ON PARALLEL CONFORMAL CONNECTIONS

BY RADU ROSCA

Introduction. Riemannian manifolds endowed with a parallel conformal connection $\nabla_{p,c}$ have been defined by the present author in [1]. In this paper one studies in the first section a type of such manifolds for which the principal field X associated with $\nabla_{p,c}$ is parallel. In this case X is an infinitesimal homothety of the volume element of M_c and is an invariant section of the canonical form in the set of 2-frames $O^2(M_c)$. If M_c is of even dimension $2m$, then the connection $\nabla_{p,c}$ defines on M_c a conformal symplectic form φ and the dual field of the principal 1-form α (α is the dual form of X with respect to the metric of M_c) with respect to φ is a Killing field. Finally it is shown that M_c is of constant scalar curvature and is Ricci flat in the direction of X. In the second section, making use of some notions introduced by K. Yano and S. Ishihara in [5] and by J. Klein in [7] one studies different properties of the tangent bundle manifold TM_c. Thus the complete lift φ^c of φ, on TM_c is a homogenous form of degree 1 and is also conformal symplectic. If V is the canonical field on TM_c, then the Lie bracket $[V, X]$ is an infinitesimal automorphism of φ^c. Further some properties involving the canonical symplectic form Ω on TM_c (Ω is a Finslerian form) and a second conformal symplectic form Θ, which is homogenous of degree 2, are discussed. In the last section one considers a regular mechanical system (in the sense of J. Klein [8]), $H=\{M_c, T, \pi\}$ such that the kinetic energy T is homogenous of degree 2 and the dynamical system Z associated with H is a spray on M_c.

1. M_c manifold. Let M be an n-dimensional C^∞-Riemannian manifold and let $O(M)$ be the bundle of orthonormal frames of M. If $O=O(M)$ is such a frame, let $\{e_i\}$, $\{\omega^i\}$ and $\omega^i=\delta_k^i\omega^j$, $i, k, j=1, \ldots, n$, be the vectorial and dual basis and the connection forms associated with O respectively. Then the line element dp ($p\in M$), the connection equations and the structure equations (E. Cartan) are respectively

\begin{align}
(1.1) & \quad dp=\omega^i \otimes e_i, \\
(1.2) & \quad \nabla e_i=\omega^k \otimes e_k, \\
(1.3) & \quad d\omega^i=\Omega^i+\omega^k \wedge \omega_k^i,
\end{align}

Received December 8, 1976
2 RADU ROSCA

\(d \wedge \omega^i = \Omega^i + \omega^i \wedge \omega^j, \)

where \(\Omega^i \) and \(\Omega^i_j \) are the \textit{torsion} and the \textit{curvature 2-forms} respectively.

A connection \(\nabla \) such that

\(\omega^i = t^i \omega^j - t_j \omega^i; \quad t_i \in C^\infty(M) \)

has been called in [1], a \textit{parallel conformal connection}, and denoted by \(\nabla_{p.c} \). If \(T_p(M) \) is the tangent space at \(p \in M \) we shall call

\(X = \sum t_i e_i \in T_p(M) \)

the \textit{principal field} (p.f.) associated with \(\nabla_{c.p} \) and if \(\mathcal{J} \) is the canonical isomorphism (with respect the metric of \(M \)) the Pfaffian

\(\mathcal{J}X = \alpha = \sum t_i \omega^i \)

is the \textit{principal Pfaffian} (p.P.) associated with \(\nabla_{p.c} \).

