite. Then:
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\\\uv;λ, kMQWu λ , k\\\\v;λ, k\.

If \\\u ', Ά\\ and \v) λ\ are finite for some λ>0, then

\\\uv;λMC\\\u;λ\\\\v;λ\.

Proof. The proof is almost identical to [3], p. 108-109. We have only to
make some obvious changes.

PROPOSITION 1.3. Let S be a subset of R and let F be a mapping of R*xS
into R. Suppose that:

(1.3) Σ •^Γ-^Γβup\\mDiF^r(R,xSi

for 0<λ, μ.
If \v; λ\ is finite for some λ>0 and v is a mapping of R3 into S, then:

(1.4) \F( ,v);λ\

ύC(l+Mc*.r(imY Σ -^r-^rttv; λ\-\v,0\)k aupmDk

yF
]lic*.rlRlχS>.

3, k=0 ]\ k\ \α\=3

Proof. Cf. Nalimov [7]. A detailed proof with some obvious changes
may also be found in [4], p. 148-150.

Remark. The proposition is still valid if \v;λ\ is replaced by \v;λ, k\.
It suffices to replace \F( ,v);λ\ by |F( , v); λ, k\ and the summation in (1.4)
is taken up to k only.

L2(0, T Hm) is the space of equivalence classes of functions z/( , t) from
(0, T) to Hm which are ZΛintegrable over (0, T). It is a Hubert space with
the norm

and the obvious inner product.
L°°(0, T Hm) is similarly defined with the usual modification. The deriva-

tive of u with respect to t is denoted by du/dt or simply by u' when there is
no confusion possible. The following notion of fractional time-derivative of
Lions will be needed as a technical device in the proofs of the theorems.

DEFINITION. Let u be in L2(0, T Hm). Then u is said to have a fractional
time derivative D\u of order γ>0 if there exists U in L\—oo, + c o ; Hm) such
that:

(i) u(-, t)=U( , t) a.e. on (0, T),
(ii) τrϋ(-, τ) is in L\-oo, +oo;Hm).

U(', τ) is the Fourier transform of U with respect to t.

We shall now state the main results of the paper.
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THEOREM 1.1. Let u0 be a vector-function with |||w0; Λ||| finite for some λ>0.
Let po and θ0 be scalar functions and suppose that

( i ) min(g. 1. b. p0, g. 1. b. θQ)^
R* Rs

(ii) lllgradιθo ^lll+lllgradίo l̂ll+1/θo ^l + l̂ o ^ K o o for all λ with 0<λ<λ0,

(Hi) Σ - ^ Γ - 4 r ( s u p \\DiDi(
J, k=O J ! k\ \a\=j

is finite for λ, μ>0.
S is the set {y : -vc<y<co;
Then there exist.
(1) a non-empty interval (0, T*),
(2) a unique solution {uε, pf, θf} of the initial-value problem (0.1) on

(0, T*)XRS.
Moreover

\\\uζ{ , ί ) ; ^ | | | + I K ( , t)-Po;λ\\\+\\W( , t)-θQ;λMC

on (0, T*) for all λ with 0<λ<λ*<λ0.
C and T* are independent of ε.

For inviscid fluids, we have:

THEOREM 1.2. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
there is a unique solution {u, />*, θ*} of the initial-value problem (0.2) on (0, T#)
XR3. Moreover

uniformly on (0, T#) as ε-^0. {uε, pf, θf} and (0, T#) ar^ as z?z Theorem. 1.1.

Section 2. In this section we shall prove the existence of a local solution of
the following initial-value problem:

(p*+ηLp*y+άiγ(up*)=0) p* and ^*>0 on (0, T)xi?3,

M(ΛΓ, O)=MO(ΛΓ), p*(x,O)=po(x) and ^*(x, O)=0O(*) on

L is the linear elliptic operator defined by:

(2.2) L= Σ (-iyaιDaΣP.
\a\, I/3IS4

The main result of this section is the following theorem.

THEOREM 2.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
there exist:
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(i) a non-empty interval (0, T*) independent of both ε and η,
(ii) a solution {u, p*, θ*} of the initial-value problem (2.1).

