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§ 1. Introduction

The second fundamental form plays a very important role in the study of
submanifolds, cf. [1]. From this point of view J. Simons established in [12] a
formula for the Laplacian of the length of the second fundamental form, which
has enabled us to have a lot of global informations on submanifolds. (See for
example [2] and [7].)

On the other hand H. B. Lawson, Jr. introduced in [6] the notion of gener-
alized equators Mc

q,s and Mgβ of complex and quaternionic projective spaces,
which have stimulated the study of real hypersurfaces of complex and quater-
nionic projective spaces. (See for example [8] and [11].) His idea, which heavily
depends on the theory of fibrations formulated by B. O'Neill in [10], is first to
construct a circle bundle over a real hypersurface of the projective space by
using the fibrations which are compatible with the Hopf fibrations and second to
project known theorems for hypersurfaces of the sphere down to real hypersur-
faces of the projective space.

The study of submanifolds of codimension>l of Kahlerian and quaternionic
Kahlerian manifolds is recently started by using Simons' formula. Some of the
examples of those submanifolds are invariant submanifolds, totally real (or anti-
invariant) submanifolds and totally complex submanifolds. (See for example [3]
and [13].) Okumura introduced in [9] the notion of anti-holomorphic submani-
folds in studying real submanifolds of codimension>l in a Kahlerian manifold
using the Hopf fibration.

The purpose of this paper is to characterize a real submanifold M in a
quaternionic projective space QPm by investigating a submanifold M in the unit
sphere S4m+3, where M=π"1(M) and the fibration π : M—>M is compatible with
the Hopf fibration π : S4m+3-^QPm. In § 2 we prepare fundamental formulas for
submanifolds in a quaternionic projective space. In § 3 we review the theory of
fibrations, then establish some relations between the connections in the normal
bundles of M in QPm and of M in S4m+3. In § 4 we focus our attention to the
properties derived from the second fundamental tensors of M and M. Finally
in § 5 we deal with a special class of real submanifolds, called antiquaternionic,
in a quaternionic projective space QPm, cf. Definition 5.1, and prove a certain
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pinching problem to determine their character under some conditions.
Manifolds, submanifolds, geometric objects and mappings appearing in this

paper are assumed to be differentiable and of class C°°. Indices A, B and C run
p

from 1 to p. Σ stands for Σ
A A=l

§ 2. Real submanifolds in a quaternionic Kahlerian manifold

Let M be a quaternionic Kahlerian manifold, cf. [5] with Riemannian metric
< , >, Riemannian connection D 5nd of real dimension n+p, which is necessarily
a multiple of 4. Then there exists a 3-dimensional vector bundle A of tensors
of type (1, 1) over M satisfying the following conditions (a) and (b) :

(a) In any coordinate neighborhood 0 of M, there is a canonical local basis
{F, G, H} of Λ such that

F2=-I, G2=-I, H2=-I,
(2.1)

GH=-HG=F, HF=-FH=G, FG=-GF=H ,

where 7 is the identity tensor field of type (1, 1) over M.
(b) If I is a cross-section (local or global) of the bundle A, then D%X is also

a cross-section (local or global respectively) of Λ, where X is an arbitrary vector
field in M. By means of (2.1) the condition (b) is equivalent to the following
condition (b') :

(bx) If {F, G, H} is a canonical local basis of Λ, then

ArF= r(X)G-q(X}H,

(2.2) D$G=-r(X)F +P(X)H ,

DzH= q(X)F-p(X)G

for any vector field X in M, where p, q and r are certain local 1-forms.

Let 0 and Of be arbitrary intersecting coordinate neighborhoods in M and

let {F, G, H} and {F7, G', H'} be canonical local bases of Λ over O and 0'
respectively. Then Fx, G' and //' are linear combinations of F, G and H in

Or\0', that is,

F'=
(Z.o)

G7— s21F+s22G+s23// ,

with functions s^ (/3, r=l, 2, 3) in Or\0f. The coefficients s^ appearing in (2.3)
form an element sόfr=(sβr) of the proper orthogonal group 50(3) of dimension 3
because both {F, G, H} and {Fx, G7, #x} satisfy (2.1).

Let M be an n-dimensional real submanifold with Riemannian metric g
immersed isometrically in a quaternionic Kahlerian manifold M by immersion i.
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From now on we use i indiscriminately for the differential mapping of the im-
mersion L For any vector fields X and Y in M we have

(2.4) <ίX,iYy=g(X, Y).

