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ON THE INITIAL-VALUE PROBLEM FOR COMPRESSIBLE
FLUID FLOWS WITH VANISHING VISCOSITY

By Bur AN TonN

Introduction.

It is the aim of this paper to establish the existence of a unique local solu-
tion of the Cauchy problem for the fundamental system of equations describing
the motion of viscous compressible heat conducting fluids. The solution obtained
is analytic in the space-variables and converges in an appropriate sense to the
solution of the limiting system as the viscosity tends to zero. We shall ap-
proximate the equations by a system of nonlinear equations of Sobolev-Galpern
type. Estimates, in the quasi-norms of the generalized Gevrey spaces of Leray
and Ohya are obtained by comparing solutions of some simple ordinary differ-
ential equations.

Let u be a vector-function and let p, 0 be scalar functions. Consider the
initial-value problem

ou.
o G+ e Tu)+grad(p,+0)— e Au=0,

01 p€05<—%i~e+ue-grad 0.— p.-div u,)— 180, — ¢ Bu, =0,

%’;-wrdiv(uepe):o, p.(x, 1) and 6.(x, )>0 on (0, T)XR®,

ulx, 0=u,(x), pdx, 0)=p,(x) and 6O.(x, 0)=60,(x) on R®.

A is the linear elliptic operator Au=Au+grad(div «) and B is the nonlinear
operator Bu=(0u,/0x,+0u,/0x,)? with the usual summation convention.

The equations describe the motion of compressible fluids with viscosity e.
The velocity, the density and the absolute temperature of the fluid are denoted
by u., p. and 0. respectively. The coefficient of heat conduction is X.

Unlike the case of incompressible fluids with constant density, there are
few mathematical works on viscous compressible ones. In 1959, Serrin [9]
proved a uniqueness theorem for solutions of (0.1) on bounded domains using
the energy method. The problem of the existence of a local solution of (0.1)

Received February 20, 1979
96



ON THE INITIAL-VALUE PROBLEM FOR COMPRESSIBLE FLUID FLOWS 97

was first studied by Nash [6] in 1962. He used a characteristic transformation,
an iteration method and together with estimates for fundamental solutions of
parabolic equations solved a nonlinear parabolic system at each step. In [10],
Tani has casted some doubts on the validity of Nash’s proof. During the last
few years, Itaya [1] and Tani [10] have shown the existence of a unique local
solution of (0.1). In both works, as done earlier by Nash, the characteristic
transformation and estimates for fundamental solutions of a parabolic equation
are used. Itaya applied the Tikhonov fixed point theorem where as Tani used
the iteration method. The above approaches involve delicate computations.
The purpose of this paper is two-fold. We shall prove the existence of a
unique local solution of (0.1), analytic in the space variables. We shall show
that as the viscosity tends to zero, the solution of (0.1) will converge in an
appropriate sense to the unique solution of the initial-value problem :

0
p(~a~?~ +u -Vu)+ grad(p+6)=0,

0.2) pﬁ(—?g——]—u-grad 6—p div u)—%AﬁzO ,

-g‘;)——l-div(up):O, o(x, 1) and O(x, )>0 on (0, T)XR®,

u(x, O=uy(x), plx, 0)=p«x) and O(x, 0)=0,(x) on R*.

The solution of (0.2) is analytic in the space variables.

The method used in this paper is different from that of Nash as well as
that of Itaya. We shall approximate the solution of (0.1) by those of a system
of nonlinear evolution equations of Sobolev-Galpern type. Estimates, in the
quasi-norms of Leray and Ohya [2], for the approximating solutions are obtained
by comparing solutions of a differential inequality with that of a differential
equation.

The notations, simple propositions and the main results of the paper are
given in Section 1. The existence of a local solution of a system of nonlinear
evolution equations of Sobolev-Galpern type is proved in Section 2. Proofs
of the main theorems are carried out in Section 3.

Section 1. Let x=(x;, x5, xs) and let D;=0d/dx,. For each triple a=(a;, a,, as),
of non-negative integers we write:

D=TI DY  with |al=23a,.
=1 =1

The inner product and the norm in H= L% R®) are denoted by (.,.) and by
|- respectively. The Sobolev space

m={y:wu in H, D*u in H for |a|=m}
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is a Hilbert space with the norm

1/2
lulne={ 3 ID<ul}
lal=m

and the usual inner product.
The following result of the Sobolev imbedding theorem will be used
throughout the paper

H*CC»(R®); 0<y<1/2 and H'CL*R%).

The above natural injection mappings are all continuous and C®7(R?) is the
space of Holder continuous functions on R*® with exponent 7. It is known that
H? is an algebra with respect to pointwise multiplication.