So by 1.3 and 1.5 we readily get

\(d \wedge \omega^i = \Omega^i + \alpha \wedge \omega^i. \)

Assume now that \(X \) is \textit{parallel}, that is,

\(\nabla X = 0. \)

By using 1.2 and 1.5 we obtain from 1.9

\(dt_i = t_i \alpha - t^2 \omega^i; \quad t^2 = \|X\|^2. \)

Taking account of 1.7 one finds instantly

\(t^i = \text{const.} \)

Next exterior differentiation of (1.10) gives

\(\Omega^i = 0 \)

and so by an easy argument follows

\(d \wedge \alpha = 0. \)

Hence if the \textit{p.f.} \(X \) is parallel then the connection \(\nabla_{p.c} \) is necessarily \textit{torsionless} and the \textit{p.P.} \(\alpha \) is \textit{closed}. In the following the manifolds under consideration will be of even dimension \((n=2m) \) and structured by \(\nabla_{p.c} \) connection with parallel principal field. Such manifolds will be denoted by \(M_k \).

We have shown in [1] that if \(M \) is of even dimension \((n=2m) \) then the connection \(\nabla_{p.c} \) defines on \(M \) a \textit{conformal symplectic structure} \(CSp(m; R) \). Thus if we consider the almost symplectic form
PARALLEL CONFORMAL CONNECTIONS

(1.13) \[\varphi = \omega^1 \wedge \omega^2 \wedge \cdots \wedge \omega^{m-1} \wedge \omega^m, \]
then by

(1.14) \[d \wedge \omega^i = \alpha \wedge \omega^i, \]
one gets at once

(1.15) \[d \wedge \varphi = 2\alpha \wedge \varphi. \]

Thus we see that \(2\alpha\) is the co-vector of Lee of the structure \(\text{CSp}(m; \mathbb{R})\). Let now \(\mu_\varphi: Z \rightarrow -\varphi\) be the isomorphism defined by \(\varphi\). An easy calculation gives

(1.16) \[\mu_\varphi^{-1}(\alpha) = X_a = -t_2 e_1 + t_1 e_2 + \cdots + t_{2m-1} e_{2m} \]
and \(X_a\) will be called the associated field of \(X\). Taking the star operator * of \(\alpha\) one has

(1.17) \[\star \alpha = \sum (-1)^{i-1} \omega^i \wedge \cdots \wedge \omega^{2m} \]
(the “roof” indicates the missing terms).

Making use of 1.10 and 1.13 one finds from (1.17) \(\delta \alpha = \text{div} X = -t^2 = \text{const.}\) and so \(X\) is an infinitesimal homothety of the volume element of \(M\).

Put now \(\mu_\varphi(X) = \alpha_a\) and call \(\alpha_a\) the associated 1-form of \(\alpha\). Denoting by \(\tilde{\omega}\) the symplectic adjoint operator \([2]\) one has

(1.18) \[\pi \alpha_a = \tilde{\omega} \alpha = \frac{\alpha}{(m-1)!} \lambda^{m-1} \varphi. \]

Making use of (1.12) and (1.15) we readily see that \(\delta \alpha_a = 0\), that is \(\text{div} X_a = 0\).

On the other hand \(Z(Z') \in T_p(M)\) being any vector field, we derive from (1.2), (1.5) and (1.10)

(1.19) \[\nabla_Z e_i = t_i Z - Z' X; \quad \nabla_Z: \text{covariant derivative.} \]

Now with the aid of (1.17) and since \(\langle X, X_a \rangle = 0\), one finds by a straightforward calculation

(1.20) \[\langle \nabla_Z X_a, Z' \rangle + \langle \nabla_{Z'} X_a, Z \rangle = 0, \]
where \(Z\) and \(Z'\) are arbitrary vector fields. The above relation proves that \(X_a\) is a Killing vector field. So the equation

(1.21) \[\mathcal{L} X_a = 0; \quad \mathcal{L}_Z = i_Z d + d \wedge i_Z : \text{Lie derivative} \]

for \(X_a\) is a Killing vector field. The above relation proves that \(X_a\) is a Killing vector field. So the equation

