ON THE ZERO-ONE SET OF AN ENTIRE FUNCTION, II

By Mitsuru Ozawa

1. Introduction. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two disjoint sequences with no finite limit points. If it is possible to construct an entire function f whose zeros are exactly $\left\{a_{n}\right\}$ and whose d-points are exactly $\left\{b_{n}\right\}$, the given pair ($\left\{a_{n}\right\},\left\{b_{n}\right\}$) is called the zero- d set of f. Here of course $d \neq 0$. If further there exists only one entire function f, whose zero- d set is just the given pair ($\left\{a_{n}\right\},\left\{b_{n}\right\}$), then the pair is called unique. It is well-known that unicity in this sense does not hold in general.

In this paper we shall prove the following
Theorem. Let $\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)$ and $\left(\left\{a_{n}\right\},\left\{c_{n}\right\}\right)$ be the zero-one set and the zero-d set of an entire function N, where $d \neq 0,1$. Then at least one of two given pairs is unique, unless N is an arbitrary entire function of the following form $\cdot e^{L}+A$, where A is an arbitrary constant and L is an entire function.

As a corollary we have the following fact.
Corollary. Let N be an entire function with no finite lacunary value. Then every zero-d set of N excepting at most one is umique.

Our proof depends on the impossibility of Borel's identity [1]. One of its form is the following

Lemma. Let $\left\{\alpha_{j}\right\}$ be a set of non-zero constant and $\left\{g_{j}\right\}$ a set of entire functions satisfying

$$
\sum_{j=1}^{p} \alpha_{j} g_{j}=1
$$

Then

$$
\sum_{j=1}^{p} \delta\left(0, g_{j}\right) \leqq p-1,
$$

where $\delta\left(0, g_{j}\right)$ denotes the Nevanlinna deficiency.
This form was stated in [2]. In our present case g, is $e^{L_{3}}$ and hence $\delta\left(0, g_{j}\right)=1$. Hence Lemma gives evidently a contradiction.

In our previous paper [3] we proved the following fact: The non-unicity of the given zero-one set $\left(\left\{a_{n}\right\},\left\{b_{n}\right\}_{n=1}^{\infty}\right)$ implies that ($\left.\left\{a_{n}\right\},\left\{b_{n}\right\}_{n \geqq n_{0}}\right)\left(n_{0} \geqq 2\right.$) is not a zero-one set of any entire function. We shall prove a corresponding fact in this paper.
2. Proof of Theorem. The emptyness of $\left\{a_{n}\right\}$ implies $N=e^{L}$, which is an exceptional entire function. The same holds for $\left\{b_{n}\right\}$ and for $\left\{c_{n}\right\}$, Hence we may assume that the three sets $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are not empty. Assume that there are entire functions f and g such that

$$
\begin{array}{ll}
f=N e^{\alpha}, & f-1=(N-1) e^{3}, \\
g=N e^{r}, & g-d=(N-d) e^{\bar{o}}
\end{array}
$$

with entire functions α, β, γ and δ. Suppose that α is a constant. Then $f=C N$, $C=e^{\alpha}$. By $f\left(b_{n}\right)=N\left(b_{n}\right)=1, f=N$. This is just the desired unicity of the given zero-one set. Hence we may assume that α is not a constant. Similarly we may assume that β, γ and δ are not constants. Suppose that $\alpha-\beta$ and $\gamma-\delta$ are constants c and a, respectively. Then

$$
f=e^{c} N e^{\beta}, \quad f-1=(N-1) e^{\beta} .
$$

Hence

$$
f=\frac{e^{c} N}{\left(e^{c}-1\right) N+1} .
$$

$e^{c}=1$ implies $f=N$. Hence we may assume that $e^{c} \neq 1$. Since f is entire,

$$
\left(e^{c}-1\right) N+1=e^{L}
$$

with entire L. Then

$$
N=\frac{e^{L}-1}{e^{c}-1},
$$

which is just the exceptional entire function.
If $e^{a}=1$, then $g=N$, which is the desired unicity of the zero- d set of N. Hence we may assume that $e^{a} \neq 1$. Then we have

$$
g=\frac{d e^{a} N}{\left(e^{a}-1\right) N+d} .
$$

Since g is entire,

$$
N=\frac{d\left(e^{L^{\prime}}-1\right)}{e^{a}-1} .
$$

This must coincide with the one already mentioned. Hence

$$
d=\frac{e^{a}-1}{e^{c}-1} . \quad L^{\prime}=L .
$$

Suppose that $\alpha-\beta$ and $\gamma-\delta$ are not constants. Then

$$
\frac{e^{-\beta}-1}{e^{\alpha-\beta}-1}=N=\frac{d\left(e^{-\delta}-1\right)}{e^{\gamma-\delta}-1},
$$

that is,

$$
e^{\gamma-\delta-\beta}-e^{\gamma-\delta}-e^{-\beta}-d e^{\alpha-\beta-\delta}+d e^{\alpha-\beta}+d e^{-\delta}=d-1 .
$$