Let >0 and let %2 be a positive integer. Set:

B /p 13 ZJ
(1.1) llw; 2, kll= 2 — sup IDulls.; lu; 2, kl= 2 =+ sup [ D*ullcarcrs
=0 J ! 1ai=; =0 J 1 1ar=;

whenever the right hand sides of (1.1) are defined. It is not difficult to check
that [|-; 4, k||l and |-; A, k| are quasi-norms. We shall write:

(L2) llw; Al=llw; 2, ol and |u;2|=]u; 2, o|.

PROPOSITION 1.1. 1) Suppose that |Ju; Al and |lv; Al are finite for some
2>0, then:
(1) Mluv; 2AI=Cllw; Al lllv; Al
J
i) 25l AUSCA—2)lle; Al for some 0<4<2,
2) Suppose that ||u; 2, k|l and |lv; A, k|| are finite for some A>0 and for a
finite k, then: ||luv; A, EIISCllu; A, Ellllv; 2, kll. C is independent of k.

Proof. The first part of the assertion has been proved by Leray and Ohya
[3], p. 108-109. With j=1, we have by using the definition of derivative:

0< —ddylllu s A= e+l s All—llu 5 2dD@A—2,)

for 0<A—2,<7(e).
Since ||u ; A,]| is positive,

%lllu s A= e+l Al/A—2)=Cllu ; A/ (2—21)
for 0<A—2,<n(e).
Repeated applications of the argument give (ii). The last assertion is

shown in exactly the same way except that we stop at k instead of going to
infinity.

PROPOSITION 1.2. Suppose that ||u; 2, k|| and |v; A, k| ave finite. Then:
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lluv; 2, RI=Cllu; 2, kll lv; 2, kI.
If lu; Al and |v; 2| are finite for some A>0, then
lluv; AM=Cllu; Al lv; 4.

Proof. The proof is almost identical to [3], p. 108-109. We have only to
make some obvious changes.

PROPOSITION 1.3. Let S be a subset of R and let F be a mapping of R*XS

mto R. Suppose that:
L
BT sup || DEDEF || oot craxs)

lai=7

7
!

N

(1.3) i

J 0

~

for 0<4, p.
If |v; 2| is finite for some 2>0 and v is a mapping of R® wnto S, then:
14)  F(, v); 2]

J
<CO+Hplearan) 3 2

o g1l

1
—g,—(lv; Al—1lv; 0" sup | DEDEF | oo crassy -

Proof. Cf. Nalimov [7]. A detailed proof with some obvious changes
may also be found in [4], p. 148-150.

Remark. The proposition is still valid if |v; 4| is replaced by |v; 4, k.
It suffices to replace |F(-,v); 2| by |F(-, v); 2, k| and the summation in (1.4)
is taken up to % only.

L¥0, T'; H™) is the space of equivalence classes of functions wu(-, ¢) from
(0, T) to H™ which are LZ%integrable over (0, 7). It is a Hilbert space with

the norm
T 9 1/2
lul=saco.rsmm=1{{ luC:, Dladt}

and the obvious inner product.

L=, T ; H™) is similarly defined with the usual modification. The deriva-
tive of u with respect to ¢ is denoted by ou/0t or simply by »’ when there is
no confusion possible. The following notion of fractional time-derivative of
Lions will be needed as a technical device in the proofs of the theorems.

DEFINITION. Let u be in L¥0, T ; H™). Then u is said to have a fractional
time derivative Diu of ovder y>0 if theve exists U in L*—co, +co; H™) such
that:

(i) u(-, H=U(, t) a.e. on (0, T),

(i) <70C, 7) is in L¥—oo, +oo; H™).

U(-, 7) is the Fourier transform of U with respect to t.

We shall now state the main results of the paper.
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THEOREM 1.1. Let u, be a vector-function with ||lu,; Al finite for some 2>0.
Let p, and 6, be scalar functions and suppose that
(i) min(g.l. b. py, g.1.b.0)=c>0,
R? R®

(ii) llgrad po, lel-l-lllgrad Oo; A+ 1oo; Al+104; 2] <oo for all 2 with 0<2< A,
(iii) 2 T —‘—(SUD | D3 D% (Po+y) Yearcrsxsr+ SUpllDde(00+J’) Yearcnaxs))

1s finite for A, p1>0.

S 1s the set {y: —yc<y<oco; 0<v<1}.

Then there exist.

(1) a non-empty wnterval (0, Tx),

(2) a unique solution A{u., p¥, 65 of the wmtwal-value problem (0.1) on
0, T4)X R®.

Moreover

(-, )5 Al+MpE(, H)—p0; AN, )—0y; A=C

on (0, Ty) for all 2 with 0<A<2x< 2,.
C and Ty are independent of e.

