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ON CRITERIA OF Z-HYPERELLIPTICITY

By Takao KATo

I. Introduction. Let S be a compact Riemann surface of genus g=2. Sis
called g-hyperelliptic provided that S is a two-sheeted covering of a surface
of genus g. O-hyperelliptic and l-hyperelliptic are called hyperelliptic and
elliptic-hyperelliptic, respectively. Let P be an arbitrary point of S. Let
&1, -+, ¢, be a basis of the space of abelian differentials of the first kind on S.
Let &, be the order of the zero of ¢, at P. Then we can choose ¢, -+, ¢,
such that 0=k, <k,< -+ <k,=2g—2. The sequence G(P)={k+1, ky+1, -, k,
+1} is called the Weierstrass gap sequence at P. P is called a Weierstrass
point of S if k,=g. Denote N(P) the sequence {1, 2, -+, 2g} —G(P). If kisin
N(P), then there is a meromorphic function on S which is holomorphic except
for a pole of order 2 at P.

It is well known that if N(P)=1{2, 4, ---, 2g} for some P, then S is hyper-
elliptic and vice versa. If S is elliptic-hyperelliptic and P is a fixed point of
an elliptic-hyperelliptic involution, then N(P) contains {4, 6, 8, ---2g} and no
odd number less than 2g—3 can be contained in N(P). Moreover, if S is g-
-hyperelliptic, g=45—1 and P is a fixed point of the g-hyperelliptic involution,
then [(P#¢-Y) is equal to (g+1)/2—g or g/2—g [6]. Here, [(P#) is the dimension
of the space of meromorphic functions on S whose divisors are multiples of
Pi-2. This is related directly with the vanishing property of the theta function
at K(P), the Riemann constant vector in the Jacobian variety.

In this paper we shall study some criteria of g-hyperellipticity in terms of
a property of the Weierstrass gap sequence, which is also reflected with a
vanishing property of the theta function. Accola [1] has treated a related
problem in terms of the vanishing property at half periods of the Jacobian

variety.

2. Statement of Theorems. We shall prove the following theorems.

THEOREM 1. Let S be a compact Riemann suvface of odd genus g=11. If
(P Y)=(g—1)/2 for some pownt P on S, then S is elliptic-hyperelliptic.

THEOREM 2. Let S be a compact Riemann surface of even genus g=14. If
(Ps-Y=g/2—1 for some pownt P on S, then S 1s elliptic-hyperellriptic.
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THEOREM 3. Let S be a compact Riemann surface of odd genus g=17. If
I(P4~1)=(g—3)/2 for some pownt P on S, then S 1s 2-hyperelliptic.

THEOREM 4. Let S be a compact Riemann surface of even genus g=20. If
(P& )=g/2—2 for some point P on S, then S 1s 2-hyperelliptic.

For §=3, we cannot obtain such a criterion as above. We, however, obtain
another criterion by a similar approach to Accola’s [1, p. 70]. A sequence
N=1{1y, 15, ==+, 15}, 0<2;<1,< -+ <1,=2g, is called admissible provided that for
1n and 1, is N, 1,+1, also in N unless 1,+1,>2g. Then we have

THEOREM 5. Let S be a compact Riemann surface of genus g. Let {1, --+, 13}
be an adnussible sequence, where g=8F+3. Suppose that N(P)={j,}, for some
pownt P on S, where j,=21, for 1=n=<g, ;,=2n+2§ for g+1=n=53+2 and
7.=2g. Then S 1s g-hyperelliptic.

3. Lemmas. To prove Theorems we shall prepare some lemmas.

LEMMA 1. Guwe wntegers t=2, a=2, f=0, 1=5,<s,< - <sp,=a. Then the
number of ntegers ka+s, (k=0,1, 2, ---, =1, ---, n), satisfying 1+p=ka+s,=
t+8, does not exceed n(t+a—n)/a. Equality occurs only 1f n=a or n=t—ma,
for some .

Proof. Let M be the number which we shall estimate. Put t=ma+t,,
0<t;<a. Then we have M<nm-+min(t,, n). If n=<t, then we have M<nm-+n
=n(t—t)/a+n<nlt—n)/a+n. If n>t,, then we have MZnm-+t,=n({t+a—n)/
at+(n—a)n—t)/a<n{t+a—n)/a.

