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§1. Introduction

The second fundamental form plays a very important role in the study of
submanifolds, cf. [1]. From this point of view J. Simons established in [12] a
formula for the Laplacian of the length of the second fundamental form, which
has enabled us to have a lot of global informations on submanifolds. (See for
example [2] and [7].)

On the other hand H. B. Lawson, Jr. introduced in [6] the notion of gener-
alized equators M, and M@, of complex and quaternionic projective spaces,
which have stimulated the study of real hypersurfaces of complex and quater-
nionic projective spaces. (See for example [8] and [117].) His idea, which heavily
depends on the theory of fibrations formulated by B. O’Neill in [10], is first to
construct a circle bundle over a real hypersurface of the projective space by
using the fibrations which are compatible with the Hopf fibrations and second to
project known theorems for hypersurfaces of the sphere down to real hypersur-
faces of the projective space.

The study of submanifolds of codimension>1 of Kihlerian and quaternionic
Kihlerian manifolds is recently started by using Simons’ formula. Some of the
examples of those submanifolds are invariant submanifolds, totally real (or anti-
invariant) submanifolds and totally complex submanifolds. (See for example [3]
and [13].) Okumura introduced in [9] the notion of anti-holomorphic submani-
folds in studying real submanifolds of codimension>1 in a Ké&hlerian manifold
using the Hopf fibration.

The purpose of this paper is to characterize a real submanifold M in a
quaternionic projective space QP™ by investigating a submanifold A in the unit
sphere S*™+3 where M=x"(M) and the fibration =: M — M is compatible with
the Hopf fibration #: S'™**— QP™. In §2 we prepare fundamental formulas for
submanifolds in a quaternionic projective space. In §3 we review the theory of
fibrations, then establish some relations between the connections in the normal
bundles of M in QP™ and of M in S‘™*:. In §4 we focus our attention to the
properties derived from the second fundamental tensors of M and M. Finally
in §5 we deal with a special class of real submanifolds, called antiquaternionic,
in a quaternionic projective space QP™, cf. Definition 5.1, and prove a certain
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pinching problem to determine their character under some conditions.
Manifolds, submanifolds, geometric objects and mappings appearing in this
paper are assumed to be differentiable and of class C*. Indices A, B and C run

Y4
from 1 to p. > stands for X .
A A=1

§2. Real submanifolds in a quaternionic Kihlerian manifold

Let M be a quaternionic K#hlerian manifold, cf. [5] with Riemannian metric
{, >, Riemannian connection D &nd of real dimension n+p, which is necessarily
a multiple of 4. Then there exists a 3-dimensional vector bundle 4 of tensors
of type (1, 1) over M satisfying the following conditions (a) and (b):
(a) In any coordinate neighborhood O of M, there is a canonical local basis
{F, G, H} of A such that
Fi=—], G*=—1I, H*=-—1T,
2.1)
GH=—HG=F, HF=—FH=G, FG=—-GF=H,

where [ is the identity tensor field of type (1, 1) over M.

(b) If X is a cross-section (local or global) of the bundle A, then D3X is also
a cross-section (local or global respectively) of A, where X is an arbitrary vector
field in M. By means of (2.1) the condition (b) is equivalent to the following

condition (b’):
(b’) If {F, G, H} is a canonical local basis of 4, then

D3F= HX)G—q(X)H ,
(2.2) D3G=—r(X)F +p(X)H ,
DiyH= o X)F—p(X)G

for any vector field X in M, where p, g and r are certain local 1-forms.
Let O and O’ be arbitrary intersecting coordinate neighborhoods in M and
let {F,G, H and {F’,G’, H'} be canonical local bases of A over O and O’
respectively. Then F’, G’ and H’ are linear combinations of F, G and H in
émé’, that is,
F'=s,F+s,G+s,H,

2.3)
G’ =551 F 455G +555H , H' =54 F+54,G+535sH

with functions sg (8, =1, 2, 3) in ONO’. The coefficients s appearing in (2.3)
form an element s3p=(ss) of the proper orthogonal group SO(3) of dimension 3
because both {F, G, H} and {F’, G/, H'} satisfy (2.1).

Let M be an n-dimensional real submanifold with Riemannian metric g
immersed isometrically in a quaternionic Kghlerian manifold M by immersion i.
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From now on we use : indiscriminately for the differential mapping of the im-
mersion 7. For any vector fields X and Y in M we have

(2.4) GX, iY)Y=g(X, ).