For inviscid fluids, we have:

THEOREM 1.2. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
there 1s a unique solution {u, p*, 0%} of the wmtwal-value problem (0.2) on (0, T)
X R, Moreover

MlueC-, )—ul-, 1); A+lpE(-, H—p*C, 1); AlHN0EC, )—0%(C-, 1); Al—0
uniformly on (0, Tx) as e—0. {u., p¥ 0%} and (0, Ts) are as in Theorem. 1.1.

Section 2. In this section we shall prove the existence of a local solution of
the following initial-value problem :

o¥u+nLu)+p*(u-Vu)+grad(p*+0*)—cAu=0, 0<5p<e<l,
p*0%(0*+n LO*) 4 p*0*(u - grad 0*— p* div u)—XAG*— e Bu=0,
(p*+nLp*)+div(up*)=0; p* and 6*>0 on (0, T)X R?,
u(x, O)=u(x), p*(x, 0)=pox) and O*(x, 0)=0,(x) on R*

21

L is the linear elliptic operator defined by :
2.2) L= 3 (=1)''D*D#,

lal, iBis4

The main result of this section is the following theorem.

THEOREM 2.1. Suppose all the hypotheses of Theorem 1.1 are satisfied, Then
there exist:
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(i) a non-empty wnterval (0, Ty) independent of both ¢ and 7,
(ii) a solution {u, p*, 6%} of the wmitial-value problem (2.1).
Moreover for some 2>0:

fluC-, t); AllH-lo*C-, £)—po(-); AN, £)—0,-); AM=C
on (0, Ty). C is a constant independent of both ¢ and 7).

The proof of the theorem is long. We shall outline the main steps of the
proof before going into the details.

Step. 1. The Galerkin approximation method is used to show the existence
of a local solution of the following system of nonlinear evolution equations of
Sobolev-Galpern type:

(u+nLu)+u-Vut(grad(o-+ p,)+grad(@+6,)—e Au)/ p+=0,

047 L)+ u-grad(@+6,)—(p+ po) div u—QAO+0,)+ e Bu)/ p+0+=0,
(o+7nLp)+divu(p+p)=0 on (0, T)XR®,

u(x, 0)=uo(x), p(x, 0)=0=60(x, 0) on R*.

(2.3)

0x=p+poF+(o+vc) |lzoms, and similarly for 0x. We denoted by (p+vc)”
the expression :
(p+ve) =0 if p+vc=0 and is equal to —(p+vc) if (o+vc)<0.

Step 2. From the result of the previous step, we deduce the existence of a
non-empty interval (0, T3) where (p+vc) =(0+vc) =0 and hence p+p, as well
as 6-1+0, are non-negative on (0, 7*)X R®. Using the difference quotient method
and then the quasi-norms of Leray and Ohya, it will be shown that

llu-, 85 All+HlloC-, £); A+06C, 1); A=CA) on (0, T7).

It is in establishing the above estimate that we need the perturbed equa-
tions of Sobolev-Galpern type.

Step. 3. Once u, p and 0 are known to be in the generalized Gevrey spaces,
we may apply part (ii) of Proposition 1.1. Using the technique of comparing
solutions of a differential inequality with a solution of a differential equation
we show that there exist a non-empty interval (0, Tx) and a constant C such
that

llzeC, 2) 5 AN, )5 A4-16C-, t); AM=C on (0, Tx).

C and Ty are independent of both ¢ and 7.

We shall now proceed to the proof of the existence of a local solution of
2.3).

Let {w;} be a vector-function basis of the separable Hilbert space H*. For
each j, there exists a unique v, in H® such that:
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(2.4) Ll)j: wy,.

Since {w,} is a basis of the Hilbert space H*, it is not difficult to check that

{v;} is a basis of H®.
Let ¢, be a scalar function basis of the separable Hilbert space [{* of scalar

functions. Again for each j, there exists a unique ¢, in H® such that:
(2.5) Ly;=p,.
{¢;} is a basis of H®. Set:
26) w= 3 enlvi pi= 3 dn(g, and 0= 3 (D),
Since u, is in H®, there exist real numbers «a;, such that:
jg}klajkvjquo in HE
Consider the system of nonlinear ordinary differential equations in {c;;, dj, €} :
(urtnLuy), w)+ (s Vuy, w)+({grad(p s+ po)+grad@,+00)} /psr, w,)
—e(Auy/pser, w)=0,
(@1 L0, o)+(uy grad(@,+600)—(o s+ po) div us, ¢,)
2.7) —([XAO 1 +00)+ e Burl/ psesbsr, ¢,)=0,
(petnLoy), o)+(divulost+po), ¢)=0, 1=;=5k,
cir0)=a;,, d;:(0)=e;,(0)=0 with
pxr=pr+poIl(prtre) lzors and similarly for Oy,.