Moreover for some λ>0 :

lll«( , t);λ\\\+\\\p*( , f)-/o.( )^lll+P*( , t)-θo( ) , me

on (0, 7\|c). C is a constant independent of both ε and η.

The proof of the theorem is long. We shall outline the main steps of the
proof before going into the details.

Step. 1. The Galerkin approximation method is used to show the existence
of a local solution of the following system of nonlinear evolution equations of
Sobolev-Galpern type:

(2.3)
(p+VLp)'+divu(p+p0)=0 on (0, T)xR\

u(x, 0)=uo(x), p(x, 0)=0=θ(x, 0) on R*.

/?*—io+/?o+ll(iθ+^c)"||z,oo(jR3) and similarly for θ*. We denoted by (p + vc)
the expression:

(ρ+vc)~=0 if ρ+vc^0 and is equal to —(ρ-\-vc) if

Step 2. From the result of the previous step, we deduce the existence of a
non-empty interval (0, Tf) where ( Jo+vc)"=(^+vc)"=0 and hence p+ρ0 as well
as θ-\-θ0 are non-negative on (0, T*)xRs. Using the difference quotient method
and then the quasi-norms of Leray and Ohya, it will be shown that

IIM , t);λ\\\+\\\p(>, t);λ\\\+\\\θ( , t);λ\\\£C(λ) on (0, T ? ) .

It is in establishing the above estimate that we need the perturbed equa-
tions of Sobolev-Galpern type.

Step. 3. Once u, p and θ are known to be in the generalized Gevrey spaces,
we may apply part (ii) of Proposition 1.1. Using the technique of comparing
solutions of a differential inequality with a solution of a differential equation
we show that there exist a non-empty interval (0, T*) and a constant C such
that

IIM , O;*HII/o( , O ΛIII+IIW , t)-,λ\\\^C on (0, r * ) .

C and T* are independent of both ε and η.
We shall now proceed to the proof of the existence of a local solution of

(2.3).
Let {Wj} be a vector-function basis of the separable Hubert space H\ For

each j , there exists a unique v3 in H8 such that :
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(2.4)
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Since {w3} is a basis of the Hubert space HA, it is not difficult to check that
{vj} is a basis of H*.

Let φ3 be a scalar function basis of the separable Hubert space H4 of scalar
functions. Again for each j , there exists a unique ψ3 in H8 such that :

(2.5) Lψj=φj.

(2.6) and 0*=

is a basis of H8. Set:

k k

.7 = 1 3 ' J = l

Since w0 is in H8, there exist real numbers aJk such that :

Σ aJkVj-*u0 in J78.
ίβi

Consider the system of nonlinear ordinary differential equations in {cjk, dJk, ejk} :

((,uk-\-ηLuky, ιυ3)-\r(uk ^Juk, Wj)+({grsιά(p^ + jθo)+grad(0A,+#0)}/p*k> WJ)

— ε(Auk/p*k, Wj)=0,

(2.7) -(LXA(θk+θ0)+eBukl/p*kθ*k, φ3)=0,

((pk-\-τ]Lpk)', <p3)-\-(άiv ukipk^po)> (Pj)==Q > 1^7^^ >

cjk(0)=ajk, djkφ)=eJkφ)=O with

p*k=Pk+Po+\\(pk+vc)-\\L«>cR3) and similarly for θ*k.

LEMMA 2.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
there exists a local solution in C(0, TIV;H

8) of the system (2.7) depending on
k, ε, Ύ] and which we write as uk, pk, θk. Moreover:

pk+p0 and θk+θ0^(l-v)c on (0, Tk

εv)xR".

Proof. 1) We note that

{{uk+ηLuky, Wj)= Σ) c'sk(t)(vs+ηLvs, w3)= Σ c ί^+^Lv, , L^ )

by applying (2.4). Since {î  } is a basis of # 8 , det{(t;s, v3)-\-η(Lvs, Lv3)} is non-
zero. Indeed, let

[y, w~]=(v, w)+η(Lv, Lw) for v, w in H8.

Then the inner product [ , ] induces a norm which is equivalent to the H8-
norm. Since {v3} is a basis of //8, det[_vs> v^φO. Similarly for det{(^s, φ3)+
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η(Lψs, Lφj)}.