LEMMA 2 (Jenkins [5]). Let S be a compact Riemann surface of genus g and
let P be a pownt on S. If h and k are in N(P) and (h, k)=1 i.e. h and k are
coprime, then g<(h—1)(k—1)/2.

Since N(P) is an admissible sequence, we have immediately the following :

LEMMA 3 (Hurwitz [4], Kusunoki [7]). Let S and P be as wn Lemma 2. Let
k be the least number of N(P), i.e. k 1s the first non-gap. Then G(P) consists of

1, k+1, e, myk+1
2, k+2, e, Mak+2

k=1, k+k—1, -+, my_1k+k—1

where kﬁ)l (m,+1)=g and 0<m;k+;<2g.
J=1

To prove the following four lemmas, we shall use Lemma 3 frequently but
implicitly. Since all the proofs of these four lemmas are in similar ways, we
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shall only note the proof of Lemma 7. The proofs of the other lemmas are
simpler than that.

LEMMA 4. Let S and P be as in Theorem 1. Then N(P) 1s either {4, 6,8,
-, 2g—4, 293, 2g—2, 2g} or {4,6,8, .-+, 20—4,2¢g—2,2g—1, 2g}.

LEMMA 5. Let S and P be as wn Theorem 2. Then N(P) 1s either {4, 6, 8,
e, 2g—4,2g-3,2g—2,2g} or {4,6,8, -+, 2g—4, 2g—2, 2g—1, 2g}.

LEMMA 6. Let S and P be as in Theorem 3. Then N(P) 1s one of the
followwmng : {4, 8,10, 12, ---, 2g—8, 2g—6, 2¢g—4, 2g—3, 2g—2, 2g—1, 2g}, {4,8, 10,
12, --- 2g—8, 29—6, 2g—5, 2g—4, 2¢—2, 2g—1, 2g}, {4, 8, 10, 12, ---, 2g—8, 2¢—7,
2g—6, 2g—4, 2g—3, 2¢—2, 2g}, {6, 8, 10, 12, -+, 2g—8, 2g—6, 2g—4,20—3,2g—2,
2g—1, 2g}, {6,8,10,12, -+, 2g—8, 2g—6, 2g—5, 2g—4, 2g—2, 2g—1, 2g}, 16,8,
10, 12, -+, 29—8, 2¢—6, 2g—5, 2g—4, 2g—3, 2g—2, 2g}, {6, 8,10, 12, ---, 2g—38,
2g—7, 2g—6, 2g—4, 2¢g—2, 2g—1, 2g}.

LEMMA 7. Let S and P be as in Theorem 4. Then N(P) is as in the preced-
g lemma.

Proof. Put N(P)={k,; =1, 2, ---, 2r+6}. Here r=g/2—3=7, kb, <k,, if 1<
and k,.¢=2g. Since [((P¢Y)=r-+1, we have kb, <g—1<k,y;. Put M={ky, k,, -,
kyy kRot-kyy Bt ks oo, Ret+key, 2k, 2g}. It is obvious that M is included in N(P).
Since #M=2r-+1, there are at most five k’s between k, and k,+%,. We shall
consider the following 16 cases.

Case ) £,=<3. Case Il) k,=4 and k,+k,=Fk,,;. Case lll) k,=4,5 and k,+k,
=k,4s. Case IV) k=6 and k,+Fk,=k,,,. Case V) k=4 and k,+k,=Fk,,;. Case
VI) 5=k,<7 and k,+k,=Fk,;,. Case VIl) £,=28 and k,+k,=Fk,,,.. Case VII) k,=
4,5 and k,+k=Fk,., Case IX) 6=k, <9 and k,+k;=Fk,;,. Case X) k;=10 and
k,+k,=Fk,.,. Case XI) 4<k,<7 and k,+k,=Fk,.;. Case XII) 8<k,;=<10 and k,+
ky=Fk,.s. Case XIII) k;=11 and k,+k =k, Case XIV) 4<k,<8 and k,+k,=
krve. Case XV) 9=k,<12 and k,+k =k, Case XVI) k=13 and k,+k,=Fk, ..

In the following discussion we shall not write down that “this is a con-
tradiction”. But it will be almost clear in the context.

Put N'(P)=N(P)n{1, 2, ---, g—1} and G(P)=G(P)n{g, g+1, ---, 2g—1}.