LEMMA 2.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
theve exists a local solution wm C(0, TE; H®) of the system (2.7) depending on

k, &, 7 and which we write as Uy, P 0r. Moveover:

ortpe and 0,+0,=(1—v)c on (0, TEXR®.
Proof. 1) We note that
k k
((urtnLuyy, w)= 2 sty Lvs, w)= 2 covstn Lo, Lvy)

by applying (2.4). Since {v;} is a basis of HS, det{(v,, v,)+%(Lvs, Lv,)} is non-
zero. Indeed, let
(v, wl=@, w)+n(Lv, Lw) for v, w in H®.

Then the inner product [-,-] induces a norm which is equivalent to the H®-
norm. Since {v;} is a basis of H®, det[v,, v,]#0. Similarly for det{(¢s, ¢;)+
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2(Ls, LYy}

It follows from the Caratheodory theorem that there exists a local solution
of (2.7) in C(0, T%; H®). Since p, and 6, are in C0, T%; H®) and p.(x, 0)
=0,(x, 0)=0, there exists a non-empty interval (0, T%) such that:

lox(x, DI, 10x(x, I =cv on (0, THXR®.

Let (pr-+vc)” be as before and (p,+vc)*=p,+vc if p,+vc=0 and 0 otherwise.
Then:

it po=(prtve)* —(prtye)y +po—ve=(1—v)c
on (0, T:)X R® Similarly for 6,48,.

LEMMA 2.2. Let {uy, ps, 0} be as in Lemma 2.1. Then there exist:
(1) a non-empty interval (0, T),
(2) a constant C, such that

l[uk|||L°°(o,T,7, as+lp k"L°°(0,T,7, o+ Hek“Lm(o.Tﬂ, an=C,.

Moreover: py+po, 0,+0,=(1—v)c on (0, T)XR’. T, and C, are independent of
k and e.

Proof. 1) We multiply the first equation of (2.7) by c¢;. then take the
summation with respect to j from 1 to k. Taking (2.4) and (2.6) into account
we obtain :

d
(G et nLug, Lus)+(us Tuy, Lud+(grad(oitpo)

+grad(@,+00)} /psr, Lur)—e(Aur/pxr, Lu,)=0.
Thus,

%(Ilukllﬁ.g-l-rillLuk||2)§21|Lukll(lluk~‘7ukll+ lgrad(p r+00)/ o
+ [[grad(ak‘l'ﬁo)/l)*k”‘l‘ | Au e/ oxil)
Z20 Lurl(Collurlli et Iloell s e 166l ol ellz o +1)

C, depends only on » but is independent of both %2 ahd e. In the above esti-
mate we have applied the Sobolev imbedding theorem. Hence:

2.8) %(Hukﬂi,ﬁ-r)\l Lup=C 1+l Lup*+ luelli o+l o alld o 104117 ) -

2) With the second and third equations of (2.7) we obtain by a similar
argument :

d
@9 5 Uoalt o104l ol Losl™+71L6:1)
<G+l 10ult s+ Nl a7l Loal 71 LOK)
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The different constants C, are all independent of % and of e.
From (2.8)-(2.9) we have:

(210) L BAOZCU+ B EvOS ol | Lul?

with
E()=Nup(OIF o+ 0 (OIF o103,

+ Ul Luy(DIP+HI Lo (DN LO LD .
3) Consider the initial-value problem

d
(2.11) 7;‘—=Cﬂ(l+x2), x2(0)=lluollf, 241 Luoll3, 5 -

It is known that (2.11) has a solution x, in C(0, T¥) and clearly TF is
independent of %2 and of e. A standard comparison theorem of the theory of
ordinary differential equations applied to (2.10)-(2.11) yields:

Ey(t)=x,t) on min(f0, T7], [0, T&]).

4) From (2.9) and the above estimate we obtain by using the Sobolev
imbedding theorem
loe(, Olliern; 10:(-, Ollzersn=cv

on min([0, T4%], [0, T,1) with T,=min(T¥, ¢®?*/C}).
By continuation if necessary we have:

Ek(t)éxr;(t)écrj on [0: Tv] .
The lemma is proved.
LEMMA 23. Let 4y, pr, 0r be as in Lemma 2.1. Then:
||D{uk”L2<o,T,,,H>+||Dfpk||L2(o,T,],H)+||D§0k||L2<o,T,],H>§C77-

T, is as in Lemma 2.2. 7 15 any number with 0<y<1/4 and C, 1s independent of
k and of e.