Lemma implies that $\gamma-\delta-\beta$ is a constant, unless $\alpha-\beta-\delta$ is.
If $\gamma-\delta-\beta=x$ is a constant but $\alpha-\beta-\delta$ is not, then

$$
-e^{\gamma-\bar{\delta}}-e^{x} e^{\hat{\delta}-\gamma}-d e^{x} e^{\alpha-\gamma}+d e^{x} e^{\alpha+\delta}-\gamma+d e^{-\delta}=d-1-e^{x} .
$$

Hence $d-1=e^{x}$ by Lemma. Thus we have

$$
-e^{2(\gamma-\delta)}-d(d-1) e^{\alpha-\delta}+d(d+1) e^{\alpha}+d e^{-2 \delta+\gamma}=d-1 .
$$

Lemma again implies that $\alpha-\delta$ is a constant, unless $\gamma-2 \delta$ is. If $\gamma-2 \delta=y$ is a constant but $\alpha-\delta$ is not, then

$$
-e^{2 y} e^{2 \delta}-d(d-1) e^{\alpha-\delta}+d(d-1) e^{\alpha}=d-1-d e^{y} .
$$

This shows that $d e^{y}=d-1$ and

$$
(d-1) e^{2 \grave{\delta}}+d^{3} e^{\alpha-\delta}-d^{3} e^{\alpha}=0 .
$$

Hence

$$
(d-1) e^{2 \delta-\alpha}+d^{3} e^{-\delta}=d^{3},
$$

which is impossible. If $\alpha-\delta=y$ is a constant but $\gamma-2 \delta$ is not, then

$$
-e^{2(\gamma-\delta)}+d(d-1) e^{y} e^{\delta}+d e^{-2 \grave{\partial}+\gamma}=d-1+d(d-1) e^{y} .
$$

Hence $e^{y}=-1 / d$ and

$$
d e^{\gamma-3 \hat{\partial}}-e^{2 \gamma-3 \hat{o}}=d-1,
$$

which is impossible. If both of $\alpha-\delta=z$ and $\gamma-2 \delta=y$ are constants, then

$$
y-x=\gamma-2 \delta-\gamma+\delta+\beta=\beta-\delta
$$

and

$$
\alpha-\beta=\alpha-\delta-\beta+\delta=z-y+x .
$$

This is absurd, since $\alpha-\beta$ is not a constant. Hence the case that $\gamma-\delta-\beta$ is a constant but $\alpha-\beta-\delta$ is not is now rejected. If $\alpha-\beta-\delta=x$ is a constant but $\gamma-\delta-\beta$ is not, then

$$
e^{\gamma-\delta-\beta}-e^{\gamma-\delta}-e^{-\beta}+e^{x} e^{\delta}+d e^{-\delta}=d-1+d e^{x} .
$$

Hence $d e^{x}=1-d$ and

$$
d e^{\gamma-\beta}-d e^{\gamma}-d e^{\delta-\beta}-(d-1) e^{2 \delta}=-d^{2} .
$$

This implies that $\gamma-\beta$ is a constant, unless $\delta-\beta$ is. If $\gamma-\beta=y$ is a constant but $\delta-\beta$ is not, then

$$
d e^{\gamma}+d e^{y} e^{\delta \partial-\gamma}+(d-1) e^{2 \bar{o}}=d^{2}+d e^{y} .
$$

Hence $e^{y}=-d$ and

$$
(d-1) e^{2 \delta-r}-d^{2} e^{\delta-2 \gamma}=-d
$$

which is impossible. If $\delta-\beta=y$ is a constant but $\gamma-\beta$ is not, then

$$
d e^{y} e^{\tau-\delta}-d e^{\gamma}-(d-1) e^{2 \delta}=d e^{y}-d^{2} .
$$

Hence $e^{y}=d$ and

$$
d^{2} e^{-\delta}-(d-1) e^{2 \grave{\partial}-\gamma}=d,
$$

which is absurd. If $\gamma-\beta$ and $\delta-\beta$ are constants, then $\gamma-\delta$ reduces to a constant. This is impossible. Hence the case that $\alpha-\beta-\delta$ is a constant but $\gamma-$ $\delta-\beta$ is not is now rejected. If $\alpha-\beta-\delta=x$ and $\gamma-\beta-\delta=y$ are constants, then

$$
-e^{\gamma-\delta}-e^{-\beta}+d e^{\alpha-\beta}+d e^{-\delta}=d-1-e^{y}+d e^{x} .
$$

Hence $d-1=e^{y}-d e^{x}$ and

$$
-e^{y} e^{\beta+\delta}-e^{\delta-\beta}+d e^{x} e^{2 \delta}=-d .
$$

Since $\beta+\delta$ is not a constant, $\delta-\beta$ should be a constant. Let us put $z=\delta-\beta$. Then

$$
-e^{y-z} e^{2 \delta}+d e^{x} e^{2 \delta}=e^{z}-d
$$

Hence $e^{z}=d$ and $e^{y}=d^{2} e^{x}$. In this case we have

$$
d^{2} f=g \quad \text { and } \quad \frac{f-1}{g-d}=\frac{N-1}{d N-d^{2}}
$$

Thus

$$
g-d^{2}=-\frac{d^{2}(N-1)}{N}
$$

Hence N should be of the form e^{L} and the given set $\left\{a_{n}\right\}$ should be empty. This is a contradiction.