It follows from the Caratheodory theorem that there exists a local solution
of (2.7) in C(0, TίJ # 8 ) . Since pk and θk are in C(0, TH H8) and ^ U , 0)
=θk(x> 0)=0, there exists a non-empty interval (0, Tε\) such that :

Ij0*(*, 01, !#*(*, 01 ^ on (0, Tk

εV)xR3.

Let (/O^+vc)" be as before and ( io i fe+vc)+= io^+vc if pk+vc^O and 0 otherwise.
Then:

p k+po=(p k+vc)+-(p k+vc)- + po-vc^(l-v)c

on (0, Tiv)xR\ Similarly for θk+θ0.

LEMMA 2.2. Let {uk, pk, θk} be as in Lemma 2.1. Then there exist:
(1) a non-empty interval (0, Tv),
(2) α constant Cv such that

Moreover: ρk+Po, ΰk+θo^(l—v)c on (0, Tr)xRz. Tv and Cv are independent of
k and ε.

Proof. 1) We multiply the first equation of (2.7) by cjk then take the
summation with respect to j from 1 to k. Taking (2.4) and (2.6) into account
we obtain:

k, Luk)-ε{Auk/p*k, Luk)=0.
Thus,

Cv depends only on η but is independent of both k ahd ε. In the above esti-
mate we have applied the Sobolev imbedding theorem. Hence:

( 2 . 8 ) —^^~C!I ̂  ^ US, ^ - i - ^ II ̂ ^̂  ̂  II S ) ^ < ^ ^ C 1 - 1 - ^ |[ . 2 ^ ^ ^ || s - h - II x^ ^ III, s - h - I I , « ^ IIS, s - i - 1 1 ^ ^ 112, s ) .

2) With the second and third equations of (2.7) we obtain by a similar
argument:

(2.9) -^-( | | / o*| |
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The different constants Cη are all independent of k and of ε.
From (2.8)-(2.9) we have:

(2.10) d

dt
with

£*(0=llM*(0IIJ.2+lli0*(ί)ll?.2+ll»*(0llϊ.2

+ v(\\Luk(tW+\\Lpk(tW+\\Lθk(t)\\2)

3) Consider the initial-value problem

(2.11) 4 f = Q ( 1 + * 8 ) , ^(O)=||Mo | |4
2..+ II^Mollϊ...

It is known that (2.11) has a solution xη in C(0, T?) and clearly Tf is
independent of k and of ε. A standard comparison theorem of the theory of
ordinary differential equations applied to (2.10)-(2.11) yields:

Ek{t)^xη{t) on min([0, 7\*], [0, Γ&]).

4) From (2.9) and the above estimate we obtain by using the Sobolev
imbedding theorem

\\Pk( ,

on min(C0, Tfe], [0, TVJ) with Tv=min(T%, cV/Q).
By continuation if necessary we have:

η(t)^Cη on [0, 7 , ] .
The lemma is proved.

LEMMA 2.3. Let uk, pk, θk be as in Lemma 2.1. Then:

Tv is as in Lemma 2.2. y is any number with 0<7'< 1/4 and Cη is independent of
k and of ε.

Proof. 1) Set wft( , t)=uk( , t) on [0, Tη~] and zero otherwise. Similarly
for pk and for θk. The first equation of (2.7) may be rewritten as :

(2.12) (-~r( ^

0̂)}~//o**, Wj)-ε(Auk/ρ*k, w3)

v)f ws).

and δ(Tv) are the Dirac delta functions with mass at 0 and at Tη respec-
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tively.
Taking the Fourier transform of (2.12) with respect to t we obtain:

(2.13) iτ(ίUk+ηLύk), w3)+({uk-!ukT, Wj)+({(gr<id(pk+po)r/p*k}
Λ, w,)

, w3)

k(Tη), w3).

ύk is the Fourier transform of u with respect to t.
Using (2.6) and applying Lemma 2.2, we get by an elementary computation

as in the first part of the proof of Lemma 2.1:

(2.14) | r | \\aΛl^WLah\\{CvM\{AΰjP^T\\M\{uk-lύkn

+1| {(gracKp k+p*))~/p*k} Λll + II {(gradφk+θ0)r/P* k} 1 ) .