Proof. 1) §et y(-, t)=ux(-, t) on [0, T,,] and zero otherwise. Similarly
for g, and for #,. The first equation of (2.7) may be rewritten as:

d sl -
@12 (@t 0Ly, w)+(@sViy, w)t((grad(ostpo}™, ws/pss)

+({grad(0,+00)} ~/ 051, wy)— (Al r/pxrr W))
:5(0)(uk(0)+77[4uk(0); wj>—5(T7))(uk(Tv)_l-y]Luk(Tﬂ): wj)-

0(0) and o(T,) are the Dirac delta functions with mass at 0 and at T, respec-
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tively.
Taking the Fourier transform of (2.12) with respect to ¢ we obtain:

(2.13) iw((@p+nLay), w) (e Vi), w)+({(grad(ostp0)) /ot ", w,)
+({(grad(@+00))"/ px1} ™ w,)—e((Ati/ 0x2)", w,)
=(u(0)+7 Luk0), wy)—expiT,m)(u(T)+nLu(T,), w,).

@, is the Fourier transform of # with respect to .
Using (2.6) and applying Lemma 2.2, we get by an elementary computation
as in the first part of the proof of Lemma 2.1:

(2.14) Il N2 allt s I Lasl (G- ICAT o/ o) I 11( k- Vi)

+l{(grad(p s+ po))~/ psr} M+ {grad@,+00))~/ ps s} M) -
An application of the Sobolev imbedding theorem and of Lemma 2.2 yields:
ICAT e/ pse )M A1 k- Vi) |+ 1 {(grad(o s+ p0))™/ o4} "l
+ [ {(grad(@x+00))"/ pxa} "l
é(l_v)_lc_IS:v(lluk[[2,2+”Pk“z,z"‘Hﬁk”z,z_f_“uk“g,z)dtéc-
Thus,
(2.15) Il 1@ all} e =Cyll Ll .

The different constants C, are all independent of % and of e. Let ¢ be any
number with 2¢>1. Then applying Lemma 2.2 we obtain

(2.16) |” atieiat.de=c,.

An elementary argument as in Lions [5], p. 79 gives:
||D7£uk||L2(0,T7],H)§Cr/-

0<7<1/4 and C, is independent of both % and e.
An argument exactly as above with the second and third equations of (2.7)

yields:
| D%o el z2co, r,mt | D764l 2o, r,, =0,

The lemma is proved.

LEMMA 24. Let {uy, po, 0o} be as in Theorem 1.1. Then there exist:

1) a non-empty interval (0, T,),

2) a solution {u., p%, 0% which we write as {u, p*, 0%} of the witial-value
problem (2.1).
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Moreover: p=p*—p,, 0=0%*—0, and u are n L=, T, ; H®).

Proof. 1) Let {uy, ps, 0,} be as in Lemmas 2.1-2.3. From the estimates
of the above lemmas we have by taking subsequences if necessary: u,—u in
the weak*-topology of L=(0, T,; H®), Diu,— Diu weakly in L%0, T,; H) as
k— +co. Similarly for p, and for 6,.

Let G be any bounded open subset of R°. From the estimates of Lemmas
2.2 and 2.3 we get:

2.17) 2 el zoco, 7y, r8ce T 1 Ditt ell 200, 7, Hen =Gy
7 4

C, is independent of %.

The natural injection mapping of H3G) into H'(G) is compact. It follows
from (2.17) and from a theorem of Lions [5], p. 61 that: u,—u in L?(0, T,;
H'(G)) and a.e. on (0, T,)XG for 2<p<oo. Similarly p,—p and 6,—6 in
L?»0, T,; H(G)) and a.e. on (0, T,)XG as k— oo,

2) Applying the Sobolev imbedding theorem and Lemma 2.2 we obtain:

2 e Vel z2c, Ty, mIdiv(u,- 1Y 2l z2co, T, w+ Buk”m(o,T,), o0
4+ Au k/P*k“ L2€0, T, m+| grad(pk+po)/p*k|[L2(0, Ty, B
+ ”Buk/P*ke*k”LZ(o,T,), mt ||g1’ad(0k+ﬁo)/ﬂ*k” 1200, T, H)écn .

C, is independent of k.

We now show that the above expressions converge to their appropriate
limits as k—-+co. It suffices to show that Bu/psw.0x,— Bu/psfx weakly in
L¥0, T,; H). Identical arguments will give the desired results.

From the weak compactness of the unit ball in a Hilbert space we have by
taking subsequences if necessary: Bu,/px.0x,—f weakly in L*0, T,; H). It
is clear that ps«,=p,t+pi—px=p+po=(1—v)c a.e. on (0, T,)XG and O4,=
0 +60,—0,=0+60,=(1—v)c a.e. on (0, T,)XG. An application of the Lebesgue
convergence theorem yields:

Buk/p*kﬁ*kﬂBu/p*ﬁ* Weakly in L2(O, 7‘77 5 H(G)) .

