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ON THE ZERO-ONE SET OF AN ENTIRE FUNCTION, II

By MITSURU OzAWA

1. Introduction. Let {a,} and {b,} be two disjoint sequences with no
finite limit points. If it is possible to construct an entire function f whose zeros
are exactly {a,} and whose d-points are exactly {b,}, the given pair ({a.}, {b.})
is called the zero-d set of f. Here of course d+0. If further there exists only
one entire function f, whose zero-d set is just the given pair ({a,}, {b.}), then
the pair is called unique. It is well-known that unicity in this sense does not

hold in general.
In this paper we shall prove the following

THEOREM. Let ({an}, {ba}) and ({a,}, {c.}) be the zero-one set and the zero-d
set of an entire function N, where d+#0, 1. Then at least one of two given pairs
15 unique, unless N 1s an arbitrary entire function of the following form - e+ A,
where A is an arbitrary constant and L 1 an entirve function.

As a corollary we have the following fact.

COROLLARY. Let N be an entire function with no finite lacunary value. Then
every zero-d set of N excepting at most one 1s unique.

Our proof depends on the impossibility of Borel’s identity [1]. One of its
form is the following

LEMMA. Let {a,} be a set of non-zero constant and {g;} a set of entire func-
tions satisfying

»
2 a;g,=1.
J=1
Then
D
215(0, gp=p—1,
where 6(0, g;) denotes the Nevanlinna deficiency.

This form was stated in [2]. In our present case g, is e’ and hence
4(0, g)=1. Hence Lemma gives evidently a contradiction.
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In our previous paper [3] we proved the following fact: The non-unicity
of the given zero-one set ({a,}, {ba}%-)) implies that ({a,}, {bn}nzn,) (M:=2) is
not a zero-one set of any entire function. We shall prove a corresponding fact
in this paper.

2. Proof of Theorem. The emptyness of {a,} implies N=e*, which is an
exceptional entire function. The same holds for {6,} and for {c,}, Hence we
may assume that the three sets {a,}, {b.} and {c,} are not empty. Assume
that there are entire functions f and g such that

f=Ne®, f—1=(N—1)e?,
g=Ne', g—d=(N—d)é’

with entire functions «, 8, 7 and 4. Suppose that « is a constant. Then f=CN,
C=e? By f(b,)=N(b,)=1, f=N. This is just the desired unicity of the given
zero-one set. Hence we may assume that « is not a constant. Similarly we may
assume that 8,7 and J are not constants. Suppose that a—p and y—d are
constants ¢ and a, respectively. Then

f=e°Nef,  f—1=(N—1)e?.
Hence
e‘N
/= DN
e‘=1 implies f=N. Hence we may assume that e‘#1. Since f is entire,

(ee—1)N-+1=e"
with entire L. Then
el—1

N= P

which is just the exceptional entire function.
If e?=1, then g=N, which is the desired unicity of the zero-d set of N.
Hence we may assume that e*#1. Then we have

de*N
8% (e*=I)N+d -
Since g is entire,
_ de—1)

T.
N b1

This must coincide with the one already mentioned. Hence

_e®—1

=% L=L

Suppose that @«—§ and 7y—d are not constants. Then



196 MITSURU OZAWA

e F—1 - d(e’-1)
ef 1 T NE gy

that is,
el 0P —prd—p-F—det-F0tderFided=d—1.

Lemma implies that y—J—f is a constant, unless a—p—¢ is.
If y—0—p=x is a constant but a—8—d is not, then
T T T (] g% T L (g% g0 T L = —] — 7 .
Hence d—1=e* by Lemma. Thus we have
—e2T D —d(d—1)e*+d(d+1)e?+de*T=d—1.

Lemma again implies that «—0 is a constant, unless y—20 is. If y—20=y is a
constant but @—d is not, then

—e2e®—d(d—1)e* ' 4+d(d—1)e*=d—1—de? .
This shows that de¥=d—1 and
(d—1)e?+d3e*%—d3%e*=0.

Hence
(d—l)e”“’—l—d3e'5=d3 ,

which is impossible. If a—d=y is a constant but y—20 is not, then
—e?T D4 d(d—1)eve’+de**T=d—1+d(d—1)e? .
Hence e¥=—1/d and
deT~¥—gt=3%=¢4—1,
which is impossible. If both of a—d=z and y—20=y are constants, then
y—x=y—20—7+0+p=p—0

and
a—f=a—0—pB+id=z—y+x.

