ON THE ZERO-ONE SET OF AN ENTIRE FUNCTION, II

By Mitsuru Ozawa

1. Introduction. Let $\{a_n\}$ and $\{b_n\}$ be two disjoint sequences with no finite limit points. If it is possible to construct an entire function f whose zeros are exactly $\{a_n\}$ and whose d-points are exactly $\{b_n\}$, the given pair $(\{a_n\}, \{b_n\})$ is called the zero-d set of f. Here of course $d \neq 0$. If further there exists only one entire function f, whose zero-d set is just the given pair $(\{a_n\}, \{b_n\})$, then the pair is called unique. It is well-known that unicity in this sense does not hold in general.

In this paper we shall prove the following

THEOREM. Let $(\{a_n\}, \{b_n\})$ and $(\{a_n\}, \{c_n\})$ be the zero-one set and the zero-d set of an entire function N, where $d \neq 0, 1$. Then at least one of two given pairs is unique, unless N is an arbitrary entire function of the following form $e^L + A$, where A is an arbitrary constant and L is an entire function.

As a corollary we have the following fact.

COROLLARY. Let N be an entire function with no finite lacunary value. Then every zero-d set of N excepting at most one is unique.

Our proof depends on the impossibility of Borel's identity [1]. One of its form is the following

LEMMA. Let $\{\alpha_j\}$ be a set of non-zero constant and $\{g_j\}$ a set of entire functions satisfying

$$\sum_{j=1}^{p} \alpha_j g_j = 1.$$

Then

$$\sum_{j=1}^{p} \delta(0, g_j) \leq p - 1$$
 ,

where $\delta(0, g_j)$ denotes the Nevanlinna deficiency.

This form was stated in [2]. In our present case g_j is e^{L_j} and hence $\delta(0, g_j)=1$. Hence Lemma gives evidently a contradiction.

Received December 19, 1977

In our previous paper [3] we proved the following fact: The non-unicity of the given zero-one set $(\{a_n\}, \{b_n\}_{n=1}^{\infty})$ implies that $(\{a_n\}, \{b_n\}_{n \ge n_0})$ $(n_0 \ge 2)$ is not a zero-one set of any entire function. We shall prove a corresponding fact in this paper.

2. **Proof of Theorem.** The emptyness of $\{a_n\}$ implies $N=e^L$, which is an exceptional entire function. The same holds for $\{b_n\}$ and for $\{c_n\}$, Hence we may assume that the three sets $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are not empty. Assume that there are entire functions f and g such that

$$\begin{split} f = Ne^{\alpha} , & f - 1 = (N - 1)e^{\beta} , \\ g = Ne^{\gamma} , & g - d = (N - d)e^{\delta} \end{split}$$

with entire functions α , β , γ and δ . Suppose that α is a constant. Then f=CN, $C=e^{\alpha}$. By $f(b_n)=N(b_n)=1$, f=N. This is just the desired unicity of the given zero-one set. Hence we may assume that α is not a constant. Similarly we may assume that β , γ and δ are not constants. Suppose that $\alpha-\beta$ and $\gamma-\delta$ are constants c and a, respectively. Then

$$f = e^{\mathfrak{c}} N e^{\beta}$$
, $f - 1 = (N - 1)e^{\beta}$.

Hence

$$f = \frac{e^c N}{(e^c - 1)N + 1}.$$

 $e^{c}=1$ implies f=N. Hence we may assume that $e^{c}\neq 1$. Since f is entire,

$$(e^{c}-1)N+1=e^{L}$$

with entire L. Then

$$N = \frac{e^L - 1}{e^c - 1}$$
,

which is just the exceptional entire function.

If $e^{a}=1$, then g=N, which is the desired unicity of the zero-d set of N. Hence we may assume that $e^{a} \neq 1$. Then we have

$$g = \frac{de^a N}{(e^a - 1)N + d} \,.$$

Since g is entire,

$$N = \frac{d(e^{L'}-1)}{e^a-1} \,.$$

This must coincide with the one already mentioned. Hence

$$d = \frac{e^a - 1}{e^c - 1} \cdot L' = L \cdot$$

Suppose that $\alpha - \beta$ and $\gamma - \delta$ are not constants. Then

MITSURU OZAWA

$$\frac{e^{-\beta}-1}{e^{\alpha-\beta}-1}=N=\frac{d(e^{-\delta}-1)}{e^{\gamma-\delta}-1},$$

that is,

$$e^{\gamma-\delta-\beta}-e^{\gamma-\delta}-e^{-\beta}-de^{\alpha-\beta-\delta}+de^{\alpha-\beta}+de^{-\delta}=d-1.$$

Lemma implies that $\gamma - \delta - \beta$ is a constant, unless $\alpha - \beta - \delta$ is.