Case I) If k,=2, then S is hyperelliptic. Hence, [(P¢Y)=(g—2)/2=r+2.
Suppose k,;=3. If k isin N(P) and (3, £)=1, then by Lemma 2, k=g+1. Hence,
- 2r+5

and r=5.

Here [s] denotes the integer part of s.
Case II) In this case k,|k, for j<7. Therefore,

”N’(P)zr:[gk—ll ]é 27':—5

Case III) Suppose k,=5. If k is in N(P) and (5, k)=1, then by Lemma 2,

and r<3.




278 TAKAO KATO

k=r+4=11. Hence,

2r+5
5

Suppose k;=4 and (4, k,)=1. Then by Lemma 2 we have k,=15. Substituting

n=2, a=4, f=14 and t=g—15 in Lemma 1, we have

2(g—15+4-2) 1
4

- —|—3:7’—'§ .

*’N’(P)=r§2[ ]—1 and r<5.

EN(P)y=r=
Suppose k;=4 and (4, k,)=2. If k,=10, then
N(P)=r= [—21;—5]—3:r—1 .
If k,=6, then

N/ P):r:‘-[ 2r+5

—2—]—1:r+1.

If 2,=8 and k,=10, then N(P) is one of the first three of the desired result.

If k,=8, k;=12, then

2r+5
2

If 2,=8 and Fk; is odd, then by Lemma 2, k,=15. But 12 is in N(P).
Case IV) Substituting n=2, a=k,, f=Fk;—1 and t=g—*%k, in Lemma 1, we
have

*N/(P)y=r= [ ]—3:1'—1 .

“N(P)y=r= z(i—z)é 2(2?4) and r=4.
1

Case V) Substituting n=1, a=4, f=g—1 and ¢t=g in Lemma 1, we have

g+3  2r49
4 T4

Case VI) Since *(M\U{ky+1, krio})=2r+3, we shall consider the following
five subcases. Case VI-1) k,=2k,, k,=3k,. Case VI-2) k,=2k,, k;=3k,. Case
VI-3) ky=2k,, k;=3k,. Case VI-4) k,=2k,, k¢=3k,. Case VI-5) k,=2k,, k,=3k,.

Case VI-1) Since k,=2Fk,, by use of Lemma 1 we have

3(g—k:i—3)
ky

*G(P)=r+1=

and r=2.

HN(P)—{k})=r—1= and k;=5.
Since k,=2k,, k,=3k,, we have
N(P)={ky, =+, ke, it kg, kitls, kitlg, 2k ky, 2k 4k,
2kt ke, Byt Ryt ke, o, RatRyy kst Ry, RetFRy,
oy byt ky, 20}

Hence, k;+k=7k,. If ky+k;=Fk;, then 2k,=Fk,+k, Therefore, 3k,=7k; and
k,=5. If k,+k,=Fk, then 2k,=2k,+Fk,=5k, and k,=5.
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Case VI-2) Since k,=2k,;, we have k,=5. Put
M= {kI; Tty k’h k2+k2y k2+k3r R k2+kn k3+kry Tty kr+kry Zg} .

Then M’ is included in N(P) and *M’'=2r-+5. If 2k,=k,+ ks and ks+k,=k,tk;
=5k,, then 3k,=7k, and k,=5. If 2k,=k,+Fk, and ky+k,#*k,+k; then neither
kst k,nor ky+k; is in M’ and *N(P)=2r+7. If 2k,=k,+k;, then 2k;=5k, and
k,=5. If 2k;#k,+k, and 2k;+5k,, then neither 2k, nor ky;+ks is in M and
¥ N(P)=2r+17.

Case VI-3) Applying Lemma 1, we have

3(g—3—2k,)
k

1

AHN(P)—A{ky, =, k})=r—4= and k,=5.

