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1. Introduction.

In the theory of multivariate or Hubert space valued stationary processes,
the Gram matricial structure of the time domain of processes plays an im-
portant role. The Gram matricial structure of g-variate processes forms a
module over a ring of all qXq-matήces with a qX ̂ -matrix valued inner pro-
duct, which can be seen as a Hubert space over a matrix ring but not over
the complex number field (cf. Masani [5]). Thus it is desirable to formulate
such a structure abstractly free from the underlying probabilistic structure, as
Kolmogorov first emphasized in 1940 for the univariate case where unspecified
Hubert spaces are prefered to ZΛspaces (cf. [4]). The purpose of the present
paper is to establish such an abstact concept of the time domain of processes.

In the next section, we shall give definitions of Hilbert B(H)-moάules and
stationary processes on them. Our definition of a Hilbert B(H)-moάu\e is
similar to the Paschke's definition [6] of inner product modules over B*-
algebras except that we require the range of the inner product, which we call
the Gramian, is contained in the trace class. Such a requirement is always
satisfied for the setting of g-variate or Hilbert space valued processes, and
plays an essential role in our treatment. In Sect. 3 we shall study, in a
general setting, positive sesquilinear maps valued in the predual of a W*-
algebra, example of which are the Gramian and the operator valued covariance
function of stationary processes, and we shall examine the relation with the
^representation and construct a unitary representation which is a module
version of Umegaki's construction [10], which are applied to the later sections.
In Sect. 4 we shall show that the structure of Hilbert B(H)-moάu\es is com-
pletely determined by the power of their modular bases, and that a Fourier
expansion by the modular basis and Gramian is possible in a parallel way with
one on the usual Hilbert spaces. In Sect. 5 applying a general theorem obtained
in Sect. 3, the equivalence of stationary processes on Hilbert B(H)-moάu\es is
established by their covariance functions.

The author would like to express his thanks to Professor H. Umegaki for
his valuable advices and encouragements.
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2. Hubert J5(/2>modules and G-stationary processes.

Let H be a Hubert space over a complex number field C, let B(H) be the
algebra of all bounded operators on H, and let T(H) be the ideal of B(H) con-
sisting of all trace class operators on H. For a left B(H)-module X we will
denote the action of B(H) on X by a, x-*a-x.

DEFINITION 2.1. A pre-Hilbert B(H)-module is a left 5(#)-module ^ equipped
with a map [ , - ] ; XxX-^T(H) satisfying:

( i ) Zχ+y,zl=Zχ,zl+ly,zl,
(ii) Za-x, yl = aZx, yl,
(iii) [*, yl*=Zy, x2,
(iv) [>, *]^0, and [JC, *]=0 only if *=0,

for all x, 3;, z in X, a in £(//). The m a P [ , •] will be called the Gramian on
X.

It is easy to see that I-x~x for the identity 1 in B(H), x in X, and that
[*, a yl = Zx, J]«* for all a in J3(JΪ), x, y in X (cf. [6]).

For a pre-Hilbert 5(//)-module X, we define the scalar multiplication by
ax=(aϊ)-x for complex a, x in X, the inner product by (x, y)=Ύv \_x, y~], and
the norm by ||Λ:||2=(Λ:, X)1/2> Then X has also a pre-Hilbert space structure.
A pre-Hilbert ^(i^)-module which is complete with respect to the norm || ||2 is
called a Hubert β(£Γ)-module.

When H is one-dimensional, we have B(H)=T(H)=C, and hence the con-
cept of a Hilbert B(H)-rnodule coincides with that of a Hubert space.

The Hilbert space H itself is a simple but important example of a Hilbert
B(i/)-module. I*1 fact> f° r e a c n £ ^ i n H> denote by ξt&fj the operator on H
given by

for all ζ in //, as in [9], then [f, ^ ] = | ® ^ defines a Gramian on //, under the
natural action of B(H) on H, and the inner product given by Tr [x, 3;] coincides
with the original one. Moreover, we can show that every Gramian on the left
£(i7)-module H is of this form if Tr K, i?]=(f, η), as follows.