If $\gamma - \delta - \beta = x$ is a constant but $\alpha - \beta - \delta$ is not, then

$$-e^{\gamma-\delta}-e^{x}e^{\delta-\gamma}-de^{x}e^{\alpha-\gamma}+de^{x}e^{\alpha+\delta-\gamma}+de^{-\delta}=d-1-e^{x}.$$

Hence $d-1=e^x$ by Lemma. Thus we have

$$-e^{{}^{_2(\gamma-\delta)}}-d(d-1)e^{\alpha-\delta}+d(d+1)e^{\alpha}+de^{-{}^{_2\delta+\gamma}}\!=\!d\!-\!1\,.$$

Lemma again implies that $\alpha - \delta$ is a constant, unless $\gamma - 2\delta$ is. If $\gamma - 2\delta = y$ is a constant but $\alpha - \delta$ is not, then

$$-e^{2y}e^{2\delta}-d(d-1)e^{\alpha-\delta}+d(d-1)e^{\alpha}=d-1-de^{y}$$
.

This shows that $de^y = d - 1$ and

$$(d-1)e^{2\delta}+d^{3}e^{\alpha-\delta}-d^{3}e^{\alpha}=0$$
.

Hence

$$(d-1)e^{2\delta-\alpha}+d^{3}e^{-\delta}=d^{3}$$
,

which is impossible. If $\alpha - \delta = y$ is a constant but $\gamma - 2\delta$ is not, then

 $-e^{2(\gamma-\delta)}+d(d-1)e^{y}e^{\delta}+de^{-2\delta+\gamma}=d-1+d(d-1)e^{y}$.

Hence $e^y = -1/d$ and

$$de^{\gamma-3\delta}-e^{2\gamma-3\delta}=d-1$$
,

which is impossible. If both of $\alpha - \delta = z$ and $\gamma - 2\delta = y$ are constants, then

and

$$y - x = \gamma - 2\delta - \gamma + \delta + \beta = \beta - \delta$$
$$\alpha - \beta = \alpha - \delta - \beta + \delta = z - y + x.$$

This is absurd, since $\alpha - \beta$ is not a constant. Hence the case that $\gamma - \delta - \beta$ is a constant but $\alpha - \beta - \delta$ is not is now rejected. If $\alpha - \beta - \delta = x$ is a constant but $\gamma - \delta - \beta$ is not, then

$$e^{\gamma-\delta-\beta}-e^{\gamma-\delta}-e^{-\beta}+e^{x}e^{\delta}+de^{-\delta}=d-1+de^{x}$$
.

Hence $de^x = 1 - d$ and

$$de^{\gamma-\beta} - de^{\gamma} - de^{\delta-\beta} - (d-1)e^{2\delta} = -d^2$$
.

This implies that $\gamma - \beta$ is a constant, unless $\delta - \beta$ is. If $\gamma - \beta = y$ is a constant but $\delta - \beta$ is not, then

$$de^{\gamma} + de^{y}e^{\delta-\gamma} + (d-1)e^{2\delta} = d^{2} + de^{y}$$
.

196

Hence $e^y = -d$ and

$$(d-1)e^{2\delta-\gamma}-d^2e^{\delta-2\gamma}=-d$$
.

which is impossible. If $\delta - \beta = y$ is a constant but $\gamma - \beta$ is not, then

$$de^{y}e^{\gamma-\delta}-de^{\gamma}-(d-1)e^{2\delta}=de^{y}-d^{2}$$
.

Hence $e^y = d$ and

$$d^{\,2}e^{-\delta} {-} (d\,{-}\,1)e^{2\delta-\gamma} {=}\,d$$
 ,

which is absurd. If $\gamma - \beta$ and $\delta - \beta$ are constants, then $\gamma - \delta$ reduces to a constant. This is impossible. Hence the case that $\alpha - \beta - \delta$ is a constant but $\gamma - \delta - \beta$ is not is now rejected. If $\alpha - \beta - \delta = x$ and $\gamma - \beta - \delta = y$ are constants, then

$$-e^{\gamma-\delta}-e^{-\beta}+de^{\alpha-\beta}+de^{-\delta}=d-1-e^{y}+de^{x}.$$

Hence $d - 1 = e^y - de^x$ and

$$-e^{y}e^{\beta+\delta}-e^{\delta-\beta}+de^{x}e^{2\delta}=-d$$

Since $\beta + \delta$ is not a constant, $\delta - \beta$ should be a constant. Let us put $z = \delta - \beta$. Then

$$-e^{y-z}e^{2\delta}+de^{x}e^{2\delta}=e^{z}-d$$
.