An application of the Sobolev imbedding theorem and of Lemma 2.2 yields:

\\{Auk/p*kT\\ + \\{Uk-lukY\\ +1| {(grad^h+p0T/p*„}Λ | |

Thus,

(2.15) \τ\\\aA

The different constants Cv are all independent of k and of ε. Let σ be any
number with 2<τ>l. Then applying Lemma 2.2 we obtain

(2.16) Γ
J - o o

An elementary argument as in Lions [5], p. 79 gives:

and Cv is independent of both k and ε.
An argument exactly as above with the second and third equations of (2.7)

yields:
II D\p k || £,2(o, Tη,HΪ + \\ D\θk\\ L2(0,Tv, H)^CV.

The lemma is proved.

LEMMA 2.4. Let {u0, p0, θ0} be as in Theorem 1.1. Then there exist:
1) a non-empty interval (0, Tv),
2) a solution {uεη, ρ%, θ%) which we write as {u, p*, θ*} of the initial-value

problem (2.1).
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Moreover: ρ=p*—pQ, θ=θ*—θ0 and u are in L°°(0, TV;H
8).

Proof. 1) Let {uk, ρk, θk) be as in Lemmas 2.1-2.3. From the estimates
of the above lemmas we have by taking subsequences if necessary: uk — u in
the weak*-topology of L°°(0, Tη H8), D\uk-*Dr

tu weakly in L%0,Tv;H) as
&->+oo. Similarly for pk and for θk.

Let G be any bounded open subset of R3. From the estimates of Lemmas
2.2 and 2.3 we get:

(2.17) \\Uk\\L»co,τηtH8CG» + \\DrtUk\\L2co,τη,Hω»^Cη.

Cη is independent of k.
The natural injection mapping of H\G) into H\G) is compact. It follows

from (2.17) and from a theorem of Lions [5], p. 61 that: uk->u in Lp(0, Tv;
H\G)) and a. e. on (0fTv)xG for 2^£<oo. Similarly pk-*ρ and θk->θ in
Lp(0, TV;H\G)) and a. e. on (0, Tη)xG as & — + oo.

2) Applying the Sobolev imbedding theorem and Lemma 2.2 we obtain:

Cη is independent of k.
We now show that the above expressions converge to their appropriate

limits as k-* + °°. It suffices to show that Buk/p*kθ*k-*Bu/ρ*θ* weakly in
L2(0, Tv H). Identical arguments will give the desired results.

From the weak compactness of the unit ball in a Hubert space we have by
taking subsequences if necessary: Buk/p*kθ*k^f weakly in L2(0, Tv; H). It
is clear that p*k=ρk

Jrpo-^ρ*=p + po'^:(l—v)c a. e. on (0,Tη)xG and θ*k =
θk+θ0-+θ*=θ+θ0}zQ.—v)c a. e. on (0, Tv)xG. An application of the Lebesgue
convergence theorem yields:

Buk/p*kθ*k->Bu/p*θ* weakly in L2(0, Tη H(G)).

H(G) denotes L\G). Hence: f=Bu/p*θ* a. e. on (0, Tv)xG. Since / and
Bu/ρ*θ* are both in L2(0, Tv H) and G is any bounded open subset of Rz, we
have: f=Bu/p*θ* a. e on (0, Tη)xR\

3) It now follows from the above and from standard arguments of the
theory of partial differential equations that {u, p*=ρJ

Γpo, θ*=θ+θ0} is a solu-
tion of the initial-value problem (2.1).

The lemma is proved and thus, the first step of the proof of Theorem 2.1
as outlined earlier at the beginning of the section has been carried out.

We shall now show that

IllttCO λ\\\+\\\p(t) 411+1110(0 λMCv on (0, Tη) for all 0<λ<λ0.
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It is step 2 of the proof of Theorem 2.1.

LEMMA 2.5. Let {u, p=ρ*—p0, θ=θ*—θ0} be as in Lemma 2.4. Then there
exist a non-empty interval (0, T*) and a constant Cη such that:

lllw(0 λ\\\+\\\p(t) λ\\\+\\\θ(t) λ\\\SCv on (0, T*)

for all small λ, 0<λ<λ0. The constants T* and Cη are independent of ε.