PROPOSITION 2.2. Let H be a left B(H)-module with natural action, and F
be a T(H)-valued function satisfying the defining conditions of the Gramian on
H. Then there is a positive λ such that FZξ, η~]=λξ®η for all ξ, η in H. If
TrF[f, £]=(£, f) for some ξ then λ=l.

Proof. Let φ be a unit vector in H. Then we have that FZφ, 0]^O, ~0
and that

FZφ, Φ~]=FI(Φ®Φ)Φ> (Φ®Φ)ΦΊ=Φ®φFlφ, ΦΊΦ®Φ,
and hence there is a positive λ such that FZφ, φ~]=λφ®φ. For any ξ, r in
H, we have that
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and that Tr F[£, ηl=λ(ξ, η). Q. E. D.

DEFINITION 2.3. Let X be a Hubert 23(#)-module, and let G be a locally
compact group. A family {xt ί in G} of elements of X is called a G-station-
ary process on Z if the following conditions are satisfied

( i ) the Gramian [_xs, xt~] depends only on t~1s,
(ii) the function t—*[_xt, xe~] is weakly continuous,
(iii) {xt t in G} spans X, that is, the smallest closed submodule contain-

ing {xt; t in G} is X. The function Γ(t)=Zxt, xel is called the covariance
function of {xt}-

DEFINITION 2.4. Let X and F be two Hubert £(//)-modules with Gramians
[ , ]jf and [ , ] r , respectively. A map £/ from X onto Y is called an iso-
morphism if [7 satisfies that

( i ) U(x+y)=

(ii) U(a x)=a Ux,

(iii) [[/*

for all x, y in X, a in £(//). We say that two Hubert B(H)-moάules are
equivalent if there is an isomorphism from one onto another. Let {xt} and
{yt} be two G-stationary processes on X and Y, respectively. We say that
{xt} and {yt} are equivalent if there is an isomorphism U from X onto Y
such that Uxt—yu for all ί in G.

Our formulations of Hubert B(H)-moάules and G-stationary processes may
provide a nice setting for the Hubert space valued stationary processes, in
view of the following examples.

EXAMPLE 2.5. Let Kq be the Cartesian product of a Hubert space K with
itself n times, i.e., the set of all vectors x=(xu •••, xq) such that each x% is
in K. For x, y in Kq, the #X#-matrix (atj) defined by aιj=(xι, y3) is called
the Gramian of the ordered pair x, y. Then Kq is a Hubert £(Cα)-module with
Gramian [>, y~\=(a%ί), as explained in the Masani's survey [p. 353; 5].

EXAMPLE 2.6. Let (Ω, P) be a probability measure space, let H be a
separable Hubert space, and let L\H) the Hubert space of all square Bochner
integrable //-valued functions on (Ω, P). Then it is easy to see that L\H) is
a left jB(i/)-module in the obvious way. For any pair x, y in L\H) there
corresponds a unique trace class operator [_x, y2 such that

(Lx, ylξ> V)=\β> y{ω)){x{ω\ η)P(dω),

and that Tr [>, j/] = l (^(ω), y(ώ))P(dώ). Then it is easy to see that L 2 (#) is

a Hubert B(H)-module with Gramian [x, y~], whose properties are investigated
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in Umegaki [11] in connection with the tensor product Hubert space. Let
{xt t in R} be a family of //-valued random variables in L\H) such that
Zx8, Xtl depens only on s—t, and Γ(t)=[_xtf xQ~] is weakly continuous. Then
{xt} is called the //-valued stationary process. In this case usually the time
domain X of the process {xt} is defined as the closed submodule of L2(H)
spanned by {xt}. Thus the //-valued stationary process {xt} with time domain
X is a /^-stationary process on X in our sense. Further information on such
a process will be found in many literatures, for instance [3].

EXAMPLE 2.7. Let S(K, H) be the set of all bounded linear transformations
x from a Hubert space K to a Hubert space H, such that n * is a trace class
operator on H where x* is a bounded linear transformation from H to K
defined by the relation (**£, η)=(ξ, xη) for all ξ in H, η in K. Then it is
easy to see that S(K, H) is a Hubert β(//)-module with Gramian [_x, y2 = xy*.
We call this the Hubert £(//)-module S(K, //).