This is absurd, since a«—p is not a constant. Hence the case that y—d—pfisa
constant but a—S3—d is not is now rejected. If a—pf—d=x is a constant but
7—0—8 is not, then
Q0P —gr 0 — Pt eT fde=d—1+de".

Hence de*=1—d and

de’F—de'—de®F—(d—1)e¥=—d*.
This implies that y—f is a constant, unless 6—p is. If y—f=y is a constant
but —8 is not, then

de'+deve® T+(d—1)e?=d>*+de? .
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Hence ¢¥=—d and
(d—1)e¥T—d%? 7 =—( .

which is impossible. If 6—p=y is a constant but y—f is not, then

deve' ' —de’—(d—1)e¥=de?—d?®.
Hence e¢¥=d and
d?e%—(d—1)e®"=d,

which is absurd. If y—p and 6—p are constants, then y—4 reduces to a con-
stant. This is impossible. Hence the case that a—f3—d is a constant but 7—
0—p is not is now rejected. If a—p—0d=x and y—p—Jd=y are constants, then

—e' 0o P de*Pilded=d—1—eV+de”.
Hence d—1=eY—de” and
—o¥eBtO__p0-B (pTe¥—=_(

Since jB+0 is not a constant, —f should be a constant. Let us put z=d—p.
Then
—eVie¥tdete?=e"—d .

Hence ¢*=d and eY=d?%®. In this case we have

f—1 N—1
2f_— —
d*f=g and e—d ~ dN—d*
Thus
d*(N—1)
= T N
g—d N

Hence N should be of the form e and the given set {a,} should be empty.
This is a contradiction.
We shall consider the case that a—p=c is a constant but y—¢ is not. Then

e’ 0B g0 o= _d(e°—1)e=d—1—de°.
If y—0—pj is not a constant, then de‘=d—1. Then
ool —gfF=—1.
This implies that y—f is a constant, unless 6—pf is. If y—p=x is a constant
and d—pB is not, then
e’ +eed T=1—e",
Therefore e¢*=1 and 2y—4d is a constant and

e*+e'=0, z=2r—od.
Hence

f d—1

=t T ==

g d
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and

— N er-,ﬂ___ e

= S =
f—1 N—1 N—1 N—-1"

By these relations

d—1  (d—1)N

d & N=d -
Hence N—d has no zero, that is {c,} is empty, which is absurd. If 6—p=x is
a constant but y—Jj is not, then

P —g=e"—1,

which easily gives a contradiction. If 6—j and y—p are constants, then 7—d
is so. This is impossible. Hence y—d6—p3=a reduces to a constant. In this

case
e%ef+e P+d(ef—1)e=e%+de*—d+1,

from which e*=d—1—de‘+0 and

(d—1—dee*? +d(e"—1)e"*P=—1.
This is absurd.
We can similarly consider the remaining case that y—d is a constant and

a—pf is not. And finally we arrive at a contradiction.

3. Examples. Let N be ¢’. Then all the zero-d sets of N are not unique.
This has been implicitly shown in our theorem. Explicitly
g:d2e-z
satisfies
g=Nd?* %, g—d=—(N—d)de*.
Let N be e*(1—e*). Then f=e *(1—e™?) satisfies
f=—Ne™3%, [—1=(N—1)e %,

All the zero-d sets of N excepting the zero-one set are unique.
Let N be an entire function of finite non-integral order. Then all the zero-

d sets of N are unique.

4. We can prove the following fact: Let N be an entire function whose
zero-one set is not unique but all other zero-d sets ({a.}, {c.} 1) are unique.
Then ({a,}, {ca} nzny) (no=2) is not a zero-d set of any entire function.

In this case we have

f=Ne*, f—1=(N—1)e?,
g=Ne", (g—d)P=(N—d)e’

with entire «, 8,7, 0 and a non-constant polynomial P=c(z—c,) ** (2—Cny-1)-
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This gives a contradiction, although we need a similar discussion as in §2.
Now the existence of g is excluded.

REFERENCES

[1] Nevaxrixya, R., Le théoréme de Picard-Borel et la théorie des fonctions
méromorphes, Paris, Gauthier-Villars, 1929.

[2] Nmxo, K. aND M. Ozawa, Deficiencies of an entire algebroid function. Kodai
Math. Sem. Rep. 22 (1970), 98-113.

[3] Ozawa, M., On the zero-one set of an entire function. Kodai Math. Sem. Rep.
28 (1977), 311-316.

DEPARTMENT OF MATHEMATICS,
Tokyo INSTITUTE oF TECHNOLOGY