The tangent space T,(M) to M at x is identified with the subspace of Tc.,(M).
Then T(M)= g,, T.(M) is the tangent bundle to M. The normal space N (M)

to M at x is defined as the orthogonal complement to the tangent space T.(M)
in Tin(M). Then NM)= g{Ni(M) is the normal bundle to M. If M is covered

by a system of coordinate neighborhoods {O}, then M is considered to be covered

by a system of coordinate neighborhoods {0}, where O=z“(é) NM. Let N,, N,,
-+, N, form in O an orthonormal local basis of the normal bundle N(3). The
transformations of a tangent vector field X and normal vector fields N (A=1,
<+, p)in O by F, G and H may be written as

05 FiX=19 X+ Su(X)Nu,

Gzqu,/)X—l—ﬁV_]vA(X)NA, HiX:i9X+§JwA(X)NA;

(2.6) FIVA: —“lUA+ §¢/ABIVB ’
GNa==iVat S dusNs,  HNy=—iWitZ0uNs,
where ¢, ¢ and @ are endomorphisms of the tangent bundle to O, ¢lus, ¢4p and

04p are endomorphisms of the normal bundle to O and u, v, and w, are local
1-forms on O satisfying

(27) uA(X)Zg(UA; X) ’ UA(X):g( VA) X) » wA<X):g(VVA) X) )
because of (2.4). We easily find that
(2-8) ¢.’43: "925;94 » éf’fw: ‘éb%A ’ 0= —034.

Applying F, G and H to (2.5) and making use of (2.1), we obtain the following
relations (2.9)~(2.12):

PP X=—X+ ;uA(X)UA,

29)
¢2X:_X+§UA(X)VA’ PX= _X_)_AEU}A(X)WA;

PIX=p X+ %:wA(X)VA )
(2.10) 0pX=¢X+SudX)Wa,  $PX=0X+ZvaX)Us,

0¢X:_¢X+§:UA(X)WA:
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$OX=—9X+ZwsX)Us,  $PpX=—0X+ZTudX)V a4

and
uApX)=—Sus(X)pha
(2.11)
UA(¢X): - AB‘;‘ UB<X)¢}M » wa0X)=— % wp(X)0s4;
v(0X)=— 12_14 wp(X)PpatuaX),
U/A(¢X): - %; up(X)0patvaX), uA(¢X): - % UB(X)¢%A+WA(X) ’
(2.12) wA(¢X): - § V(X )0pa—ua(X),

u 0X)=— ; WB(X)¢%A* va(X), UA(¢X): - ;13 UB(X)SL'%A—WA(X) .

Next applying F, G and H to (2.6) and making use of (2.1), we obtain the follow-
ing relations (2.13)~(2.16):

¢UA:“§¢£43UB ’

(2.13)
¢VA:'§¢:4BVBy (9WA:"§0,ABVVB;
¢WA:UA‘§0:48VB,
ﬁUA:VA_§¢IABWB) ¢VA:WA’*§¢QBUB,
(2.14) 0VA:'—UA_§¢;BWB:
¢WA:_VA_§923UB, SbUA:_’VVA_;gb;BVB

and

MB(UA):5A3+ %915;109%3 ’
(2.15)

ve(V)=04p+ ;Qbﬁw(/)/ca » wa(W)=04p+ ;6:10963 H
va( WA):*¢QB‘|' ;0;409%3 »
wp(U )=—¢up+ ;¢:400,08 , up(Va)=—01p+ ;gﬁfwgﬁ&; ,

(2.16)

wp( VA)=¢QB‘|‘ ;gb:wf%ze »

up( WA):¢QB’|‘ %}0;09563 y va( U)=04p+ %ﬂwﬁ%s .
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Let V denote the Riemannian connection induced in M. Then Gauss and
Weingarten formulas for the immersion 1 are given respectively by

(2.17) D xiY=iNy Y+ §g(HAA’, Y)Ny,
(2.18) D,xN=—1H,X+Dx"Ny,

where H, are the second fundamental tensors associated with the normal vector
filelds N4(A=1, ---, p) and DY denotes the induced connection from D to the
normal bundle of M in M. Dy¥ may be expressed as DX”NA=§LAB(X)NB by

the so called third fundamental forms L,p. Differentiating (2.5) covariantly and
making use of (2.2), we obtain the following relations (2.19) and (2.20):