3. Positive sesquilinear maps.

In order to provide some technical results used in the later sections, we
shall study positive sesquilinear maps with values in the predual of a W*-algebra
in this section.

Let P be a linear map from a C*-algebra A into a C*-algebra B. Let
Mn(Λ) be the C*-algebra of all nXn-matrices with entries in A, and let Pn be
the linear map from Mn(A) into Mn(B) obtained by applying P to each entry
of an element of Mn(A). We say that P is n-positive if Pn maps positive
elements in Mn(A) into positive elements in Mn(B), and that P is completely
positive if P is n-positive for each positive integer n. It should be remarked
[6] that P in n-positive if and only if Σ>bi*P(at*aj)bj^0 for all alf •••, an in
A /?!, •••, ̂  in 5.

Let M be a TF*-algebra, that is, M is a C*-algebra which is a dual space
of a Banach space M*. We denote the norm on M and M* by || |U and || ||i
respectively, and by < , •> the dual pair on MxM*. For / in M* and a in M,
we denote by /*, a-f and /• a, the elements of M* defined by the relations

<b, f*> = <b*f />, <ft, a f) = <ba, /> and <&, /• a} = <ab, /> for all 5 in M. For
the case in which M=B(H), M# can be regarded as T(H). In this case, (a, />
= T r α/, /* is the adjoint of /, a-f=af and /• a=fa for all a in 5(//) and /
in T(H).

Let L be a linear space. We say that F is an M*-sesquilinear form on L
if it is an M*-valued sesquilinear map on LxL which is conjugate linear in
the second variable. In the following we consider an M*-sesquilinear form F
on L, and write [_x, yΊ for F(x, y) if no confusion may occur. For a positive
integer n, F is said to be n-positive (or positive, when n — Y) if

(1)
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for all alr •••, an in M, xlf •••, xn in L. F is said to be completely positive if
F is n-positive for all positive integer n. It is easy to see that F is n-positive
if and only if Σ f l t [xlf χ3~] α ; * ^ 0 for all ax, ••• , α π in M, x^ •••, xn in L.

L E M M A 3.1. Let N be a self-adjoint subalgebra of a W*-algebra M which is
σ(M, M*)-dense in M. Then an M*-sesquilinear form F on L is n-positive if it
satisfies the inequality (1) for all au •••, an in N, xlf •••, xn in L.

Proof. Let 5 be a unit sphere of M. Then by Kaplansky's density theorem,
Nr\S is s(M, M*)-dense in 5. Since the multiplication on M is jointly s(M, M*)-
continuous on S, it is easy to see that the inequality (1) holds for all alf •••,
an in S, and hence multiplying positive numbers it holds for all alf •••, an

in M. Q. E. D

Obviously n-positivity follows from n-f-1-ρositivity, and every positive
M*-sesquilinear form is symmetric in the sense that [x, y~]=[_y, x]* for all
x, y in L. For a positive M*-sesquilinear form F, each a in M defines a
semidefinite inner product x, y-*(a*a, \_x, j]> on L, and so by the usual
Schwartz inequality we have that

α, [3;, 3;])

for all x, y in L. But a more delicate form of a Schwartz inequality charac-
terizes the 2-positivity of F.

THEOREM. 3.2. Let F be a positive M^-sesquilinear form on L. Then F is
2-positive if and only if

\<b*a, Zx, yj>\2i^<a*a, [x, xj><b*b9 [_y, yl> (2)

for all a, b in M, x, y in L.

Proof. Suppose that F is 2-positive. Let t be a real number, and a be
such that a—t\(b*a, [>, :y]>|<£*α, O, yl)'1. Then we have for aλ~a, a2=b,
x1—ax, x2

=zy,

0 ^ jbχ <a*at, lxX9 xj>

= ί2<α*α, Zx, xj>+2t\(b*a, [_x, 3^]>l+<^% ίy, yj>.