If 2k;=kF,, then k;=2k,+k, and 2k,=3k,. Since r=7, if 2k,>k, and 2k,>3k,,
then k,=k,+ky, ke=2k,y k. =2k, +k, ky=4k,, ky=2k,+k, k,,=3k,+k, and 3k,
>3k,+Fk, Since 5k,=3k,, kyt+k,=Fk,;. By use of Lemma 1, we have

BN/ (P)—{ky, -+, ke})=2r—2= w

:*4(4r——_9)~ and 7r=5.
5
Case VI-4) Since r=7, we have k,=k,+k,, ks=Fk,+ ks, ky=4k,, kiy=Fk -k,
If ky+ky,=Fk, and 2k,=Fk;, then k,+k;<k,+k;=Fk+k.=ky, Hence, kytk;=Fk,
=4k, and 3k,=4k,, that is k,;=6, k,=8, k,—16. This implies

2r+5
2

If by+k,=Fk, and 2k,=k,=3k,, then Fk,+k;<k,+k,=Fk, Hence, k,+k=Fk,=
kyt+k, If ky+k,=Fk, and 2k,=Fk,, then ky+k,<k,+ks=Fk, Hence, ky+k, =k,
+k; and k;=2k,. If ky+k,=Fk; and 2k,=Fk,, then k,tk,<k,t+k;=Fky, In the
case of k,+k,=k; we have k,=2k,. In the case of k,+k,=Fk,, since k,=2k,—k,,
we have 3k,=5k,. Hence,

*‘N’(P):[ ]—B:r—l .

#Af/(P):[ 27’;—5

]—327—1.

Case VI-5) Since =7, we have ky;=Fk,t+k, ke=k,+ks;, ks=2k,+Fk, and k,
=2k,+ks. If 2ky=Fk,, then ky+k,=Fk,=3k,. Hence, 3k,=4k,. Therefore, N(P)
is one of the last four of the desired result. If 2k,=k, then k,<k,+ks;<2k;
+ky=Fs.

Case VII) Substituting n=3, a=k,, f=k;—1 and t=g—%, in Lemma 1, we
have

*’N’(P):7'<3—(%3:§>":3(2r+32- and r=4.

- 1 ky

Case VIII) Substituting n=*k,—4, a=Fk,;, f=g—1 and t=g in Lemma 1, we
have
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‘G’(P):7+1§ and r=1.

(ki—4)(g+4) ~ 2r+10
ky - 5
Case 1X) We shall divide this case into the following four subcases. Case
IX-1) 2ky=F;3,3k,=Fk, Case 1X-2) 2k,=Fk,, 3k;=Fk, CaselX-3) 2k,=k,, 3k,=F;.
Case 1X-4) 2k,=k;, 3k,=F,.
Case IX-1) Since k;;=2k,, we have

N(P): {kl; Tty kl()) 2k3! k3+k47 Ty k3+k1‘) k4+k‘r’ Tt 2kT} zg}
:{ku ey ko, 2[33’ kst Ry, 2ky, kitks, oo, kyt ks, k5+kr; T
2k,, 2g} .

Therefore, ky+Fk;=2k, kst+ki=Fk+k;, ks+k,=k+ks ks=2k, and k,=3k,.

Hence, 4k,=9k,, 2k,=5k,, 4k;=11Fk, and k,=8, k=18, k;=20, ks=22. Thus we

have

2r+5
2

Case IX-2) Since ky=Fk;+Fk,, ke=Fk,+k; and k,;=4Fk,, one of kg k, and k,,
denoted by k’, is neither 2k,+k, nor 2k,+k,. Then we have

N(P): {kly Tty kll, k4+k5’ k4+k6: Tty k4+k7‘: k5+krr
Rotkyy oy 2ky, 28\ U kiR, R+ Rr— ki)

and k;<2k,<lky+k;<2k;<kyt+k,<2k,=Fki.

i) Suppose 2k,=Fk; and k,+k,;—Fk, Then we have 4k,=3k, and k,=6, k,
=8, k;=10. If ky-+k'=Fk,+3k, then k'=20=2k~,+k,. If k,+k'=5k,, then k'=
22=2k,+ k..

ii) Suppose 2k,=ks, ky+k;=Fks and 2k;=Fk, Since kz<k,+k,, we have k,
=k,+k, and ky,=2(k,—k,). Therefore, 3k,—4k,, 3k;=5k, and k,+k,=3k,=Fk,.

iii) Suppose 2k,=k,, k,+ks=ks, kot k,=2k,=k, and k;+k,=ky,. Then we
have 2k,=3k,, 4k,=7k, and k,=8, k,=12, k;=14. Therefore,

2r+5
2
Case IX-3) Since r=7, ky=Fk;+ k;, kiy=Fkst+k, and ky=Fk,+ k.

i) Suppose k;=k,+k;, ke=Fk;+ k. Then k;<2k,<k,+k;<2k;=k,+k=Fk,.
If 2ky=ke, kot ky=F, 2k;—ks—=3Fk,, then 4k,=5k, and

2r+5
2

If 2k,=ks, ky+ks=Fks, then 3k,=4k;, 3k,;=5k, and k,=6, k,=8, k;=10, k,=17.