Proof. 1) From Lemma 2.4 we have:

< div u-(lΔΘ*-\-eBu)/p*θ*,
(2.18) { ' ' ' ~ ' ' P

(p+ηLpy=-άiv(up*) on (0, Tη)xR3,

/?(x, O)=0(;r, 0)=0 and u(x,ΰ)=uo(x) on i? 3 .

Since w, p and # are in L°°(0, T^ //8) it follows from the Sobolev imbedding
theorem and from our hypotheses on p0, θ0 that the right hand side of the
first equation of (2.18) is in L°°(0, Tη H1). The method of difference quotient
applied to the first equation of (2.18) yields u in L°°(0, Tη H9). Similarly, p
and θ are in L°°(0, Tη Hd). Now the right hand side of the first equation of
(2.18) is in L~(0, Tv H2) and thus, u is in L°°(0, Tη // 1 0). Repeating the boot-
strap argument we get {u, p, θ] in L°°(0, Tv //s) for all s>0.

2) From (2.18) we have by an elementary argument:

dt

+1| £«(grad(^*)/^*)|| 2,2+II D°
for all α.

Let >ί>0. It follows from the above inequality, from Propositions 1.1.-1.3
and from the definition of the quasi-norms ||| λ, s||| and | λ, s\ that

(2.19) E9(u(t) ^)^C| | |«o ^Ill+cf'(HIM λ, sIH 1117M λ, s\\\+l+
Jo

Λ, s| | |+| | |gradί λ, S | | | + | | | Δ M ; ^ s\\\)dt.

Es(u(t) λ) is the expression |||w(0 λ, s\\\ + yυWu(t) λ, s|||+i71/2lilΔw(O λ, s\\\. The
constant C is independent of s.

Applying Proposition 1.3 and the remark following it, we obtain:

(2.20) Es(u(t) λUa\\\uQ j | | | + £ ( i + | | | M χ, s\\\ |||7M λ, s\\\

+ {|||gradp;^, s| | |+|| |gradβ; λ, s|||+IIIΔtt;^ s\\\}G(\p)λ, s\))dt.

G(r) is a positive continuously increasing function of its argument. It is the
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function defined in (1.3) with r—μ and F^
An application of the Sobolev imbedding theorem gives:

(2.21) I p λ, s\^C(\\\p λ, s|||+|||grad p λ, s|||+|||Δ^ λ, s\\\).

In view of (2.21), the inequality (2.20) becomes:

(2.22) Es(u(t) λ)^CQ\\u0 λ\\\+^Cv(EKu λ)+E\(p λ)+E\(β λ)+ϊ)dt.

The different constants Cv are all independent of 5, t and ε.
2) From the second and the third equation of (2.18) we get by similar

arguments:

(2.23) Es(p(t) λ)+E,(θ(t) \ λ)^Cv\j\l+ {Es(p λ)+Es{θ λ)+Es(u λ)

+ G\p;λ)}G\E9(θ);λ))dt.
Combining (2.22)-(2.23) we obtain:

(2.24) Rs(t ^ ) ^

with R9(t)=Et(u(t) λ)+£.(/o(O λ)+Es{θ(t) ^ ) .

3) Consider the integral equation :

(2.25)

It is clear that the integral equation (2.25) has a local solution χη(t) in C(0, T£)
and obviously T* does not depend on s. A standard comparison theorem ap-
plied to (2.24)-(2.25) yields:

Rs(mxη(t) on min([0, T , ] , [0, T,*]).

Let s-^+00 and we get the lemma by taking into account the definition of
R,(t) and of E,(u(t);λ).

We now carry out the last step as outlined at the end of Theorem 2.1.

Proof of Theorem 2.1. 1) From Lemma 2.5 we know that |||w(0;^ill
\\\ρ(t);λ\\\ and \\\θ(t);λ\\\ are finite for some small Λ>0 and for t in [0, T?].

Thus, in the inequality (2.19) we have:

\\\u(t) λM\\\u0 λ\\\+[\\\\u λ\\\ |||7M ^| | |+ {Illgrad p
Jo

+\\\Au;λ\\\}\(P+Por
i;λ\)dt.

Applying Proposition 1.1 we get:
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(2.26) | | |M(0 jl|||^|||uo a+Ciλ-λ^QWu λψ+ {\\\p λ\\\+\\\θ λ\\\

+ \\\u;λ\\\}\(p+po)-1;λ\)dt.