Since t is arbitrary, we have the required inequality. Conversely, if the in-
equality (2) holds, we have

- Σ <aτ*at,

1, Ixu xJXa2*a2, [Λ,, x2]»1 '2+2Re<α2*fl1, [x

^ 2 ( | <α2*α1? [x1 ( x2]> | +Re<o2*α1, [x,, x 2 ] » ^ 0 . Q. E. D.
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From the above inequality we can constitute an elementary proof of M. D.
Choi's inequality P(a* a)^P(a*)P(a) for 2-positive unit-preserving linear maps
on a C*-algebra.

COROLLARY 3.3. If P is a 2-posιtιve linear map from a C*-algebra A into
a C*-algebra B, then \\P\\P(a*a)^P(a*)P(a) for all a in A, and \\P\\ =| |P(1)| |
if A is unital.

Proof. Without any loss of generality, we assume B is faithfully re-
presented on a Hubert space L, and that P is a restriction of a normal linear
map Pf on A** into B(L). Define τ4*-sesquilinear form [ , •] on I by the
relation <α, [_x, y~J)={Pf{a)x, y) for all a in ^4**, x, y in L. Then it is easy
to see that [ , •] is a 2-positive ^4*-sesquilinear form, from the 2-positivity of
P and Lemma 3.1. Thus applying the inequality (2) for b=l in ^4**, a in A,
y=P(a)x, the routine calculus shows that \\P(a)x\\2^\\P'(l)\\(P(a*a)x, x), so
that ||P'(1)|| P(α*α) ^P(a*)P(a). It follows that \\P(a)\\2=\\P(a*)P(a)\\£

a, and thus | |P|| = ||i"(l)ll. Q.E.D.

In the following, we denote by ( , •) the semidefinite inner product on L
given by {x, y)=<X, [_x, yj> and by || ||2 the seminorm on L given by
ll*ll«2=ll[>, χ]L. .

PROPOSITION 3.4. Every 2-posιtιve M*-sesquilinear form F on L satisfies that

IIDt, jΊHIi=ll*ll.ll:y||. (3)
for all x, y in L.

Proof. By the polar decomposition of elements of M*[l. 14.4; 8] there is
a partial isometry u in M such that ||[JC, y2\\i=(u, [>, 3̂ ]>. Thus a simple
application of the inequality (2) concludes the inequality (3). Q. E. D.

A positive M*-sesquilinear form F is said to be M*-inner product if
[*, * ] = 0 implies x=0. From every positive M*-sesquilinear form F on L, we
can obtain an M*-inner product on the factor space L/N where A^= {x in L
[x, χ2=0} as [Λ:+-/V, y+Nl=Zx, y~] If F is a 2-positive M^-inner product on
L, then the completion L of L by the norm || ||2 is a Hubert space, to which
we can extend F uniquely by continuity shown in Proposition 3.4.

THEOREM 3.5. Let F be an n-positwe (n^2) M*-sesquilinear form on L, and
W be the Hilbert space obtained by factoring and completing L. Then there is a
uuique unit-preserving normal n-positive linear map p on M into B(W) such that

(p(a)x, Λ=<α, Zx, yj> (4)

for all a in M, x, y in L, where x, y are the corresponding elements in the factor
space, which is a *-representation if and only if

Zp(a)x, y~]=a-lx, y~] (5)

for all a in M and x in L.
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Proof. For each a in M, by the inequality (2) we have

\<a, lx, yl>\S\\a\U\x\\Λyh

for all x, y in L. Thus the sesquilinear form x, y->(a, [_x, y~J) on the factor
space defines a unique bounded linear operator p(a) on W such that (p(a)x, y)
=<α, [x, 3>]> for all #, 3/ in L. Now to check the required properties of the
map p: a-+p(ά) is a matter of routine calculation. The last part of the
assertion follows from the following relations using the fact that [#, }>]=[#, j/],

xt y)

for all α, 6 in M, c, jy in L. Thus the proof is completed. Q. E. D.

The map p will be called the assoiciate map of F.