(1.22) \[\mathcal{L}_X X = 0. \]
Denote like usual by R^i_{jkl} the Riemann curvature tensor, that is, $\Omega^i = (1/2)R^i_{jkl}\omega^k \wedge \omega^l$. By (1.4), (1.5) and (1.10) one finds

$$R^i_{jkl} = t^i - t^i_l - t^i_k,$$

(1.23)

$$R^i_{j0} = -t^i_k t^k,$$

$$R^i_{jij} = 0; k \neq i \neq j \neq l.$$

From the above expressions we derive the components of the Ricci tensor as follows

$$R_{ii} = (n-2)(t^i - t^i_i),$$

$$R_{ik} = -(n-2)t^i_k t^k.$$

(1.24)

From 1.24 and taking account of (1.10) one quickly finds that the scalar curvature of M is constant, that is

$$R = (n-1)(n-2)t^2.$$

(1.25)

Next denote by $\text{Ric}(X)$ the Ricci curvature in the direction X.

In consequence of (1.24) and (1.7) a short calculation gives

$$\text{Ric}(X) = 0.$$

(1.26)

Hence the manifold M is Ricci flat in the direction X.

On the other hand referring to (1.5) and (1.10) one finds that both ω^i and ω^i_k are invariant by X; that is $\mathcal{L}_X \omega^i = 0, \mathcal{L}_X \omega^i_k = 0$.

Therefore one may say that X is an invariant section for the canonical form $\omega^i \otimes \epsilon_i + \sum \omega^i_k \otimes \epsilon_k$ of the set of 2-frames $\mathcal{O}^2(M)$ (frames of second order).

Finally coming back to the structure $\text{CSp}(m; R)$ defined by (1.14) we have

$$t^i \varphi = -\mu_a(X) = -\alpha_a = -t^i \omega^i + t^i \omega^a - \ldots + t_{2m-1} \omega^a_{2m}.$$

(1.26)

By (1.20) and (1.14) a short computation gives

$$d \wedge \alpha_a = \alpha \wedge \alpha_a + 2t^i \varphi.$$

(1.27)

Since t^i is constant, this equation proves as is known [3] that X is a conformal symplectic infinitesimal transformation of φ. From the preceding discussion we may state the

Theorem. Let M_c be a Riemannian manifold of even dimension $2m$ structured by a $\nabla_{p, c}$ connection with principal field X and let X_a and γ be the associated field of X and the volume element of M_c respectively. Then:

(i) the connection $\nabla_{p, c}$ defines on M_c a conformal symplectic structure $\text{CSp}(m; R) = (\varphi, 2\alpha)$ having (up to a constant factor) the dual form of X as covector of Lee,
(ii) the field X has the following properties: it is an infinitesimal homothety of η, it is an invariant section of the canonical form of the set of 2-frames $O^2(M_c)$, it is a conformal symplectic infinitesimal transformation of $\text{CSp}(m; R)$;

(iii) the field X_a has the following properties: it is an infinitesimal automorphism of η, it is a Killing field;

(iv) M_c is of constant scalar curvature and is Ricci flat in the direction of X.

2. Tangent bundle manifold TM_c. M_c, being of constant scalar curvature, is as is known ($n \geq 3$) endowed with a conformal flat structure. Therefore referring to (1.14) we may get

\[\alpha = -df/f ; f \in C^\infty(M_c) \]

and call f the integrating factor associated with $\nabla_{\text{p.c.}}$. Denote by TM_c the tangent bundle manifold having M_c as basis and by $V(v^i)$ the canonical field (the field of Liouville) on TM_c. Thus we may consider the set $B^* = \{ \omega^i, dv^i \}$ as a co-vectorial basis of TM_c.

Denote (like usual) by d_{v} and ι_ω the vertical differentiation and the vertical derivation operators respectively taken with respect to B^* (d_{v} is an antiderivation of degree 1 of $\Lambda(TM)$ and ι_ω is a derivation of degree 0 of $\Lambda(TM)$ [4]).