H(G) denotes L*G). Hence: f=DBu/ps«s« a.e. on (0, T,)XG. Since f and
Bu/psbs are both in L0, T,; H) and G is any bounded open subset of R? we
have: f=Bu/p«0« a.e on (0, T,)X R®

3) It now follows from the above and from standard arguments of the
theory of partial differential equations that {u, p*=p-+p, 0*=0+0,} is a solu-
tion of the initial-value problem (2.1).

The lemma is proved and thus, the first step of the proof of Theorem 2.1
as outlined earlier at the beginning of the section has been carried out.

We shall now show that

()5 A+llo(e); A+16C8) 5 AI=C, on (0, T,) for all 0<A<4,.
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It is step 2 of the proof of Theorem 2.1.

LEMMA 25. Let {u, p=p*—po, 0=0%—0,} be as wn Lemma 2.4. Then there
exist a non-empty wnterval (0, TF) and a constant C, such that:

()5 All+llpe) ; All4-116C2) ; AI=C, on (0, TF)
for all small 2, 0<A<A,. The constants Ty and C, are independent of e.

Proof. 1) From Lemma 2.4 we have:
(u+nLu)y=cAu/p*—u-Vu—grad(p*)/ p*—grad(@*)/6*,

J 0+ LO)Y =—u-grad(@*)+p* div u—QAO*+cBu)/ p*0*,
(o+nLp)=—div(up*) on (0, T,)XR?,

1 o(x, 0)=60(x, 0)=0 and u(x, 0)=u,x) on R°.

(2.18)

Since u, p and ¢ are in L=(0, T,; H®) it follows from the Sobolev imbedding
theorem and from our hypotheses on p, 0, that the right hand side of the
first equation of (2.18) is in L=(0, T,; H'). The method of difference quotient
applied to the first equation of (2.18) yields » in L>(0, T, ; H®). Similarly, p
and 6 are in L=(0, T,; H®). Now the right hand side of the first equation of
(2.18) is in L=(0, T, ; H*) and thus, u is in L=(0, T, ; H'). Repeating the boot-
strap argument we get {u, p, 6} in L=0, T',; H®) for all s>0.
2) From (2.18) we have by an elementary argument:

%(IID“ullé,z-HyH Deull3 )= D*(u-Nu)llo, o+ 11D A/ 0%z, 2
“+{ D*(grad(p*)/ p®)ll., .+l D*(grad(@*)/ p*)...
for all a.

Let 2>0. It follows from the above inequality, from Propositions 1.1.-1.3
and from the definition of the quasi-norms ||-; 2, sll and |-; A, s| that

(2.19) Ey(u(t); H=Cllu,; ZHI+CS:(HIu A, sV ; 2, sli+1+
[(o+p0)7"; 2, sl(ligrad p; 2, sli-+llgrad @; 2, sll+llAu; 2, sld1.
Ey(u(t); 2) is the expression [|u(?); 2, sll+72Vu(t); 2, sll+7"2llAu(t); 2, sll. The

constant C is independent of s.
Applying Proposition 1.3 and the remark following it, we obtain:

(2.20) Eu(t); H=Cllu,; 2I1I+S;(1+1Hu 32, slINw 5 2, sll
+{ligrad p; 2, sli+llgrad @; 2, sli+-HlAw; 2, s} G(1p; 2, s])dt.

G(r) is a positive continuously increasing function of its argument. It is the
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function defined in (1.3) with =g and F=(y+p,)%
An application of the Sobolev imbedding theorem gives:

(2.21) lo; 2, s|=Clp; 4, sli+llgrad p; 4, sll+llAp; 2, sll) .

In view of (2.21), the inequality (2.20) becomes :

t
2.22)  EJu(t); H=Cllluo; ZIII+SOC,7(E§(M; AFEo; D+E0; H+1)dt.
The different constants C, are all independent of s, ¢ and e.
2) From the second and the third equation of (2.18) we get by similar
arguments :

(223 Edp(t); D+EL01); DSC,[ [+ {Eo; D+EL0; D+Eiu; 2

+Gp; DYGHEL(O); )dt.
Combining (2.22)-(2.23) we obtain :

@24)  Rit; DEClluy; A+Cy (14 RIE+ GHRA)+ GURA)dz
with RAD=Eu(t); D+ Ep(t); D+EL01); D).