LEMMA 3.6. Let F be a positive M*-sesquilinear form on L, and π a map on
M whose values are linear transformations on L such that \_π(a)x, y~]—a-[_x, y~]
for all a in M, x, y in L. Then π induces a non-degenerate normal ^-representa-
tion of M on the Hilbert space W obtained by factoring and completing L.

Proof. First we observe that [π(ά)x, π(b)y^\ = a [>, y~] 6*. It follows that
F is completely positive and that the set N={x in L: [>, x]=0} is invariant
under π(α). Thus we can consider that π(a) acts on the factor space L/N.
If p is the associate map of F, then we have that

(ρ(a)x, y)=<a, [*, J\]>=<1, a [>, yl>=(π(a)x, y)

for all x, y in L. Thus ρ=π, and the conclusion follows from Theorem 3.5.
Q. E. D.

Let F be a completely positive M*-sesquilinear form on L, and M®L be
the algebraic tensor product of M and L. Define an M*-sesquilinear form F'
on M®L by

a,® xX9 Σ b3®^1=Σ fl* FC τ̂, J j 6,*
y J %,]

Then by the complete positively of F, Fr is positive. Let π(a) be the linear
map on M®L such that

π(a) Σ αi®x z= Σ aat®xτ

Then clearly F7C^(a)^, 3^]=a-F'Zx, yl for all x, y in M®L, and hence by
Lemma 3.6, π induces a non-degenerate normal ^-representation on the
Hilbert space obtained by factoring and completing M®L. This construction
of a ^-representation is essentially same to that found by Stinespring [12].

Let G be a locally compact group. An M*-valued function V on G is said
to be positive definite if it satisfies that

Έ<a*alf V{tJ-Hι)y^
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for all positive integer n, alf •••, an in M, and fj, ••• , tn in G, and it is said
to be weakly continuous if ί-><α, V(ί)> is continuous on G for all a in M.

It should be remarked that every positive definite M*-valued function V
can be extended to the completely positive M*-sesquilinear form F on the
linear space F(G) of all complex-valued functions on G with finite support,
which satisfies that

for all x, y in F(G).

THEOREM 3.7. Let V be a weakly continuous positive definite M*-valued
function on G. Then there is a Hubert space W, a non-degenerate normal *-
representation π of M on W, a strongly continuous unitary representation U of
G on W and a vector ξ in W satisfying

( i ) [7(0 is in π(M)f for all t in G,
(ii) the linear span of the set {π(a)U(t)ξ; a in M, t in G} is dense in W,
(iii) <α, V(t)>=(π(a)U(t)ξ, f) for all a in M and t in G.

Proof. Let F(G, M) be the linear space of all M-valued functions on G
whose value is 0 outside a finite set of G. Define an M*-sesquilinear form
[•, •] on F(G, M) by

s t

and put (/, £)=<1, ίf> Sl> f°Γ all /> g m F(G, M). Then [ , •] is positive, and
( , •) is a semidefinite inner product on F{G, M). For a in M, t in G, define
linear maps π(α), [7(0 on F(G, M) by the relations

(ί7(0/)(s)=/(r1s)

for all / in F(G, M), s in G. Then it is easy to see that

[[7(0/,

for all /, ^ in ,F(G, M). Then the subset ^V={/ in F(G, M); [/, /]=0} is
invariant under ττ(α) and [7(0. Let FT be the Hubert space obtained by com-
pleting F(G, M)/N. Then by Lemma 3.6, π induces a non-degenerate normal
^representation of M on W, and similarly U induces a unitary representation
of G. Since it is easy to see that π(a)U(t)f=U(t)π(a)f for all / in F{G9 M),
the condition (i) is clearly satisfied. Let ζ be the vector in W induced from
lβ in F(G, M) such that lβ(β)=l and that lβ(s)=0 if sΦe, where e is the unit
of G. Then clearly the set {π(a)U(t)le; a in M, t in G} spans F(G, M) and
hence the condition (ii) is obvious. Observing that [ί7(01e, U~]~V(t), we have
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that <α, V(t)}=(π(a)U(t)le, le), and so we obtain the condition (iii). Now we
have only to show the strong continuity of U. Since the routine calculus
shows that

(U(u)f, g)= Σ Σ <g(t)*Λs), V(t-*us)>

for all u in G, f, g in F(G, M), the weak continuity of U implies the weak
continuity of U. Thus the strong continuity of U is concluded from the fact
that the strong and weak topologies coincide on the unitary group of W.