Put

\[\lambda = \int f v \in C^\infty(TM_c), \]

where

\[v = \frac{1}{2} \sum_i (v^i)^2. \]

One has

\[\iota_\omega d_{\text{v}} = \int f \sum_i v^i \omega^i = \iota_\omega \in \wedge^1(TM_c) \]

and by (2.1) and (1.14) we get

\[d \wedge d_{\text{v}} = \int f \sum_i d v^i \wedge \omega^i = \Omega. \]

Clearly Ω is an exact symplectic form which will be called the canonical symplectic form on TM_c.

In addition we shall call l and λ the Liouville function and the Liouville form respectively on TM_c.

If $\iota: \Lambda^1(M) \to C^\infty(TM)$ is the operator of K. Yano and S. Ishihara [3] one has (with respect to B^*)

\[\iota \alpha = \sum_i t_i v^i \]

and so
If \(\partial \) denotes the Pfaffian derivative with respect \(\omega \), then according to [5], complete lift \(\alpha^c \) of \(\alpha \) is defined by

\[(2.7) \quad d\omega(t\alpha)=\alpha,\]

With the help of (1.10) one finds

\[(2.9) \quad \alpha^c=(t\alpha)\alpha-(t^2/f)\lambda+\beta,\]

where

\[(2.10) \quad \beta=\sum t_i d\nu^i.\]

One obtains

\[(2.11) \quad d\nu \alpha^c=0; \quad i_{\nu} \alpha^c=\frac{\alpha}{\nu} i_{\nu} \beta\]

and so by (2.7) and remarking that \(\alpha^c=d(t\alpha) \), one checks \((d\wedge d_x+d_\nu d\wedge)(t\alpha)=0 \). On the other hand since

\[(2.12) \quad i_{\nu}(t\alpha)=0\]

one checks \([i_{\nu}, d]=d_{\nu} \).

The complete lift \(X^c \) of \(X \) is as is known

\[(2.13) \quad X^c=(t^1)\lambda=X+(t\alpha)X^\nu-t^2V\]

where \(X^\nu=(0\安娜\安娜) \) and \(V \) are the vertical lift of \(X \) and the canonical field respectively. Referring to (2.4) and (2.5) we find at once

\[(2.14) \quad i_{\nu}\Omega=\lambda, \quad i_{X^\nu}\Omega=f\alpha, \quad i_{X}\Omega=-f\beta.\]

On the other hand taking account of (2.5), exterior differentiation of (2.10) gives

\[(2.15) \quad d\wedge \beta=\alpha \wedge \beta+t^2/f\Omega.\]

Now making use of (2.15) we derive from (2.14) the following equations

\[(2.16) \quad \mathcal{L}_\nu\Omega=\Omega, \quad \mathcal{L}_{X^\nu}\Omega=0, \quad \mathcal{L}_X\Omega=-t^2\Omega.\]

These equations assert that \(\Omega \) is homogenous of rank 1 [7] and that \(X^\nu \) and \(X \) are an infinitesimal automorphism and an infinitesimal homothety of \(\Omega \) respectively.

Further by (2.13) and (2.14) we get

\[(2.17) \quad i_{X^c}\Omega=(t\alpha)f\alpha-f\beta-t^2\lambda.\]
and therefore

\begin{equation}
\mathcal{L}_X \omega = \alpha^c \wedge \mathfrak{f} \alpha - 2t^2 \omega.
\end{equation}

But \(\alpha^c \) being exact (as \(\alpha \)) we quickly obtain

\begin{equation}
d \wedge (\mathcal{L}_X \omega) = 0
\end{equation}

and this proves that \(\omega \) is a \textit{relatively invariant} 2-form of \(X^c[6] \).

Next making use of the vertical derivation operator \(\iota_\nu \) one finds \(\iota_\nu \Omega = 0 \), and so by virtue of the definition given in [7] one may say that \(\Omega \) is a \textit{Finslerian form}.