3) Consider the integral equation:
2.25) x()=Cliuo; A+C,y | (14 2+ GHx)+ G x)dt

It is clear that the integral equation (2.25) has a local solution x,(¢) in C(0, T§)
and obviously 7 does not depend on s. A standard comparison theorem ap-
plied to (2.24)-(2.25) yields:

Ry(t)=x,(t) on min([0, T3], [0, T5]).

Let s—+oco and we get the lemma by taking into account the definition of
R4(t) and of E(u(t); ).
We now carry out the last step as outlined at the end of Theorem 2.1.

Proof of Theorem 2.1. 1) From Lemma 2.5 we know that [lu(?); A,
llo(2); All and ll6(¢); All are finite for some small 2>0 and for ¢ in [0, T§].
Thus, in the inequality (2.19) we have:

M) 5 A=l ; 2II|+S:(I1Iu 3 ANV ; All+-{ligrad o ; All+llgrad 6 ; Al
HllAw ; A} [(p+p0)7* 5 2Ddt .

Applying Proposition 1.1 we get:
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(2.26) () A= lito s 2+CG—2)7*{ (e A+l A-+11 5 2
i 2 1Gp+po)ts 21t
Slluo; AH-CG=22)7 (1+1lu s 2e+10; 1F

+llo; AP+G¥lp; A1)dt.

G is a positive continuously increasing function of its argument as in the
proof of Lemma 2.5.
Similarly from (2.24) we have:

(2.27) llo s All+116; leléc(l*ll)‘2$:(l+lllu s Ao 5 2P+l 5 Al
+G4llp; All+-116; Zh)de .

The different constants C are all independent of ¢, ¢ and . 2—2; is small and
strictly positive.
It follows from (2.26)-(2.27) that

(2.28) llee(t) 5 2l +MM(2) 5 A+16C2) ;5 A=l ; All

+CJL (L A1l 5 201-+16 5 20
+ Gl A+l 2105 At

C depends on 4, but is independent of ¢, ¢ and 7.
2) Consider the nonlinear integral equation:

(2.29) ()=l ; l|||-I-C(2)S;(1+x2+ G(x)d1 .

Clearly (2.29) has a local solution x(¢) in C(0, T*) and obviously T* is independ-
ent of both ¢ and 7.
A standard comparison theorem applied to (2.28)-(2.29) gives:

(2.30) llu(t); Al+leCt); Al+16Ct) ;5 Al=x(t) on min(0, T7], [0, T*]).
From (2.29)-(2.30), we have:
lo(-, Ollaz; 10C-, D]..=Ct on min([0, T5], [0, T*]).
Since p(-, 0)=0(-, 0)=0, it follows from the Sobolev imbedding theorem that:
() 5 All+llo(2) 5 AMl+116C2) ; AI=C  and
ToC, Ollzecasy , 160C-, Dl =rn=cv on min(f0, T5], [0, Tx1)
with Ty=min(T*, vc/C).
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C is independent of both ¢ and » but depends on 4.
By continuation if necessary we obtain:

Mty ; Al+Hle); A6 ; A=C  and
loC:, Ollzeocrsy, N10C, D)l zecrnn=cy on [0, Ty].
Set: p*=p-+p, 6*=0-+6, and we get the theorem.

Section 3. We shall now turn to the proofs of Theorems 1.1 and 1.2. First we
need a technical lemma.

LEMMA 3.1. Let {uey, pf=pen+ 00 05=0.,+0}, which we shall write as
{u,, o5, 05} be as in Theorem 2.1. Then:
| DYuyll zeco, o, 2o+ D0 4l 22co, 7, 15 H I D30l 220, 70, 1y =C
0<7<1/4 and C 1s a constant independent of both ¢ and 7.
Proof. The proof is exactly the same as that of Lemma 2.3 but by using

the estimates of Theorem 2.1 instead of those of Lemma 2.2, the constant C is
independent of both ¢ and 7.

Proof of Theorem 1.1. 1) Let {u,, p,,0,} be as in Theorem 2.1. From
the estimates of Theorem 2.1 we get by taking subsequences if necessary:
u,—u=u, in the weak*-topology of L=(0, Tx; H®) for all s as »—0. Similarly
for p, and for #,. We have:

llw(2) 5 2M+Nlp(@) 5 2Ml+16C2) 5 A=CA) on (0, T4)

for small positive 1>0.
C is a constant independent of.
From Lemma 3.1, we obtain by taking subsequences :

Diu,—Diu, Dip,—Dip and D}f,—Di6 weakly in L*0, Tx; H)
as —0. An argument as in part (2) of the proof of Lemma 2.4 yields:
uw'+u-Vu+(grad p*+grad 0*—c Au)/p*=0,

0’ +u-grad 0*—p* div u—QAG*+-eBu)/ p*0*=0,
o' +div(up*)=0, p*=p+p,, 0*=0+0,=(1—v)c on (0, Tx)XR?,
u(x, 0)=uy(x), p(x, 0)=0(x,0)=0 on R3.