The tangent space TX(M} to M at x is identified with the subspace of TίU)(M).
Then T(M}= U TX(M) is the tangent bundle to M. The normal space NX(M)

X&M

to M at x is defined as the orthogonal complement to the tangent space TX(M]
in TM(M\ Then N(M)= U NX(M) is the normal bundle to M. If Mis covered

X(ΞM

by a system of coordinate neighborhoods {0} , then M is considered to be covered

by a system of coordinate neighborhoods {0} > where 0=ι"1(0)Λ^ Let Nlf N2,
••• , Λ/p form in 0 an orthonormal local basis of the normal bundle N(M\ The
transformations of a tangent vector field X and normal vector fields NA(A=Ϊ,
••• , p) in 0 by F, G and /f may be written as

FiX=ιφX+*ΣuA(X)NA,
(Z.5)

FNA=-iUA+Σφ'ABNB,
(2.6) *

= -iWA B

where φ, ψ and θ are endomorphisms of the tangent bundle to 0, φr

AB, Ψ'AB and
θf

AB are endomorphisms of the normal bundle to 0 and uAf VA and WA are local
1-forms on 0 satisfying

(2.7) uA(X)=g(UA, X} , vA(X)=g(VA, X} , wA(X}=g(WA, X} ,

because of (2.4). We easily find that

/o Q\ jr/ r / it it nf nf
(6>o) ΨAB= —ψBA , ΨAB= —ψBA , tfAB— —VBA .

Applying F, G and H to (2.5) and making use of (2.1), we obtain the following
relations (2.9)~(2.12) :

θφX=φX+'ΣuA(X)WA,
(z.iuj

θφX=-φX+Σ,vA(X)WA,
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φθX=-ψX+ ΣwA(X)UA ,
A

and

(2.11)
υA(φX)= - Σ vB(X}ψ'BA , wA(ΘX)= -

B B

=- Σ wB(X}φ'BA+uA(X) ,

=- ΈuB(X)θ'BA+vA(X) , uA(ψX)=-ΣvB(X)φ'BA+wA(X),
B B

(2.12)

Next applying F, G and H to (2.6) and making use of (2.1), we obtain the follow-
ing relations (2.13)^(2.16) :

(2.13)
ΦVA=-

B B

φWA=UΛ-ΣΘ'ABVB,

=VA-^φ'ABWB, φVA=WA-Σφ'ABUB,B B

φWA=-VA-ΣΘ'ABUB,
B

'ACΦCB , wB(wA)=δAB+ -ΣθΆ
C C

(2.14)

and

(2.15)

c

AcθfCB , UB(VA)=-Θ'AB+ ΣΦACΦCB
C

(2.16)
u>B(VA}=φ'AB+Σψ'ACθ'CB,

C

uB(WA)=ψ'AB+ T_,θ'ACφ'CB , vB(UA )=θ'AB+Σφ'ACφ'CB .
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Let V denote the Riemannian connection induced in M. Then Gauss and
Weingarten formulas for the immersion ι are given respectively by

(2.17) DtXiY=iVχY+ Σg(HAX, Y}NA,

(2.18) DtZNA=-iHAX+Dz»NA,

where HA are the second fundamental tensors associated with the normal vector
fields NA(A=1, •••, p) and DN denotes the induced connection from D to the
normal bundle of M in M. DX

N may be expressed as DX

NNA~J^LAB(X)NB by
B

the so called third fundamental forms LAB. Differentiating (2.5) covariantly and
making use of (2.2), we obtain the following relations (2.19) and (2.20):

A, X)HAY-g(HAY, X)UA}
A

+r(iY}φX-q(iY}ΘX,

(2.19) W)X= Σ \g(VA, X)HAY-g(HAY, X)VA]
A

-r(iY}φX+p(iY)ΘX,

(^Y6)X=^{g(WAf X}HAY-g(HAY, X}WA}
A

+q(iY)φX-p(ίY)ψX

and

IBY, X}φ'BA-uB(X}LBA(Y}}
B

+r(iY}VA(X)-q(iY}wA(X),

(2.20) VYvA}X=-g(HAY, X)+ Σ {g(HBY, X)φ'BA-vB(X)LBA(Y)}
B

-r(iY)uA(X)+p(iY)wA(X),

(ΊγwA)X=-g(HAY, X)+Σ{g(HBY, X}θ'BA-wB(X}LBA(Y)}
B

+q(iY)uA(X}-p(SY)vA(X}.