Q.E.D.

The above construction of a unitary representation is a variation of that
found by Umegaki [10].

4. The structure of Hilbert £(//)-modules.

In this section we shall study the structure of Hilbert £(ϋΓ)-modules, a n d
show that Hilbert B(H)-moάule$ have a quite similar structure to that of usual
Hilbert spaces except that B(H) is not a field.

Let {Xi\ be a family of Hilbert B(H)-moά\ύes and let Σ X% be the Hilbert

space direct sum of {ZJ which is a left 5(i/)-module in the obvious way.
Let x=(xt) and y=:(yι) be in Σ X% By Proposition 3.4 we have \\Zxτ, 3^]|li

^lUilUll^ίL, where [ , •] is the Gramian on Xιt II -1|Λ is the trace norm on
T(H), and || ||2 is the Hilbert space norm on Xt. Then it is easy to see that
the family of trace class operators {[_xτ, y%~]} is summable in the trace norm.
Now we define the Gramian on Σ ^1 by [_x, y'J—ΈZxi, ytl. Then we have

i 1

that (x, y)=Σl (x%, j O = T r [_x} y], and hence Σ ^ is a Hilbert B(H)-moάule

which is called the direct sum of the family {Xι} of Hilbert J5(i7)-modules.

LEMMA 4.1. Let X and Y be two Hilbert B(H)-modules, and U be a map
from X onto Y. Then the following three conditions are equivalent:

( i ) U is an isomorphism from X to Y
(ii) U is a unitary operator from X to Y such that a Ux=U(a x) for all

x in X;
(iii) U satisfies [_Ux, Uy~]—\ix, y~] for all x, y in X.

Proof. It is trivial that (i) implies (ii). The routine calculus shows that
(ii) implies that Ύr(aίUx, UyJ)=Ύτ(a[_x, y~\) for all a in B(H), x, y in H.
Thus (ii) implies (iii). It is easy to verify that (iii) implies that ίU(x+y)—Ux
-Uy, U(x+y)-Ux-Uyl=0 and that [f/(α x)-a Ux, U(a x)-a Ux~]=0 for
all a in B(H), x, y, z in X. Thus clearly (iii) implies (i). Q. E. D.

THEOREM 4.2. Every Hilbert B(H)-module X is equivalent to a direct sum
Σ H of (possibly infinitely many) copy of the Hilbert B(H)-modules H.
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Proof. By Lemma 3.6 there is a non-degenerate normal ^representation π
of B(H) on the Hilbert space X such that (π(a)x, y)—(a, Lx, y~]y for all x, y
in X. Since every ^-representation of the C*-algebra C(H) of all compact
operators on H is unitarily equivalent to a direct sum of the identity represent-
ation on H, and since C(H) is weakly dense in B(H), we can conclude that π
is untarily equivalent to a direct sum of the identity representation of B(H)
on H. Thus by Lemma 4.1 this unitary equivalence induces the equivalence
between two Hilbert £(//)-modules X and Σ H. Q. E. D.

COROLLARY 4.3. Every Hilbert B{H)-module X is equivalent lo the Hilbert
B{H)-module S(K, H) for some Hilbert space K.

Proof. By Theorem 4.2 there is an index set / such that X is equivalent
to Σ {Ht i in /} (Ht=H for all ϊ). Let i ί be a Hilbert space with basis

{ξt; i in /}. For every element x=(xτ) (xt in H), define an operator Ux=
Έxι®ϊι from K to H. Then it is easy to verify that Ux is in S(K, H) and

that the correspondence U: x-*Ux is an isomorphism from X onto S(K, H).
Q. E. D.