(3.1)

2) It remains to show that the solution is unique. Suppose that {u,, p¥, 07}
and {u,, p¥, 05} are two solutions of (3.1) with all the properties stated in the
theorem. Set: u=u;—u, p=p,—p, and 0=0,—0,. Then:
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w'4u-Vutu-Vu,+grad p/pf—p grad pfF/pfp¥+grad 0/ pf
—p grad 0%/ pf pf —eAu/ pff +eAu,- p/ pif p¥=0,
0'+u-grad 0,+u,-grad 6,—p div u,—p5 div u —eBu,/ p¥0f
+eBuy/ pF05f — XA/ 0.0, +XpA0:/ 0.0,0:+10A0,/6,0,0,=0,
o’ +div(u,p)+div(up;)=0 on (0, Tx)X R?,
u(x, 0)=p(x, 0)=0(x, 0)=0 on R*.

3.2)

From the first equation of (3.2) we have for all small 2 with 0<A1<2,
13
fllee(t) ; llllégo(lllAu/pi“; Al+lleAu,/ o % 5 Al+luy-Vu; 2l

+llw-Vuy; Al+llgrad p/ ¥ ; All+llgrad 6/ of ; Al
+llp grad pF/pfe¥; Al-+llo grad 0%/ o¥ p¥ ; AlDdt .
Applying Propositions 1.1-1.3 and noting that [Ju,; All, |1/p¥; 2] as well as
|1/6%; 2| are finite, we obtain:
(3.3 Mlu(t) ; znlgj:cu)(nm(t); All+llpCt) ;s Al4-N6Ct) 5 ADdt .
In exactly the same way we get from the third equation of (3.2):

(34) llo(t); ZIII§S:C(2)(HIM(1‘); A+ s Al+N6ct) 5 2lhde .

With the second equation of (3.2), we obtain by a similar argument after
recalling the definition of B in (0.1) and using the elementary relation a®—b®
=(a—b)a+b),

(35) oy 2= | ey ; A+l ; A1-+HIB); At

It follows from (3.3)-(3.5) that u(x, t)=p(x, {)=0(x, t)=0. The theorem is
proved.

Proof of Theorem 1.2. 1) Let {u., p¥=p.+p, 0F=0.+0,} be as in Theorem
1.1. From the estimates of Theorem 1.1 we have by taking subsequences if
necessary : u.—u in the weak*-topology of L0, Tx; H®) for all s as ¢—0.
Similarly for p. and for .. We have:

llu(®); 2ll+-llo(2) 5 All+N6(2) ; AI=C on (0, Tx).

From the estimates of Lemma 3.1, we get: Diu.— Dju, Dip.— D%p and D}0.— D}f
weakly in L%0, Ty ; H) as e—0. Again a standard argument as in the proof
of Lemma 2.4 shows that {u, p*=p+p, 0*=0+0,} is a solution of (0.2).



112 BUI AN TON

A proof as in part (2) of Theorem 1.1 shows that the solution is unique.
Thus, we may take the sequence {u., p., 0.} instead of subsequences.
2) It remains to show that

llu()—u(@); Al+llol)—p(®); Al+N0L)—06(t); All—0

uniformly on (0, Tx) as ¢—0.
We have:

(ue—w) +we—u)-Vutu -V(u,—u)+grad(p.—p)/p¥—(p.—p)-grad p*/p¥ p*
+grad(@.—0)/ p¥—(p.—p) grad 6*/ p* p¥ —e Au./p¥=0,

0.—0) +(u.—u)-grad 0¥ 4u-grad(@.—0)—(p.—p) div u.— p* div(u.—u)
—eBu./p¥d¥=0,

(pe—p)Y +div p(u.—u)+div(u.(p.—p)=0 on (0, Tx)XR*,

ulx, 0)—ulx, 0)=0, plx, 0)—p(x, 0)=0.x, 0)—6(x, 0)=0 on R°.

(3.6)

From the estimates of Theorem 1.1 we get:
[1/p20%; 21+ 11/ p*p¥ ; 2| +llu.; Al+llpe; Al-+6.; A=C

for small positive 2 with C independent of .
It follows from Propositions 1.1-1.3 and from (3.6) that:

llue()—u(®); All+llpL)—p(?); Ali+N6.L)—6(t); Al
éC(/l)S:(eJrlHus—u ; Al+-lloe—p 5 Al+116.—6 5 21Dt .

C(2) is independent of ¢ and of ¢.
Applying the Gronwall lemma we get the theorem.
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