We shall consider the case that $\alpha-\beta=c$ is a constant but $\gamma-\delta$ is not. Then

$$
e^{\gamma-\delta-\beta}-e^{\gamma-\delta}-e^{-\beta}-d\left(e^{c}-1\right) e^{-\delta}=d-1-d e^{c}
$$

If $\gamma-\delta-\beta$ is not a constant, then $d e^{c}=d-1$. Then

$$
e^{\gamma-\beta}-e^{\gamma}-e^{\delta-\beta}=-1
$$

This implies that $\gamma-\beta$ is a constant, unless $\delta-\beta$ is. If $\gamma-\beta=x$ is a constant and $\delta-\beta$ is not, then

$$
e^{\gamma}+e^{x} e^{\delta-\gamma}=1-e^{x} .
$$

Therefore $e^{x}=1$ and $2 \gamma-\delta$ is a constant and

Hence

$$
e^{x}+e^{z}=0, \quad z=2 \gamma-\delta .
$$

$$
\frac{f}{g}=e^{\alpha-r}=e^{c}=\frac{d-1}{d}
$$

and

$$
\frac{g}{f-1}=\frac{N}{N-1} e^{\gamma-\beta}=\frac{N}{N-1} e^{x}=\frac{N}{N-1} .
$$

By these relations

$$
-\frac{d-1}{d} g=\frac{(d-1) N}{N-d}
$$

Hence $N-d$ has no zero, that is $\left\{c_{n}\right\}$ is ampty, which is absurd. If $\delta-\beta=x$ is a constant but $\gamma-\beta$ is not, then

$$
e^{\gamma-\beta}-e^{\gamma}=e^{x}-1,
$$

which easily gives a contradiction. If $\delta-\beta$ and $\gamma-\beta$ are constants, then $\gamma-\delta$ is so. This is impossible. Hence $\gamma-\delta-\beta=a$ reduces to a constant. In this case

$$
e^{a} e^{\beta}+e^{-\beta}+d\left(e^{c}-1\right) e^{-o}=e^{a}+d e^{c}-d+1,
$$

from which $e^{a}=d-1-d e^{c} \neq 0$ and

$$
\left(d-1-d e^{c}\right) e^{2 \beta}+d\left(e^{c}-1\right) e^{-\delta+\beta}=-1
$$

This is absurd.
We can similarly consider the remaining case that $\gamma-\delta$ is a constant and $\alpha-\beta$ is not. And finally we arrive at a contradiction.
3. Examples. Let N be e^{z}. Then all the zero- d sets of N are not unique. This has been implicitly shown in our theorem. Explicitly
satisfies

$$
g=d^{2} e^{-z}
$$

$$
g=N d^{2} e^{-2 z}, \quad g-d=-(N-d) d e^{-z} .
$$

Let N be $e^{z}\left(1-e^{z}\right)$. Then $f=e^{-z}\left(1-e^{-z}\right)$ satisfies

$$
f=-N e^{-3 z}, \quad f-1=(N-1) e^{-2 z} .
$$

All the zero- d sets of N excepting the zero-one set are unique.
Let N be an entire function of finite non-integral order. Then all the zerod sets of N are unique.
4. We can prove the following fact: Let N be an entire function whose zero-one set is not unique but all other zero-d sets ($\left\{a_{n}\right\},\left\{c_{n}\right\}_{n \geq 1}$) are unique. Then $\left(\left\{a_{n}\right\},\left\{c_{n}\right\}_{n \geq n_{0}}\right)\left(n_{0} \geqq 2\right)$ is not a zero- d set of any entire function.

In this case we have

$$
\begin{array}{ll}
f=N e^{\alpha}, & f-1=(N-1) e^{\beta}, \\
g=N e^{r}, & (g-d) P=(N-d) e^{\grave{o}}
\end{array}
$$

with entire $\alpha, \beta, \gamma, \delta$ and a non-constant polynomial $P=c\left(z-c_{1}\right) \cdots\left(z-c_{n_{0}-1}\right)$.

This gives a contradiction, although we need a similar discussion as in $\S 2$. Now the existence of g is excluded.

References

[1] Nevanlinva, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris, Gauthier-Villars, 1929.
[2] Ninvo, K. and M. Ozawa, Deficiencies of an entıre algebroid function. Kōdai Math. Sem. Rep. 22 (1970), 98-113.
[3] Ozaiva, M., On the zero-one set of an entıre function. Kōdaı Math. Sem. Rep. 28 (1977), 311-316.

Department of Mathematics, Tokyo Institute of Technology