According to [5] the complete lift \(\phi^c \) of \(\phi \) (with respect to \(B^a \)) is expressed by

\begin{equation}
\phi^c - dv^1 \wedge \omega^\nu + \cdots + dv^{2m-1} \wedge \omega^{2m} + \omega^1 \wedge dv^2 + \cdots + \omega^{2m-1} \wedge dv^{3m}.
\end{equation}

By virtue of (1.14) a short calculation gives

\begin{equation}
d \wedge \phi^c = \alpha \wedge \phi^c
\end{equation}

and so \(\phi^c \) defines on \(TM_c \) a conformal symplectic structure \(CS\{2m; R \} \).

From (2.20) we obtain

\begin{equation}
i_\nu \phi^c = -v^1 \omega^1 + v^1 \omega^2 - \cdots - v^{2m} \omega^{2m-1} + v^{2m} \omega^{3m}.
\end{equation}

Thus

\begin{equation}
\mathcal{L}_\nu \phi^c = \phi^c
\end{equation}

that is, \(\phi^c \) is \textit{homogenous of degree 1}.

If we put

\begin{equation}
i_\nu \phi = -t_1 dv^1 + t_1 dv^2 - \cdots + t_{2m} dv^{2m} = - \beta_a = - \mu v \phi (X).
\end{equation}

we obtain

\begin{equation}
i_\nu \beta_a = \alpha_a
\end{equation}

and one checks \((i_\nu d_\nu + d_\nu i_\nu) \beta_a = i_\nu \beta_a \).

Exterior differentiation of (2.24) gives

\begin{equation}
d \wedge \beta_a = \alpha \wedge \beta_a + t^i \phi^c
\end{equation}

and from (2.24) and (2.25) we find

\begin{equation}
\mathcal{L}_\nu \beta_a = \beta_a,
\end{equation}

that is, \(\beta_a \) is homogenous of degree 1.

From (2.20) we also have
\(i_X \varphi^c = i_X \varphi = -\alpha_a \).

Now by (2.23), (2.27) and (2.28) we infer

\(i_{V \cdot X} \varphi^c = \mathcal{L}_{V \cdot X} \varphi^c = -i_X \mathcal{L}_{V} \varphi^c = 0. \)

Clearly \(i_{V \cdot X} \alpha = 0 \), and so referring to 2.21 we finally may write

\(\mathcal{L}_{i_{V \cdot X}} \varphi^c = 0 \)

that is, the Lie bracket \([V, X]\) is an infinitesimal automorphism of \(\varphi^c \).

Consider now the almost symplectic form

\(\Theta = (c\alpha)(\alpha \land \lambda + \Omega) \in \land^2(TM_c). \)

By 2.4 and 2.5 exterior differentiation of \(\Theta \) gives

\(d \land \Theta = \left(\frac{\alpha^c}{\iota\alpha} - \alpha \right) \land \Theta \)

and so \(\Theta \) defines a second conformal structure on \(TM_c \) having \(\frac{\alpha^c}{\iota\alpha} - \alpha \) as co-vector of Lee.

One has

\(d_e \Theta = \alpha \land \Omega, \quad i_v \Theta = 0 \)

and with the help of (2.11) and (2.32), one checks \(d_e \Theta = [i_v, d_e] \Theta \).

Now making use of 2.16 we derive from 2.31 and 2.32

\(\mathcal{L}_V \Theta = 2\Theta, \quad \mathcal{L}_X \Theta = -t^2 \Theta, \quad \mathcal{L}_{X \cdot V} \Theta = \frac{t^2}{\iota\alpha} \Theta. \)

Hence \(\Theta \) is homogenous of degree 2, \(X \) is an infinitesimal homothety of \(\Theta \) and \(X^\Psi \) is an infinitesimal conformal transformation of \(\Theta \).