Next differentiating (2.18) covariantly and making use of (2.2), we obtain the
following relations (2.21) and (2.22):

Dx

Nφ'AB=g(X, HBUA-HAUB}+r(ιX)ψ'AB-q(ιX}θ'AB,

(2.21) Dx

Nφ'AB=g(X, HBVA-HAVB)-r(ιX)φ'AB+p(ιXWAB,

Dx

Nθ'AB=g(X,HBWA-HAWB)+q(ιX)φ'AB-p(ιX}φ'AB

and
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^χUA=φHAX+ Σ {LAB(X)UB-φ'ABHBX}
B

(2.22) 7* VA=φHAX+ Σ {LAB(X}VB-ψ'ABHBX} -r(ιX)UA+p(iX)WA ,
B

^XWA=ΘHAX+Έ{LAB(XWB-Θ'ABHBX} +q(iX}UA-p(ιX}VA .
B

We now note that (2.20) and (2.22) are equivalent to each other.
Now let the ambient manifold M be a quaternionic projective space QR^n+p:>/i

of real dimension n-\-p equipped with the standard symmetric space metric nor-
malized so that the maximum Q-sectional curvature is 4. Then the curvature
tensor R of ρp^+p)/4 is written as

R(X,

, Ϋ}FZ
(2.23)

-(GX, Z}GY-2<GX,

+<H, zyπx-(Hx, zyπγ-2(Hx, yπz ,

cf. [5]. Thus, using (2.5) and (2.6), we have the following Codazzi and Ricci
equations (2.24) and (2.25) respectively :

= Σ {LΛB(X)HBY-LAB(Y}HBX}
B

(2.24) -g(UA, Y)φX+g(UA, X)φY-2g(φX, Y)UA

-g(VA, Y}ψX+g(VA, X)ψY-2g(ψX,

-g(WA, Y}ΘX+g(WA, X}ΘY-2g(ΘX,

and

RN(X, Y)NA=Σ{g(LHA, HB-]X, Y)
B

+g(UA, Y)g(UB, X}-g(UA, X)g(UB, Y)-2g(φX, Y)φ'AB

(2.25)
+g(VA, Y)g(VB, X)-g(VA, X}g(VB, Y}-2g(φX, Y)φ'AB

+g(WA, Y}g(WB, X)-g(WA, X}g(WB, Y}-2g(ΘX, Y)Θ'AB}NB,

where [_HA, HB~\—HAHB—HBHA and RN is the curvature tensor of the connection
DN in the normal bundle of M in QP^+P>/\ i. e.,

R"(X, Y-)=Dx

NDY

N-DY

NDx

N-D?x,-n.

REMARK 2.1. If M is an invariant submanifold of QPίn+^'\
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RN(X, Y)NA

= Έ{-2g(ψX, Y)φ'AB-2g(ψX, Y}ψ'AB-2g(ΘX, Y}Θ'AB}NB,
B

because M is totally geodesic, cf. [3], and uA=vA=wA=Q (A=l, •••, p).

§ 3. Fibrations and immersions

Let Sn+p+B(a) be the hypersphere of radius α(>0) in the quaternionic space
,Qcn+p+4)/4 Qf quaternionic dimension (rc+/>+4)/4, which is identified with the
Euclidean space Rn+p+\ The unit sphere Sm(l) will be simply denoted by Sm.
Let π: sn+p+3-> QP<n+p^* be the natural projection of Sn+p+Ά onto Qp^^f*
defined by the Hopf fibration S3 — Sn+p+s — QP™+W. As is well known, sn+p+3

admits a Sasakian 3-structure {£, 9, ζ} and each fibre π~l(χ) of χςΞQP^n+p^/i is a
maximal integral submanifold of the distribution spanned by I, η and ζ, cf. [4].
Therefore, the base space ρp<w +p>/ 4 admits the induced quaternionic Kahlerian
structure of constant ζ)-sectional curvature of 4, cf. [5]. We consider a fibration
T T : M-M which is compatible with the Hopf fibration π: Sn+p+* - ζλP<Λ +*»>4,
where M is an n-dimensional real submanifold of gp c π +p>/ 4 and M=π~1(M) is a
submanifold of Sn+p+B. More precisely speaking, π : M-*M is a fibration with
totally geodesic fibres such that the following diagram (3.1) is commutative .

(3.1)

where ϊ : M-*Sn+p+3 and z : M-*QP<n+p)H are isometric immersions.
We are now going to give an example which satisfies the commutative

diagram (3.1). Consider the quaternionic space <3(π+5)/4 naturally imbedded in
ρcr i +p+4)/4 as a totaπy geodesic submanifold. Q ( n + δ ) / 1 is identified with the product
space Qq+1xQ8+l, where q+s=(n—3)/4. Hence the product space of two hypers-
pheres S4<2+3(α) in Qq+1 and S4s+3(6) in Qs+1, is naturally considered to be a sub-
manifold in <2(7l+5)/4. On the other hand Sn+p+* is the unit hypersphere of
ρctt+p+4)^ τhus^ when fl2+£2z=1? the product space M,q+B,,s+,=S4q+B(a)xS4s+s(b)

may be considered to be a submanifold in Sn+p+3 of codimension p. It is now
clear that the projected base space M^s=π(M^q+3>is+3) of M4g+3,4s+3 by the fibration
π, which is compatible with π, is an example for submanifolds satisfying the
commutative diagram (3.1). A submanifold M in Q jp

( n+^/4 is sometimes denoted
also by Mgβ if M is congruent to Mgβ in the sense of quaternionic projective
geometry.