(VY¢)X:§ {g(U4, X)H Y —g(H Y, X)U4}

QY )X —qY )X,
(2.19) (Ve X=2{g(V4, X YHA Y —g(HAY, X)V 4

—r(iY)pX+p(iY)0X,
(VYH)X=§ {g(Wa, X)H, Y —g(HAY, X)W 4}

+qGY )X —p(Y)pX

and
(Vyu)X= —g(HA Y, X)+ % {g(HpY, X)¢;3A _uB(X)LBA( Y}
FrEY ) X)—qY)wa(X),
(2.20) (Vyv)X=—g(H,Y, X)+ f’: {g(HpY, X)Pra—ve(X)Lpa(Y )}

=Y uX)+pEY w4 X),
(Vyw)X=—g(H,Y, X)+ ; {g(HpY, X)0pa—ws(X)LpAY )}

(Y Yus(X)—p(Y )va(X).

Next differentiating (2.18) covariantly and making use of (2.2), we obtain the
following relations (2.21) and (2.22):

Dx?¢up=g(X, HpUs—H Up)+7r0X)Pap—q(X )4z,
(2.21) Dx¥¢up=g(X, HgVa—H,Vg)—r(1X)¢up+pX )5,

DXNﬁﬁz;:g(X, Hp WA_HA WBH’ C](IX)¢£13‘P(1X)¢QB
and
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VxUs=¢pH X+ ; {Lap(X)Up—@upHpX} +r(X)V4—q(i X)W,
(2.22) Vi Va=gHAX+2 {Las(X)Vp—usHpX} —r(X)Us+pEX) Wy,
VxWa=0H, X+ ; {LAB(X)WB— "l p X} +C](iX)UA—P(lX) Va.

We now note that (2.20) and (2.22) are equivalent to each other.

Now let the ambient manifold M be a quaternionic projective space QR™*»>/4
of real dimension n+p equipped with the standard symmetric space metric nor-
malized so that the maximum Q-sectional curvature is 4. Then the curvature
tensor R of QP™*»/¢ ig written as

~ A A A A Al A

R(X, V2=, 2X—X, 27
+(FY, ZYFX—(FX, ZyFY—2(FX, Y)FZ
@2 +(GY, 25GR—(GX, 256V —2CK, V>G2
+(HY, ZYHX—(HX, ZYHY —2HX, YYHZ ,

cf. [5]. Thus, using (2.5) and (2.6), we have the following Codazzi and Ricci
equations (2.24) and (2.25) respectively :

(VxH )Y —(VyH )X
=2 A{Lus(X)HpY —Las(Y)Hp X}

(2.24) —g(Us, Y)pX+g(Us, X)PY —2g(¢X, Y)U4
—8(Va, Y)PX+g(V4, X)pY —2g(¢pX, YV 4
—g(Wy4, YIOX4g(W,, X)OY —2g0X, YIW,4
and
RY(X, YINs=3{g(lH4, Hs]X, Y)
+g(Us, Y)g(Up, X)—g(Us, X)g(Up, Y)—2g(¢X, Y)us
+a(Va, Y)g(Vp, X)—g(Va, X)g(V3, Y)—228(dX, Y)Plas
+e(Wa, Y)g(Wp, X)—g(Wa, X)g(Wp, Y)—2g(0X, Y)0as} N5,

(2.25)

where [Hy, Hgl=H,Hz;—HyH, and R” is the curvature tensor of the connection
DY in the normal bundle of M in QP™*+»/t i e,

RN(X, Y):DXNDYN_DYNDXN—DE\:Y,Y] .

REMARK 21. If M is an invariant submanifold of QP™*?/4
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R¥(X, YN,
=§ {—2g(¢X, Y)pan—2g(pX, Y)pas—2g(0X, Y )0ast N5,

because M is totally geodesic, cf. [3], and uy=v=w,=0 (A=1, -, D).

§ 3. Fibrations and immersions

Let S**?*3(g) be the hypersphere of radius «(>0) in the quaternionic space
Q+r+0/t of quaternionic dimension (n-+p-+4)/4, which is identified with the
Euclidean space R™?*4, The unit sphere S™(1) will be simply denoted by S™.
Let #: S™p+3 — QP™+»/4 phe the natural projection of S**P+* onto QP +»/*
defined by the Hopf fibration S® — S™*?P*3 — QP ™*»/¢  As is well known, S"*7*?
admits a Sasakian 3-structure {, 7, } and each fibre #7(x) of x€QP™P/1 is a
maximal integral submanifold of the distribution spanned by &, 7 and Z, cf. [4].
Therefore, the base space QP ™*?»/* admits the induced quaternionic Kéhlerian
structure of constant Q-sectional curvature of 4, cf. [5]. We consider a fibration
r: M— M which is compatible with the Hopf fibration #: S*+#+3 — QP +»)/4)
where M is an n-dimensional real submanifold of QP*»/* and M=zr"(M) is a
submanifold of S"*?*%, More precisely speaking, =« : M — M is a fibration with
totally geodesic fibres such that the following diagram (3.1) is commutative .