Thus every £=23 is in N(P). Therefore,

2g—21
2

“N’(P):[ ]—szr—z .

’*N’(P):[ ]—szr—s .

‘N’(P):[ ]—3=r—1 .

*N(P):[E‘ng]—2+[ |[+1zg+8.
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If 2ky="Fk,;, ky,+k;=Fk; and 2k;=2k,+ k,, then 3k;=5k, and 3k,=4k,. Thus 2k,
=ki+k, <k,

ii) Suppose k;=Fk,+k, and k,=Fk,+k;. Then k,+k,=k, If k,=2k, then
3k,=4Fk, and 3k,=5k,. Hence, k,=6, k,=8, k;=10, k,=15. Thus every k=21 is
in N(P). If ky=2Fk,, then k,=2k, which reduces to the above case. If k;=2k,
and k,#2k,, then k,,=2k, and k,=8, k,=10, k,=14. Hence,

2r+5
2

iii) Suppose ks=~F,+k, and k,=k,+k, If 2k,=Fk,, k,+k,=ks, then 3k,=
4k, and 3k,;=5k,. Therefore, k=6, k,=8, ky;=10, k;=13 and k, <k, +k;<Fk;.
If 2ky="Fk,; and k,+k;=kFk,, then 2k,=Fk,+k, and ky=F,+k;<kytk;<kyt+ks=Fk,.
Hence, k,+k;=Fk+k=2k,+k, and k;=2Fk,. If 2k,=Fk, and k,+ k;=F,, then 2k,
=ky. Therefore, 2k,=3k,, 4k,=7k, and k,=8, k,=12, k,=14, k;=18. Hence,
2r+5

2

Case 1X-4) Since k,=k i+ k- Z2k,<ky+k, <2k, <ky+k, <k, we have k,+ £k,
=2k,, ky+ks=Fk,+k, and 2k,=3k,. Hence, £,=8, k,=10, k;=12, k,=14 and

2r+5

4N/(P)=[7—]—3=r—1 .

Case X) Substituting n=4, a=*k,, f=Fk,—1 and t=g—*k, in Lemma 1, we
have

N(P)=| =5 —4=r—2.

‘*N’(P):[ ]—4:r—2.

4(g—4) _ 8r+8
B, = 10

Case XI) Substituting n==%k,—5, a=k;, f=g—1 and t=g in Lemma 1, we
have

IN'(P)=r< and r=4.

and r=5.

#G/(P)y=r+1< (k1—513(g+5) _ 2Q@r+11)

7

Case XII) In this case we shall consider the following two subcases. Case
XII-1) 2k, =Fk,. Case XII-2) 2k,=kF,.

Case XII-1) Since #{ky, ==+, by, -+, Brys, Bpt+Fky, kptkoy -, 2k,, 2g} =2r+5,
kjs—kj=F, for every j, 5<7=<g—5. Therefore, k,;=3k,, kyi=kit+ke, kis=Fk,+
kqy kis=Fk+ ks

i) Suppose ky=~k,+k,, k,=Fk,+k, and ky=F,+k, Then we have k,=2k,<
kot ks <2khs< kst k, <2k, <Ry If 2k,=Fk, ky+ks=Fksand 2k,=k,;, then 5k,=6Fk;,
5k,=Tk, and 5k,=8k,. Therefore, k,=10, k,=12, k,=14, k,=16 and k,=28;
that is
2r+5

2

If 2ky=Fk,, kotk,=ks and 2k, =k, then 4k,=5k,, 2k;=3k, and 4k,=7k,. Hence,

W(P):[ ]—5:7—3.
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k,=8, k,=10, k;=12, k,=14 and k,=23. Therefore, every £=31 is in N(P). If
2kyF# kyt+k, or if 2k;=Fk,+k,=Fk, then 2k,=Fk, and k,+k;=k,. If 2k,=k,+k,=
k., then k,+k,=Fk,; and 2k,=k,,. Hence, every k=31 is in N(P).