Let < , > denote indiscriminately the Riemannian metric of Sn+p+3 as well
and g be the induced Riemannian metric of M from < , > by the immersion ϊ.
XL denotes the horizontal lift of a vector field X given in the base space for
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each of the fibrations π and π. Since the fibration π is compatible with the
fibration π, there exist in M unit vector fields ξ, η and ζ which are vertical
with respect to the fibration π: M -» M and satisfy ϊ(ζ)=ζ, ι(η)=^ and ?(ζ)= ζ.
By lifing mutually orthonormal local vector fields NA(A=1, - , p) around #eM,
we have local normal vector fields NA

L(A=1, ••• , p) to M which are also mutually
orthonormal around any point of y^M satisfying π(y}—x. Since the above
diagram (3.1) is commutative it is easily verified that ι(XL)= (ιX)L.

Let Dy V, DN and HA denote respectively the Riemannian connection of
Sn + p f 3, the induced Riemannian connection of M in Sn+p+s, the induced connec-
tion in the normal bundle of M in Sn+p+3 and the second fundamental tensors of
M in Sn+p+B associated with the normal vector fields NA

L(A=1, ~ , p). First we
have Gauss and Weingarten formulas for the immersion ϊ.

(3.2) D^ΪΫ=ι^7+ Σg(HAX, Ϋ)NA

L ,
A

(3.3) D^NA

L=-I

where X, Ϋ are tangent vectors to M and LAB are the so called third fundamental
forms of the immersion ϊ. Next fundamental equations for fibrations π and π
are as follows, cf. [4] :

(3.4) D$LΫL=(D$Ϋ)L

(3.5)

+g(φLXL,

and

(3.6) Dj-XL=-FLXL, DyXL=-GLXL,

(3.7) VξX
L=-φLXL , %XL=-φLXL ,

where X, Y are tangent vector fields to -M and X, Ϋ are those to QP^+P)'*. If
we combine (2.17) with (3.4), (3.5) with (3.2), (2.18) with (3.4) and (3.5) with (3.3),
then using (2.5) and (2.6), we have the following relations (3.8)^(3.12) because
of the commutativity of the diagram (3.1) :

(3.8)

g(φLXL,YL)=g(φX,Y)L,

g(φLXL, YL)=g(ψX, Y)L, g(θLXL, YL}=

(3.10) HΛX
L=(HAX)L-g(UA, X)Lξ-g(VA, X)Lη-g(WA>
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g(HAX
L,ξ)=-g(UA,X}L

t

(3.11)
g(HAX

L, ri=-g(VA, X)L, g(HΛX
L

f ζ)=-g(WA, X}L

(3.12) LAB(XL}=LAB(X)L.

Moreover, by (3.6), (3.3) and (2.6), we have

<FLNA

L, NB

Ly=φ'AB

L=-LAB&,

<HLNA

L, NB

Ly=θ'AB

L=-LAB(ζ).

On the other hand, since {?, η, ζ} gives a Sasakian 3-structure in Sn+p+s, ς, η
and ζ are mutually orthonormal Killing vector fields. Thus it follows

and

(3.15) _ r _] _ C!. J '

Combining (3.14) and (3.15) with (3.2), or using the fact that all fibres of fibra-
tions π and π are totally geodesic, we have

(3.16) g(ffAξ, ξ}=g(HAη, τj)=g(ffAζ, 0-0 ,

(3.17) g(HAη, Q=g(ff£, ξ}=g(HAζ, tf=Q .