In order to proceed to the Fourier expansion of elements of a Hilbert
5(//)-module, in which the Fourier coefficients are given by the Gramian, we
shall define the basis of the Hilbert B(H)-moά\i\e, as follows,

DEFINITION 4.4. Let {**} be a family of elements of a Hilbert B(H)-
module X. We say that {xt} is modular othonormal if

(i) [*», * J = 0 , if iφj,

(ii) f> t, i ι ] 2 = [ i ι , Λrt] and | | * i l | 2 =l for each z.

A maximal modular orthonormal family is called a modular basis.

By Zorn's lemma, every Hilbert β(i/)-module has a modular basis.

THEOREM 4.5. 77z£ following conditions for a modular orthonormal family
{xi} of elements of a Hilbert B{H)-module X are all equivalent.

( i ) The family {xi} is a modular basis of X.
(ii) If x is in X and if [_x, XtΠ^O for all i, then x=0.
(iii) //, for each i, Xτ is the set {a xτ a is in B(H)}, then X=Σ, X% {the

Hilbert space direct sum).
(iv) For all x in X, x ^ Σ Lx, x%] Xι-

(v) For all x in X, [_x, ̂ ] = Σ Lx, Xχ~]Lx%> yl, where the infinite sum is

defined as unconditionaly covergence in || >\λ-norm.

(vi) For all x in X, Lx, xl=Έ \Lxι, xl\2> where \ | is such that \ a\= (α*α)1 / 2.
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Proof, (i) implies (ii): If x is in X, if O, x t ] = 0 for all i, and if
then the non-zero positive trace class operator [_x, *] on H has a positive
eigen value λ with eigen vector φ, | | 0 | | 2 =1. Let a be the operator on //defined
by aξ=λ~1/%ξ, φ)φ for all ξ in H, and x0 be such an element in X that xo=a x.
Then the routine calculus shows that Oo> JC0II2=OO> XoH a n d that ||ΛΓO||2=1-
Thus we can add x0 to the family {xx}. This contradicts the assumed maxi-
mality of the family.

(ii) implies (iii): If XΦ'Σ Xlf then there is a vector 1 in I such that

(x, y)=0 for all y in Σ Xι but that xΦO. Thus

n o , χt]iii

where w is an partial isometry on H, and hence O, Xι~]=ΰ for all 1, since
w*xt is in Xx. This contradicts (ii).

(iii) implies (iv): Assuming (iii), any x in X can be written as x=Σ CL% *ι

where α* is in B{H). Then a routine calculus using the fact that \_x%i xx~] xx—x%

shows that aλ- xx—\_x, xτ~] xx. Thus we have the required formula.
The remaining part of the proof is now an easy matter. Q. E. D.

COROLLARY 4.6 Any two modular basis of a Hilbert B(H)-module have the
same power.

Proof. Let {xx 1 in /}, {y3 j in /} be two modular basis of a Hilbert
B(H)-moάule X. Then from (iii) of Theorem 4.5, we can see that X is equi-
valent to Σ f t and HHj, where Hx=Hj=H, since Xx—{a-xx\ a in B(H)}

I J

(or = {a - y3 β in B(H)}) is equivalent to H. Thus the powers of / and / are
same, since they are two multiplicities of the two unitarily equivalent repre-
sentations of B{H). Q. E. D.

The common power of all modular basis of a Hilbert 5(i/)-module X is
called the modular dimention of X and written as Dim(Z).

The following Theorem is now an immediate consequence of Theorem 4.2.

THEOREM 4.7. Two Hilbert B{H)-modules are equivalent if and only if they
have the same modular dimension.

It should be remarked that Dim (X) dim (i/)=dim (X) and that Dim (S(K, H))
=dim (if), where dim( ) is the usual dimention of Hilbert spaces.

5. Equivalence of G-stationary processes.

In the following, we shall consider a fixed locally compact group G.
Recall that a T(i/)-valued function V on G is positive definite if and only if
for any positive integer n, we have that Σ Tr (aJ*alV(tJ~

1tx))}^0 for all
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alf •••, an in B(H), tlf •••, tn in G. Let Z be a Hubert β(i/)-module, and let
{xt} be a G-stationary process on X. Then it is easy to see that the covari-
ance function Γ of the process {xt} is a T(//)-valued positive definite function
on G. Now we shall show that every positive definite T(/f)-valued function
is the covariance function of some, but unique up to equivalence, G-stationary
process on a Hubert 5(//)-module.