ii) Suppose k¢=Fk,+k,, k.=k+k; and ky=Fk,+k, Then we have k,<k,
+h<ksth<ky and ky<2k;<ks+k, If 2k;=Fk,+k, =k, and k,+k,=Fk,,, then
4k,=5k,, 2k;=3k, and 4k,=T7k,. Hence, k=8, ---, k,=14, ky=21 and every £=29
is in N(P). If 2ky=Fk,, ky+k,=ky, and k;+k,=k,, then 5k,=6Fk,, 5k,=7k, and
5k,=9%,. Hence,
2r+5

2

iii) Suppose k¢=Fk,+k,, ks=Fk,+k; and ky=Fk,+k, Then we have ky<k,
Fhy<byt b, <ky and ko <ks+k, <2k, <ky. If 2k;=Fk,+Fk, then 4k,=5k,, 2k,
=3k, and 4k,=7k,. Hence, k,=8, ---, k,=14, k,=19 and every k=27 is in N(P).
If 2ky>Fky,+k, then 2k,=2k,+Fk,. Hence, 5k,=6Fk,, 5k,=8Fk; and 5k,=9k,.
Therefore,

W(P):[ ]—4:1’—2.

*N(P)< [&;:5_] =2,

iv) Suppose k,=k,+k,, ky=Fk,+k;, ky=Fk,+k,. Then we have £k,<2k,<
kot Bs<kyt b <Ryt ki <2k<kiy. If 2kR,=ks kotk,=ky, ky+k,=Fky, then 4k,
=b5k,, 2k;=3k, and 4k,=T7Fk,. Hence, k=8, -+, k,=14, k,=17 and every k=25
is in N(P). If ky+k,=k, ks+k—=F, and 2k,=k, then 4k,=5k, 2k,=3Fk,
and 4k,=7k,. Hence, k,=8, -+, ky,=14 and k=17. If kot ks=ky, kstki=Fk
and 2k,=Fk,;, then 5k,=7k,, 5k,;=8Fk, and 5k,=9%,. Hence,

2r+5
2

Case XII-2) Since =7, ky,—k,=Fk, and k,,=2k,+k,=k,+k;. Hence, k,<
2k, <kytbi<kytk,<ky+ki<k,+ks=Fy Therefore, 2k,=k,+ky, bytko=Fk,+k,,
ky+ky=Fk,+k;and ky,+ k;=3k,. Hence, £,=10, k,=12, k,=14, k,=16 and k,=18;
that is

W(P)g[ ]—4:7’—2 .

2r+5
2

Case XIII) Substituting n=5, a=k;, f=k,—1 and t=g—Fk, in Lemma 1, we
have

*N’(P):[ ]—4:7—2.

and 7=5.

5(g—5) _ 10r+5
&N/ — << < -
N(P)=r==E=2) < 2]

Case XIV) Substituting n==~k,—6, a=k,, f=g—1 and t=g in Lemma 1, we
have

and 7=5.

ﬁ( / P — _}_ < <
( ) rl kl 2

Case XV) Since N(P): {kl’ B kr: kr+1; R k'r+5; kr-{_kl; tty an zg}; we
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have k7=2k1, k13:3k1 and k14:2k1+k2. Therefore, k8<2k2<k2+k3<k2+k4<
kot ks <kothe<kythi =k Hence, kyt+-ks=1ky+ ky, kotli=kit ks, by FRs=k+ ks
and k2+k6:3k1. Thus k1:12, teey, k3=22 and

“N(P)=[ 2| —5=r—3.
Case XVI) Substituting n=6, a=%k; f=Fk;—1 and t=g—k,, we have
w(py=rs 880 L1y g
1

This completes the proof.

The following lemma is an analogy of a theorem of Castelnuovo (cf. Accola

1.

LEMMA 8. Under the same hypothesis as in Theovem 5, the linear series | P¥|
1S composite for every v such that 3g+1=r=23+2.

Proof. This proof is also an analogy of that of Accola. Suppose that | P?"|
is simple. Since j;7.,=12g+4=4r, | P*"| and |P*| are of dimension r—g and
2r—g, respectively.

Since | P?| has no fixed point and is simple, there is a birational map of S
onto a curve C in P %(C) of degree 2r. Fix a hyperplane H such that the
points of the hyperplane section, say {P,, P,, ---, P.}, are in general position
in H (cf. [2]).