The curvature tensor R of Sn+p+3 is given by

(3.18)

for any tangent vectors X, Ϋ and Z in Sn+p+3 because Sn+p+* has constant
curvature 1. Thus in this case Ricci equation is reduced to

(3.19) R»(X, Ϋ}NA

L=Σ§([_HA, HB-]Z, Ϋ}N L

where [HA, HB']—HAHB—HBjRA and '̂v is the curvature tensor of the connection
DN in the normal bundle of M in Sn+p+8. By (3.19) we have

LEMMA 3.1. The induced connection DN in the normal bundle of A? in Sn+p^
is flat if and only if the second fundamental tensors HA and HB of M commute
for any pair (A, B] (A, B=l, — , />)•

Now we express the flatness of the connection DN in the normal bundle of
M in terms of conditions imposed on M. Using (3.10) and (3.11), we have
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[_HA, HB-]XL

=(IHA, HB-]X}L+g(HAUB-HBUA, X}Lξ

(3.20) +g(HAVB-HBVλ, X}Lη+g(HAWB-HBWA,

-g(UB, X}LHAξ+g(UA, X)LHBζ-g(VB, X)L

+g(VA, X}LHBη-g(WB, X)LHAζ+g(WA, X

LEMMA 3.2. // the connection DN in the normal bundle of M in Sn+ί)+3 is
flat, then the curvature tensor RN of the connection DN in the normal bundle of
M in Qp< "+p >n ts expressed by

(3.21) R»(X, Y)NA

= Έ{-2g(φX, Y)φ'AB-2g(φX, Y)φ'AB-2g(ΘX, Y)Θ'AB}NB.
B

Proof. Taking the inner product of (3.20) and YL and making use of Lemma
3.1 and (3.11), we have

g(LHA, HB-]X, Y}=g(UA, X}g(UB, Y)-g(UB, X}g(UA, Y)

(3.22) +g(VA, X)g(VB, Y)-g(VB, X)g(VA, Y)

+g(WA> X)g(WB, Y)-g(WB, X)g(WA, F).

Thus (3.21) follows from (2.25) Q. E. D.

DEFINITION 3.3. Let M be a real submamfold of a quatermonic Kάhlenan
manifold M. If φAB, Φ'AB and ΘAB appearing in (2.6) satisfy the following relation
(3.23), we say the structure induced in the normal bundle of M in M is parallel.

Dx

Nφ'AB= r(ιX}ψ'AB-q(ιX)θf

AB ,

(3.23) Dx

Nφf

AB=-r(ιX)ψ'AB +P(ιXWAB ,

DX

NΘ'AB= q(ιX}φ'AB-p(ιX}ψ'AB.

LEMMA 3.4. Let M be a real submamfold of a quatermonic Kahlenan mani-
fold M. The structure induced in the normal bundle of M in M is parallel if
and only if the following relations in (3.24) are valid :

(3.24) HBUA=HAUB , HBVA=HAVB , HBWA=HAWB ,

for all A, B=l, - , p.

Proof. This is straightforward by (2.21) Q. E. D.

LEMMA 3.5. // the connection DN in the normal bundle of M in Sn+p+z is
flat, then the structure induced in the normal bundle of M in Qp^+p)/4 is parallel.
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Proof. Taking the inner product of (3.20) and ξ and making use of Lemma
3.1, (3.16) and (3.17), we get HBUA=HAUB. The same process derives the rest
of the relations in (3.24). Lemma 3.4 leads to the conclusion. Q. E. D.

THEOREM 3.5. In order that the connection DN in the normal bundle of M
in Sn+p+B is flat, it is necessary and sufficient that the curvature tensor RN of the
connection DN in the normal bundle of M on Qp^n+p^^ ΪS expressed by (3.21), that
is,

RN(X, Y}NA

= Σ{-2g(φX, Y}φ'AB-2g(ψX, Y}ψ'AB-2g(ΘX, Y)Θ'AB}NB
B

and the structure induced in the, normal bundle of M in Qp^n+p^4

 ΪS parallel.

Proof. Necessity follows from Lemmas 3.2 and 3.5. If we prove \_HA, HB~]
—0, then by Lemma 3.1 we see the condition is sufficient. Since (3.21) holds, we
have g([_HA, HB~\XL, YL)=Q by (3.20), (3.8) and (3.11). On the other hand, since
(3.23) or, equivalently, (3.24) holds, we have

, HB~]XL, η}=g([_HA, HB^XL

f ζ)=0

by (3.20), (3.16) and (3.17). Finally^?, //^jmd HAζ JLTQ horizontal because of
(3.16) and (3.17), therefore so are HAHBξ, HAHBη and HAHBζ. Thus

HBlζ, ζ)

, HB~]η, 0=S(LHA, HB-\ζ, ξ}=g([_HA, M, ^=0 .

Since HA are symmetric tensors, we may conclude [HA, HB^=0 . Q. E. D.

§ 4. The second fundamental tensors HA of M and HA of M.

First we investigate the relations between the mean curvature vector fields
μ of M and μ of M. The mean curvature vector field μ of M is defined by

(4.1) A/=^-Σ (trace //χWA

and μ of M by

(4.2) /z= _A_2 (trace βA)NA

L .

It is well known that μ and μ are independent of the choices of the local bases
{NA} and {NA

L}.