We may formulate the preceding results as follows:

Theorem. Let \(TM_c \) be the tangent bundle manifold having as basis the
manifold \(M_c \) of section 1. Let \(V, \lambda, \Omega \) and \(\iota \) be the canonical field on \(TM_c \), the
Liouville form, the symplectic canonical form and the operator which assigns to
1-forms on \(M_c \) functions on \(TM_c \) respectively. Then,

(i) \(\Omega \) is a Finslerian form, \(X \) is an infinitesimal homothety of \(\Omega \), the vertical
lift \(X^V \) of \(X \) is an infinitesimal automorphism of \(\Omega \), and \(\Omega \) is a relatively in-
vARIANT form of the complete lift \(X^c \) of \(X \);

(ii) the complete lift \(\varphi^c \) of the conformal symplectic form \(\varphi \) on \(M_c \) is a con-
formal symplectic form on \(TM_c \) and the Lie bracket \([V, X]\) is an infinitesimal
automorphism of \(\varphi^c \);

(iii) the form \(\Theta = (c\alpha)(\alpha \land \lambda + \Omega) \) is homogenous of degree 2 and defines a second
conformal symplectic structure on \(TM_c \) having \(\frac{\alpha^c}{\iota\alpha} - \alpha \) as co-vector of Lee and \(X \)
is an infinitesimal homothety of \(\Theta \).
Note. Let \(S_{x_a}(M_c) \) be the cross section determined on \(TM_c \) by the associated vector field \(X_a \) of \(X \). In consequence of (1.22) (that is the Lie derivate of \(X \) with respect to \(X_a \) vanishes) and of the theorem stated in [5] one may say that \(X^c \) is tangent to the cross-section \(S_{x_a}(M_c) \).

3. Regular mechanical system \(\mathcal{M} = \{M_c, T, \pi\} \) on \(mTM_c \). Consider now on \(TM_c \) the mechanical system \(\mathcal{M} = \{M_c, T, \pi\} \) [8] such that the kinetic energy \(T \) and semi-basic 1-form \(\pi \) be defined respectively by

\[
T = l
\]

and

\[
\pi = l\alpha.
\]

Referring to (2.6), one has

\[
d \wedge dT = \Omega
\]

and so according to J. Klein’s definition, equation 3.3 proves that the system \(\mathcal{M} \) is regular. (it has as fundamental form the symplectic canonical form of \(TM_c \)).

On the other hand a short calculation gives

\[
V(T) = 2T,
\]

Hence \(T \) is homogenous of degree 2.

If \(Z \) is the dynamical system associated with \(\mathcal{M} \) it is as is known [4] well defined by

\[
\iota_Z \Omega = d(T - V(T)) + \pi.
\]

Since \(T \) is homogenous of degree 2, the following theorem of A. Lichnerowicz [9] holds: the form

\[
\Omega - (dT - \pi) \wedge dt \in \Lambda^2(TM_c \times R)
\]

is an integral relation of invariance for \(Z + \frac{\partial}{\partial t} \).

Further one has

\[
d_\pi \Pi = \lambda \wedge \alpha, \quad \iota_\lambda \Pi = 0
\]

and

\[
d \wedge \Pi = \frac{dv}{v} \wedge \Pi,
\]

and so the equation \(d_\lambda \Pi = [\iota_\lambda, d \wedge] \Pi \) is verified.

By 3.6 and 3.7 a short computation gives
Hence II is homogenous of degree 2 as the kinetic energy T. This fact proves according to a known Proposition [3] that the dynamical system Z is a spray on M_c.

Thus we have the

Theorem. Let TM_c be the tangent bundle manifold discussed in section 2. Consider on TM_c the mechanical system $\mathcal{M} = (M_c, T, \pi)$ whose kinetic energy is the Liouville function l on TM_c, and whose semi-basic 1-form is the product by l of the principal 1-form on M_c. Then:

(i) \mathcal{M} is regular and has as fundamental form the canonical symplectic form on TM_c.

(ii) the kinetic energy T is homogenous of degree 2 and the dynamical system associated with \mathcal{M} is a spray on M_c.

References