λ\Γ+\\\θ λψ(
o

+ tp;λψ+G\\p;λ\))dt.

G is a positive continuously increasing function of its argument as in the
proof of Lemma 2.5.

Similarly from (2.24) we have:

(2.27) Up λl+W λMdλ-λ.rλ'il+Wlu λψ+\\lρ λψ+\W I Ά\%

JO

+ Gt(Mp;λ\\\+\\\θ;λ\\\))dt.

The different constants C are all independent of t, ε and η. λ—λi is small and
strictly positive.

It follows from (2.26)-(2.27) that

(2.28) | | | M ( 0 41+111/5(0 ^III+IWO ^IIISIIIMO ̂ 111

C depends on λ, but is independent of t, ε and η.
2) Consider the nonlinear integral equation:

(2.29) *(0=lllκo;

Clearly (2.29) has a local solution x(t) in C(0, T*) and obviously T* is independ-
ent of both ε and η.

A standard comparison theorem applied to (2.28)-(2.29) gives:

(2.30) | | |M(0 1̂11+111̂ (0 Λ + P ( 0 λMx(t) on min([0, TJ], CO, T*]) .

From (2.29)-(2.30), we have:

\\p(', 0ll2 ) 2; W-, t)\\2,2^Ct on min([0, TJ], [0, T*]).

Since /?(•, 0)=^( , 0)=0, it follows from the Sobolev imbedding theorem that :

lllw(0 Ά\+\\\p(t) ^| | |+|| |^(0 λMC and

lliθ( , OIIL»CΛ3) , ||0( , 0llL«cΛ8)^cy on min([0, T?], [0, T*])

with T*=min(T*, vc/C).
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C is independent of both ε and η but depends on /.
By continuation if necessary we obtain:

lllw(0 λ\\\+\\\p(t) λ\\\+\\\θ(t) Ά\^C and

lliθ( ,OllL~CΛ8), | |β( , 0llL-CΛ8)^Cy Oil [0,

Set: ρ*=p+ρ0, #*—#+#0 and we get the theorem.

Section 3. We shall now turn to the proofs of Theorems 1.1 and 1.2. First we
need a technical lemma.

LEMMA 3.1. Let {uεη, ρ%—pεη-\-pOf θ%2=θεr]

Jrθ0}, which we shall write as
{uv, p*, θ*} be as in Theorem 2.1. Then:

and C is a constant independent of both ε and η.

Proof. The proof is exactly the same as that of Lemma 2.3 but by using
the estimates of Theorem 2.1 instead of those of Lemma 2.2, the constant C is
independent of both ε and η.

Proof of Theorem 1.1. 1) Let {uη, ρv, θη) be as in Theorem 2.1. From
the estimates of Theorem 2.1 we get by taking subsequences if necessary:
un-*u=uε in the weak*-toρology of L°°(0, T*;HS) for all 5 as ^-»0. Similarly
for ρv and for θη. We have:

HMO 1̂11+111/0(0 ΛIII+III0(O *MC(λ) on (0, T*)

for small positive
C is a constant independent of.

From Lemma 3.1, we obtain by taking subsequences:

Dr

tuη-+D7

tu, Ό\pη-Ώ\p and Dr

tθv->Dr

tθ weakly in L2(0, Γ* H)

as 77 —>0. An argument as in part (2) of the proof of Lemma 2.4 yields:

θ'+U'graάθ*-p*divu-(XAΘ*+εBu)/p*θ*=O,
(3.1)

p'+div(up*)=Q, ρ*=ρ+po, θ*=θ+θo^(l-v)c on (0, T*)xR3,

u(χ, 0)=u0(x), ρ(x, ΰ)=θ(x, 0)=0 on R3.

2) It remains to show that the solution is unique. Suppose that {ulf pf, θf)
and {u2, pf, θf) are two solutions of (3.1) with all the properties stated in the
theorem. Set: u—Ux—Ui, p—p\~p2 and Θ=^Θ1—Θ2. Then:
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1 u'+Ux-lu+u-lut+grhd p/ρ*—p grad pf/pΫpfΛ-gr&άθ/pf

— p grad θtIpf pf — εAu/p?+εAu2- p/pf ρf=O,

θ'+u graά Θi+Uz-grad θ2—p div u1—ρf div u — εBuJpfθf

+ εBu2/p$θf-XAΘ/p1θ1+χpAΘ2/p1θ1p2+XΘAΘ2/θ1θ2p2=O,

io
/+div(w l io)+div(w io2)=0 on (0, T*)Xi?3,

u(χ, 0)=p(x, ϋ)=θ(x, 0)=0 on R3.