LEMMA 4.1. At any point of y^M we have

(4.3) (trace #0( Jθ=(trace HA)
L(y)=(trace HA}π(y] .
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Consequently M is minimal in Qp^n+p^4 if and only if M is minimal in Sn+p+3.

Proof. Let {Elf •••, En} be an orthonormal basis of Tπ^(M). We choose
an orthonormal basis {Elr •••, ^n+s) of Ty(M) in such a way that Ei=El

L for
x=l, •••, n, En+ί=ξ, En+z=η and £n+8=ζ. Then because of (3.8) and (3.16) we
get

trace HA=
n^g(HAElf EJ

f, ξ)+g(HAη, η)+g(ίl£, Q

Thus the first equality in (4.3) is proved. The second equality in (4.3) follows
from the definition of lifted functions in a fibred Riemannian space, cf. [4].

Q. E. D.
By Lemma 4.1, we have

COROLLALY 4.2. The following relation (4.4) holds between the mean curvature
vector fields μ of M and μ of M,

(4.4) *

Proo/. This is straightforward by (4.1) and (4.2). Q. E. D.

LEMMA 4.3. // the mean curvature vector field μ of M is parallel with respect
to the induced connectwo DN in the normal bundle of M in Sn+p+3, then the mean
curvature vector field μ of M is parallel with respect to the induced connection
DN in the normal bundle of M in QP^n+p:>H.

Proof. Since (3.12) is valid, we have

(n+3)DXL»μ= Σ {(XL trace ^)Λf/+(trace HA}DχL

NNA

L}
A

= Σ {^L(trace HA)
LNΛ

L+(trace HA)
L(DX

NNΛ)
L}

(4.5)

- Σ {(X trace HA)NA+(trace HA}DX

NNA}
L

Thus DχLNβ=Q implies Dx

Nμ=Q. Q. E. D.
We £hall now relate the lengths of the second fundamental tensors HA of

M and HA of M. Choose orthonormal bases {Et} and {Et} in the same way as
in the proof of Lemma 4.1. Using (3.10), (3.11) and (3.17), we see that
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trace #,'= Σ? Stfk'ί,, £,)

, Et)
Lζ-g(VA, El}

Lη-g(WA,

, HAξ)+g(HAτ],

= Σ (g(flA(HAEtf, Et

L)+g(UΛ,1=1

(4.6) +##,?, HAξ )+g(HAη,

= Σ {g(HJEu Etf+gdJ*, E^^g(VA, El)
L2+g(WA, Et)

L2}
1 = 1

+g(UΛ, UA)
L+g(VA, VA)

L+g(WA, WA}
L

= {trace HΛ +2g(UA, UA}+2g(VA, VA)+2g(WA, WA}}L ,

Hence we have the following relation (4.7) :

(4.7) Σ trace #/

UA}+g(VA, VA)+g(WA, WA)}L.

Next we rewrite (4.7) using the scalar curvatures r of M and f of M. Since
the curvature tensor R of Qpίn+p^* is expressed by (2.23) Gauss equation for
the immersion i: M —> Qp< n+p>ι* is given by

g(R(X, Y)Z, W)=g(Y, Z}g(X, W}-g(X, Z}g(Y, W)

+g(φY, Z)g(φX, W}-g(φX, Z)g(φY, W)~2g(φX, Y)g(φZ, Y)

(4.8) +g(φY, Z}g(φX, W)-g(ψX, Z}g(ψY, W)-2g(φX, Y}g(φZ, Y)

+g(ΘY, Z)g(ΘX, W)-g(ΘX, Z)g(ΘY, W}-2g(ΘX, Y}g(ΘZ, Y)

+ Σ{g(HAY,Z)g(HAX, W)-g(HAX,Z)g(HAY, W}},

where R denotes the curvature tensor of M. Thus using (2.5) and (2.9), we have

A, UΛ)+g(VA, VA)+g(WA, WA)}

(4.9)
+ Σ (trace HAy~ Σ trace /// .

Λ Λ

If M is minimal, substituting (4.9) with trace HA—Q into (4.7), it follows

(4.10) Σ trace///

, UΛ)+g(VΛ, VA)+g(WA, WΛ}}.
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On the other hand because of (3.18), Gauss equation for the immersion ϊ : M— >
ςn + p + 3 jg given by

g(R(X, Ϋ}Z, W}=g(Ϋ, Z)g(X, W)-g(X, Z)g(Ϋ, W)
(4.11) _ _ ___

+ Σ{g(HAΫ, Z)g(HAX, W)-g(HAX, Z)g(HAΫ, W}},

where R denotes the curvature tensor of M. Thus we have

(4.12) f=Oz+2)(w+3)+ Σ (trace HA)
2- Σ trace HA

2 .
A A

Substituting (4.9) and (4.12) into (4.7) and making use of Lemma 4.1, we obtain
the following relation (4.13) :

(4.13) P+(3n-6)-rL+Σ {g(UA, UA}+g(VA, VA)+g(WA,

LEMMA 4.4. Inequalities

Σ trace #/^(Σ trace HA

2)L

A A

and

are always valid. In both cases equalities hold if and only if the submamfold M
of Qp(n+pv* is invariant, that is, M is QPn/ί.