Let {P,, P,, -+, P,} be a subset of {P,, P,, ---, P,,} satisfying [(P*P,;1Pry,
-+ Py )=I(P?*). Then any quadric through {P,, P,, ---, P,} passes through the
remaining » points {P,i1, Pris, -+, Pa}.

Since through any 2(r—Z—1) points of {P;, P,, - P,,} we can find two
hyperplanes (that is a quadric) containing no further P’s we have 2r—23—1=r,
which is a contradiction.

4. Proof of Theorems. It is evident that 83+3=11 for §=1 and the con-
clusions of Lemmas 4 and 5 satisfy the hypothesis of Theorem 5. Hence, the
proofs of Theorems 1 and 2 are reduced to the proof of Theorem 5.

Proof of Theorems 3 and 4. We shall consider the following two cases.

Case I) N(P) contains {4, 8, 10, 12, 14, 16, 18, 20} and G(P) contains {I1, 2,
3,5,6,7,9,11, 13, 15, 17, 19}.

Case II) N(P) contains {6, 8, 10, 12, 14, 16, 18} and G(P) contains {1, 2, 3,
4,5,7,9, 11, 13, 15, 17}.

By virtue of Lemmas 6 and 7 and g=17, it is sufficient to consider the
above two cases. In this proof we shall consider meromorphic functions on S
with pole only at P. For simplicity’s sake, we call the order of the pole of
such a meromorphic function “the order of the function”.

Case I) Let x be a function of order 4 and let y be a function of order 10.
Then x* is of order 8, x® is of order 12, xy is of order 14, x* is of order 16,
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x?y is of order 18 and both x° and y* are of order 20. Therefore, we have an
algebraic equation

Y Qi(x)y+Qu(x)=0,

where Q,(x) is a polynomial of degree less than three and Q,(x) is a polynomial
of degree 5. This represents an algebraic plane curve S of genus at most two.
Hence, S is an n-sheeted covering of S for some n=2. Let P’ be a point on §
which corresponds to x=oo. Since deg @,=2 and deg @,=5, x is a meromorphic
function on S with pole at P’ of order 2 and holomorphic elsewhere. Let z be
the projection map of S into S Then z-3(P")={P}. Thus n=2. If the genus
of §is zero or one, then there is a function of order 6 on S. Therefore, Sis
of genus two.

Case II) Suppose that x is a function of order 6, y is a function of order
8 and that z is a function of order 10. Then x2? is of order 12, xy is of order
14, both xz and y? are of order 16 and both x* and yz are of order 18. Con-
sidering xz and % we have

' =01(x)z+Qx(x)y+Q4(x),
where deg @,=1, deg @.=1 and deg Q;=2. Considering x° yz and xz, we have

y2=Q(x)z+Qs(x)y+Qs(x),

where deg Q,=1, deg @;=1 and deg Q,=3. Eliminating z from the above two
equations, we have

(3—=Q(x)N(¥*—Qxx)y—Qy(x)=Q (x)(Qs(x)y+Qu(x)) .
That is
)’3‘|‘Q7(x)y2+Q8(x)y+Q9(x)=0 »

where Eleg Q-.=1, deg s=2 and deg Q,=4. This represents an algebraic plane
curve S of degree 4. By the formula [3, p. 2017, the genus of S is less than or
equal to 3. We know that the set of points corresponding to x=co consists of
only one point. Denote it by P’. Since S is a three-sheeted covering of the
x-sphere, the polar divisor of x on Sis P®,  As in the preceding case, we con-
clude that S is a two-sheeted covering of S. Since x, y, z (=32 —Qu(x)y—Qs(x))/
Q.(x)) are meromorphic functions on S whose polar divisors are P’®, P’ and P’s.
respectively, the genus of S is two.

Proof of Theolfem 5. By Lemma 8, | P¥+2| is composite. Hence, there is a
Riemann surface S such that S is an n-sheeted covering of S for some n=>2

and there is a complete linear series gﬂ(ff,ﬂrm /n OT S. If n=3, then 25+1 =(63+2)/n

=(65+2)/3. This is a contradiction. Therefore, S is a two-sheeted covering
of S. Hence, [P“’E“] is a complete linear series on S. Observing that there
exists a funNCtion of order 2k on S if and only if there exists a function of
order & on S [6, p. 392], we know that *G(P) on § is 3 Therefore, S is of
genus g.
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