Hence $e^z = d$ and $e^y = d^2 e^x$. In this case we have

$$d^2 f = g$$
 and $\frac{f-1}{g-d} = \frac{N-1}{dN-d^2}$

Thus

$$g - d^2 = -\frac{d^2(N-1)}{N}$$

Hence N should be of the form e^L and the given set $\{a_n\}$ should be empty. This is a contradiction.

We shall consider the case that $\alpha - \beta = c$ is a constant but $\gamma - \delta$ is not. Then

$$e^{\gamma-\delta-\beta}-e^{\gamma-\delta}-e^{-\beta}-d(e^{c}-1)e^{-\delta}=d-1-de^{c}.$$

If $\gamma - \delta - \beta$ is not a constant, then $de^c = d - 1$. Then

$$e^{\gamma-\beta}-e^{\gamma}-e^{\delta-\beta}=-1.$$

This implies that $\gamma - \beta$ is a constant, unless $\delta - \beta$ is. If $\gamma - \beta = x$ is a constant and $\delta - \beta$ is not, then

$$e^{\gamma}+e^{x}e^{\delta-\gamma}=1-e^{x}$$
.

Therefore $e^x=1$ and $2\gamma-\delta$ is a constant and

$$e^x + e^z = 0$$
, $z = 2\gamma - \delta$.

Hence

$$\frac{f}{g} = e^{\alpha - \gamma} = e^{c} = \frac{d - 1}{d}$$

and

$$\frac{g}{f-1} = \frac{N}{N-1} e^{y-\beta} = \frac{N}{N-1} e^{x} = \frac{N}{N-1}.$$

By these relations

$$-\frac{d-1}{d}g = \frac{(d-1)N}{N-d}.$$

Hence N-d has no zero, that is $\{c_n\}$ is empty, which is absurd. If $\delta - \beta = x$ is a constant but $\gamma - \beta$ is not, then

$$e^{\gamma-\beta}-e^{\gamma}=e^{x}-1$$
,

which easily gives a contradiction. If $\delta - \beta$ and $\gamma - \beta$ are constants, then $\gamma - \delta$ is so. This is impossible. Hence $\gamma - \delta - \beta = a$ reduces to a constant. In this case

$$e^{a}e^{\beta}+e^{-\beta}+d(e^{c}-1)e^{-\delta}=e^{a}+de^{c}-d+1$$
,

from which $e^a = d - 1 - de^c \neq 0$ and

$$(d-1-de^{c})e^{2\beta}+d(e^{c}-1)e^{-\delta+\beta}=-1$$
.

This is absurd.

We can similarly consider the remaining case that $\gamma - \delta$ is a constant and $\alpha - \beta$ is not. And finally we arrive at a contradiction.

3. Examples. Let N be e^z . Then all the zero-d sets of N are not unique. This has been implicitly shown in our theorem. Explicitly

$$g = d^2 e^{-z}$$

satisfies

$$g = Nd^2 e^{-2z}$$
, $g - d = -(N - d)de^{-z}$.

Let N be $e^{z}(1-e^{z})$. Then $f=e^{-z}(1-e^{-z})$ satisfies

$$f = -Ne^{-3z}$$
, $f - 1 = (N-1)e^{-2z}$.

All the zero-d sets of N excepting the zero-one set are unique.

Let N be an entire function of finite non-integral order. Then all the zerod sets of N are unique.

4. We can prove the following fact: Let N be an entire function whose zero-one set is not unique but all other zero-d sets $(\{a_n\}, \{c_n\}_{n \ge 1})$ are unique. Then $(\{a_n\}, \{c_n\}_{n \ge n_0})$ $(n_0 \ge 2)$ is not a zero-d set of any entire function.

In this case we have

$$f=Ne^{\alpha}, \quad f-1=(N-1)e^{\beta},$$

$$g=Ne^{\gamma}, \quad (g-d)P=(N-d)e^{\delta}$$

with entire α , β , γ , δ and a non-constant polynomial $P = c(z-c_1)\cdots(z-c_{n_0-1})$.

This gives a contradiction, although we need a similar discussion as in $\S2$. Now the existence of g is excluded.

References

- [1] NEVANLINNA, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris, Gauthier-Villars, 1929.
- [2] NIINO, K. AND M. OZAWA, Deficiencies of an entire algebroid function. Ködai Math. Sem. Rep. 22 (1970), 98-113.
- [3] Ozawa, M., On the zero-one set of an entire function. Ködai Math. Sem. Rep. 28 (1977), 311-316.

Department of Mathematics, Tokyo Institute of Technology