If I is a totally geodesic immersion, the relation (4.7) leads to

LEMMA 4.5. Suppose ϊ is a totally geodesic immersion of a Riemannian
manifold M into Sn+p+z. Then i is also a totally geodesic immersion of M into
ρp(n+p)/4 and M ιs an ιnvanant submamfold of QP^n+^'\ that is, M is QPn/*.

PROPOSITION 4.6. In a quatermonic projectwe space QPCn+ί))/4, a compact
totally geodesic submamfold M of real codimension £<(n+9)/12 or equwalently
of the scalar curvature satisfying r>n(n+8)—(6pJrn)/(2—l/p} is necessarily an
invariant submamfold and consequently a quatermonic projectwe space QPn/*.

Proof. From (2.15) we have

(4.14) Σg(VA, VA)=

Since M is totally geodesic, it follows from (4.7)

Σ trace HA*=2^{g(UA, UA)+g(VA, VA)+g(WA, WA}}
A A
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and from (4.10)

Σ trace /7/^n(n+8)-r-3ί <(n+3)/(2-l//>) .
A

Considering Lemma 4.1, we see that M is minimal. Thus applying Simons' result,
cf. [12], to M, we obtain that M is totally geodesic. By Lemma 4.5 M is neces-
sarily QPnli. Q.E.D.

COROLLARY 4.7. // n^O (mod 4), ί/ι#rg is no n-dimensional compact totally
geodesic submamfold of codimension £<(n+9)/12 or of the scalar curvature r
>n(n+8)—(6p + n)/(2—l/p) in a quaterniomc projective space QP^n+^/4.

THEOREM 4.8. // a compact minimal submamfold M of real codimension p
of a quaterniomc projective space Qp^n+^^ satisfies either of the following equi-
valent inequalities

(4.15) Σ trace HA

2<(n-l2p+9)/(2-l/p) ,

(4.16) r>n(n+8)-(6ί+n)/(2

then M is a quaterniomc projective space QPn/* .

Proof. From (4.7) and (4.14) it follows

(4.17) Σ trace #/^Σ (trace HA

2)L+6p

and from (4.10)

(4.18) Σ trace HA*^n(n+8)-r-3p

Since M is minimal so is M by Lemma 4.1. Thus in both cases applying Simons'
result to M, we see that M is totally geodesic. By Lemma 4.5 M is necessarily
QPn/\ Q.E.D.

§ 5. Ant i- quaterniomc submanif olds.

If M is an invariant submanifold of a quaternionic Kahlerian manifold Λf,
then at any point x^M we have

(5.1) FTX(M) 1 NX(M) , GTX(M) 1 NX(M) , HTX(M) 1 NX(M) ,

or equivalently

(5.2) FNX(M) 1 TX(M) , GNX(M) [ TX(M) , HNX(M) 1 TX(M} .

On the other hand if M is a totally real (or anti-invariant) submanifold of a
quaternionic Kahlerian manifold M, then at any point x^M we have
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(5.3) FTX(M] i TX(M) , GTX(M) 1 TX(M) , HTX(M} 1 TX(M} .

In this section we shall consider a submanifold M which satisfies the follow-
ing conditions at any point x

(5.4) FNX(M) 1 NX(M] , GNX(M} 1 NX(M) , HNX(M)

DEFINITION 5.1. Let M be a submanifold of a quatermonic Kdhlenan mani-
fold M with canonical local basis {F, G, H}. We call M anti-quaternionic sub-
manifold of M if M satisfies the condition (5.4) at any point

REMARK 5*2. In other words, M is an anti-quaternionic submanifold of M
if and only if all of φ'AB, ψAB and Θ'AB in (2.6) vanish.

LEMMA 5.3. A submanifold M of a quatermonic Kdhlenan manifold M
cannot be totally real and anti-quaternionic at the same time.

Proof. Let M and M be of real dimensions n and n+p respectively. Suppose
M is totally real and anti-quaternionic at the same time, it easily follows from
(5.3) and (5.4) that p should satisfy both p^3n and n^3p. This is a contradiction.