THEOREM 5.1. Let Γ be a weakly continuous positive definite T(H)-valued
function on G. Then there exist a Hilbert B{H)-module X and a G-stationary
process {xt} on X whose covariance function is Γ. In this case there is a strongly
continuous unitary representation U of G on X such that xt=U(t)xe and that
U(t)(a-x)=a-U(t)x for all t on Gy a in B(H), x in X.

Proof. Applying Theorem 3.7 to the case M=B(H), we have a Hilbert
B(H)-moάn\e X, a non-degenerate normal ^representation π of B(H) on X, a
strongly continuous unitary representation U of G on X and a vector xe in X
which satisfy the conditions in that theorem. Put the process {xt} as xt—
U(t)xe for all t in G, and define the Gramian [ , •] on X by Tr(α[x, yj)
—(π(a)x, y) for all a in B(H), x, y in X. Then the routine calculus shows
that

Ύv{aΓ{Γιs))={π{a)U{s)xe, U(t)xe)=Tr (a[_xS) xj)

for all a in B(H), s, t in G. Thus the conclusion follows from Theorem 3.7.
Q.E.D.

THEOREM 5.2. Let X and Y be two Hilbert B(H)-modules. Let {xt} be a
G-stationary process on X with covariance function Γx, and let {yt} be a G-
stationary process on Y with convariance function Γy. Then {xt} and {yt} are
equivalent if and only if Γx(t)—Γy(t) for all t in G.

Proof. Since the "only if" part is trivial, we assume Γx(t)=Γy(t) for all
t in G. First we observe that

at - xH, Σ b3 * .J = Σ aiΓx(sJ~
1tι)b*

for all at, •••, an, blf •••, bm in B(H), t1} •••, tn, slt •••, sm in G, and given n, m.

Thus putting £/'(Σ &I ^tλ—Σ CL% ytv we can define a map £/' from Xf onto

Y' such that [[/ '*, U'yl=Zx, yl for all x, y in X', where X' and r are sub-
modules spanned by {xt} and {yt}, respectively. Then since U' is isometry,
and since Xf and Yr are dense in X and F, we can extend Όf to a map U on
Z onto Y such that [ί/#, f/^]=[x, y~] for all x, 3; in X. Thus the conclusion
follows from Lemma 4.1. Q. E. D.
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From Theorem 4.3, every G-stationary process on a Hubert /3(//)-module
X can be regarded as a G-stationary process on the Hubert jB(//)-module
S(K, H) for some Hubert space K with dim(K)=άim(X). Thus the following
theorem shows that every G-stationary process on a Hubert /3(//)-module X is
equivalent to such as given by the theorem.

THEOREM. 5.3. Let K be a Hubert space, and let {xt} be a G-stationary
process on the Hubert B(H)-module S(K, H) with covanance function Γ. Then
there is a strongly continuous unitary representation U of G on K such that
xt=xeU(t)* for all t in G, where xeU(t)* is the product of two operators xe and
ί/(0*, and that Γ(t)=xeU(t)*xe*.

Proof. Let H(g)K be the tensor product Hubert space of H and K, and
fix a basis {ψι} of K. Then we can identify S(K, H) and H®K by the cor-
respondence Σ φi®ψi-*Έi ΦiφΦτ. By Theorem 5.1 and 5.2, we have a strongly

continuous unitary representation V of G on H®K such that xt=V(t)xe and
that V(t)a x=a V(t)x for all ί in G, x in S(K, H), a in B(H). Since the all
actions of B{H) on H(&K constitutes the von Neumann algebra B{H)®1 on
H®K, and F(G) is contained in (B(H)®iy which is equal to l<g)B(K), we
have a strongly continuous unitary representation U of G on K such that
V(t)=l®U(t) for all t in G. Thus the conclusion follows from the comput-
ations that

where φi—xeψι for all i, and that

Γ ( 0 = [*ί, Xβl = XtXe* = XeU(t)*Xe* . Q. E. D.
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