From the first equation of (3.2) we have for all small λ with 0<Λ<Λo

| | |M(0 ^III^Γ(IIIΔM//O1* λ\\\+\\\pAu2/pfpϊ λlW+Wlu^u ^|||
Jo

+ |||M 7M, ^Ill+lllgrad p/pf ^H+Hlgrad^/pf Jl|||

+III/J grad pf/pfpf λ\\\+\\\p grad θf/pfpf λ\\\)dt.

Applying Propositions 1.1-1.3 and noting that \\\u} λ\\\, \ί/ρ*;λ\ as well as

\l/θf;λ\ are finite, we obta in :

(3.3) |||κ(0 λ\\\^cm\\u(t) λ\\\+\\\p(t) λ\\\+\\\θ(t)

In exactly the same way we get from the third equation of (3.2):

(3.4) 111̂ (0 λ\\\^cm\Ht) Λlll+lll̂ O 1̂11+111̂ (0 λ\\\)dt.

With the second equation of (3.2), we obtain by a similar argument after
recalling the definition of B in (0.1) and using the elementary relation a2—b2

=(a-b)(a+b),

(3.5) |||0(o λ\\\^cm\Ht) 1̂11+111̂ (0 λ\\\+\\W) λ\\\)dt.

It follows from (3.3)-(3.5) that u(x, t)=p(x, t)=θ(xf 0 = 0 . The theorem is
proved.

Proof of Theorem 1.2. 1) Let {uε, p*=pε+p0, θ*=θε-\-θQ} be as in Theorem
1.1. From the estimates of Theorem 1.1 we have by taking subsequences if
necessary: uε—>u in the weak*-topology of L°°(0, T* Hs) for all s as e—»0.
Similarly for pε and for θε. We have:

IIW0; ^lll+lllp(0; ^lll+lil^0 λMC on (0, r * ) .

From the estimates of Lemma 3.1, we get: Dr

tuε-+Dr

tu, D\ρε-^D\p and D\θε^D\θ
weakly in L2(0, T*;H) as ε—>0. Again a standard argument as in the proof
of Lemma 2.4 shows that {u, p*=pJ

rp<), θ*==θ+θ0} is a solution of (0.2).
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A proof as in part (2) of Theorem 1.1 shows that the solution is unique.
Thus, we may take the sequence {uε, pε, θε] instead of subsequences.

2) It remains to show that

\\\uε(t)-u(t) ;t|||+|||/>.(O-io(O λ\\\+\\\θt(t)-θ(t) ί | |H0

uniformly on (0, T*) as ε—»0.
We have:

P*/PΪP*

+grad(θε-θ)/p*-(pε-p) grad θ*/p*pϊ-eAue/pϊ=O,

(θε-θy+(uε-u) gradθ*+u gτad(θε-θ)--(pε-p)diγuε-p*div(uε-u)
(3.6)

-eBut/p*θt=O,

(pe-pY-\-div p(uε-u)+div(uXpε-p))=O on (0, T*)xR*,

uε(x, 0)-u(x, 0)=0, ρe(x, 0)—ρ(x, Q)=θe(x, 0)—θ(x, 0)=0 on R3.

From the estimates of Theorem 1.1 we get:

11/pϊθ* )λ\ + \ l/p*p* λI M\\uε λ\m\pε λ\\\+\\\θε λ\mc

for small positive λ with C independent of ε.
It follows from Propositions 1.1-1.3 and from (3.6) that:

\\\uε(t)-u(t) λ\\\+\\\pt(t)-p(t) λ\\\+\\\W)-θ(t) λ\\\

^C(λ)[\ε+\\\ue-u λ\\\+\\\pe-p ^Ill+lll^-^ Ά\)dt.
Jo

C(λ) is independent of ε and of t.
Applying the Gronwall lemma we get the theorem.
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