Q. E. D.

REMARK 5.4. In the complex case the corresponding condition to anti-qua-
ternionic is anti-holomorphic. It is possible that a submanifold of a Kahlerian
manifold is totally real and antiholomorphic at the same time. For example
consider the real axis in the complex plane.

RROPOSITION 5 .5. Let M be an n-dimensional anti-quaternionic submanifold
of a quatermonic projechve space Qp(n+p^* Of real dimension n+p and let π :
M-+M be a fibration which is compatible with the Hopf fibration π : Sn+p+z — >
ρpcπ+p)/^ Then the mean curvature vector field μ of M is parallel with respect
to the induced connection DN in the normal bundle of Mm Qp(n+pm if and only
if the mean curvature vector field μ of M is parallel with respect to the induced
connection DN in the normal bundle of M in Sn+p+B.

Proof. By Lemma 4.3 we have only to prove that μ is parallel if μ is
parallel. From (4.2) it follows that

= Σ {(ξ trace ^)yV/+(trace HA)D,NNA

L

(5.5) D,Nβ= Σ {(η trace ^)Λ^L+(trace HA}Dη

NNA

L],

Dζ

Nβ= Σ {(ζ trace ̂ )^L+(trace HA}Dζ

NNA

L} .

Because of Lemma 4.1 trace HA are invariant functions with respect to f, η and
ζ, that is

(5.6) ξ trace HA^η trace HA=ζ trace HA=0 .
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Moreover since M is anti-quaternionic, by (3.13) and Remark 5.2 we have

(5.7) D ,»NA

L

Dζ

NNA

L

Thus we obtain

(5.8) Dξ

Nμ=D,Nβ = Dζ

Nμ = U .

Considering (4.5) and (5.8), we see that β is parallel with respect to the connec-
tion DN. Q. E. D.

PROPOSITION 5.6. // M is an anh-quatermomc submamfold of QP^n+py/\ we
have (3.24), namely

HBUA=HAUB , HBVA=HAVB , HBWA=HAWB .

Proof. By Lemma 4.3 and Remark 5.2 this is straightforward. Q. E. D.

PROPOSITION 5.7. Let M be an anti-quatermomc submanifold of Qp^n+p^4,
The connection DN in the normal bundle of M in Qp^n+p^4 is flat if and only if
the connection DN in the normal bundle of M in Sn+p+B is flat.

Proof. This follows easily from Lemma 3.2, Proposition 5.6 and Theorem
3.5. Q. E. D.

THEOREM 5.8. Let M be an n-dimensional compact minimal antiquaternionic
submamfold of a qiiaternionic projective space QP ( 7 ? +P>/4 of real dimension n+p.
If either of the following equivalent inequalities

(5.9) Σ trace ff^(n-1

(5.10) r^n(n+8)

holds everywhere on M, then M is M%ti in QPU+1)/4 for some q and s satisfying

If p=l, Theorem 5.8 is Lawson's result as stated in the following Corollary
5.9 because a hypersurface in ζλPC7l+1)/4 is anti-quaternionic. (See Theorem in [6])

COROLLARY 5.9. Let M be an n-dimensional compact minimal hypersurface of
φpcτn-1)/^ jy e<ίffιer Of f j ι e equivalent inequalities

(5.11) trace H2^n-

(5.12)
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holds everywhere on M, then M is M$s for some q and s satisfying q+s=(n— 3)/4.

Proof of Theorem 5.8. Since M is anti-quaternionic, by (4.14) we have

(5.13)
A A

Thus from (4.7) and (5.9) it follows

(5.14) Σ trace HA

2= Σ (trace HA

2)L+6p

and from (4.10) and (5.10)

(5.15) Σ trace HA

2 = n(n+8)-r-3p

Since M is minimal, M is also minimal by Lemma 4.1. If in (5.14) and (5.15)
equalities are not satisfied, we see that M is QPn/4 by Theorem 4.8. But this
is impossible because M is anti-quaternionic. Thus equalities necessarily hold in

both (5.14) and (5.15). From the result of Chern-do Carmo-Kobayashi, cf [2], it fol-

lows that Mis isometric to Mm,n+^m=Sm(Vm/(n+3))xSn+3-m(V(n+3-nή/(n+S))

in Sn+3+1 and the second fundamental tensor H of Mm,n + 3_m in Sn+B+1 is parallel.
Considering the fibration π is compatible with that of π, we see the second
fundamental tensor H of M in ζλPCn+1)/4 and each of φ, ψ and θ appearing in

(2.5) are commutative. Thus ra=4#+3 and n+3— m=4s+3 for some q and s
satisfying q+s= (n— 3)/4. (For detail see [11]) Hence M=π(M4q+s,4S+s)=M$g.

Q. E. D.
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