~

M Sn+p+s
@D l 1 \‘/
IW QP(n+p)/4

where 7: M — S**?*3 and 1: M — QP™*P/4 are isometric immersions.

We are now going to give an example which satisfies the commutative
diagram (3.1). Consider the quaternionic space Q‘"*®/* naturally imbedded in
QrtPtH/ a9 a totally geodesic submanifold. Q7! is identified with the product
space QU*1X Q' where g-+s=(n—3)/4. Hence the product space of two hypers-
pheres S**3(q) in Q9! and S**%(b) in Q°*!, is naturally considered to be a sub-
manifold in Q™*®/¢, On the other hand S™*P**® is the unit hypersphere of
Qe Thus, when a®-+b=1, the product space Mgz 4545=S%"%(a) X S*5*3(b)
may be considered to be a submanifold in S**?*% of codimension p. It is now
clear that the projected base space M§,=n(Mgss 4s+3) Of Migrs 4545 by the fibration
7z, which is compatible with #, is an example for submanifolds satisfying the
commutative diagram (3.1). A submanifold M in QP™*?/ ig sometimes denoted
also by M§, if M is congruent to M$, in the sense of quaternionic projective
geometry.

Let <, > denote indiscriminately the Riemannian metric of S**?*% as well
and Z be the induced Riemannian metric of M from ¢, > by the immersion i.
XTI denotes the horizontal lift of a vector field X given in the base space for
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each of the fibrations # and =. Since the fibration = is compatible with the
fibration %, there exist in M unit vector fields &, » and { which are vertical
with respect to the fibration z: M — M and satisfy i(&)=¢, #(n)=7% and #({)=C.
By lifing mutually orthonormal local vector fields N (A=1, ---, p) around x€M,
we have local normal vector fields N,Z(A=1, ---, p) to M which are also mutually
orthonormal around any point of ye M satisfying wx(y)=x. Since the above
diagram (3.1) is commutative it is easily verified that {(X*)=(X)L.

Let D, ¥, DY and H, denote respectively the Riemannian connection of
Sm*r+3 the induced Riemannian connection of M in S™*7*% the induced connec-
tion in the normal bundle of A in S**?** and the second fundamental tensors of
M in S**+® associated with the normal vector fields N, Z(A=1, ---, p). First we
have Gauss and Weingarten formulas for the immersion i.

(3.2) ‘;fi?:iv,;YJrAz Z(H,X, T)NL-,
(3.3) Drs N f=—iH,X+D3" N,
—iH, X+ %} EAB(X)NBL ,

where X, ¥ are tangent vectors to M and L ,5 are the so called third fundamental

forms of the immersion 7. Next fundamental equations for fibrations # and =

are as follows, cf. [4]:
(3.4) DerYE=(DsY)E

+(FERE, YEEA(GHRE, THy7+(HE XY, P95
(3.5) Ve Yi=(VxY )"

+2(p" X, Y E+E(P"XE, Y )p+5(0" X", Y

and
(3.6) DsXt=—FLXt — DyXt=-—G'X*, DyXt=-—H"X";
(3.7) VoXim—giXE, T XP=—giXE,  V.X'=—fRXE;

where X, Y are tangent vector fields to M and X, ¥ are those to QP™+»/4, If
we combine (2.17) with (3.4), (3.5) with (3.2), (2.18) with (3.4) and (3.5) with (3.3),
then using (2.5) and (2.6), we have the following relations (3.8)~(3.12) because
of the commutativity of the diagram (3.1):

(3.8) BHLX", YI)=g(HX, Y)*;
B(@ X", YH=g(¢X, V),

B(PrXE, YH=g(¢pX, Y)F,  2O"X", YH)=g(0X, Y)*;

(3.10) H X =(HX)'—g(Us, X)"€—g(Va, X)n—g(Wa, X)'C;

(3.9
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3.1D) . g(H X", E)=—g(lf4, Xk,
GHAXE, n)=—g(V4, X)F,  GUEHLXE, O=—g(W4, X)*;

(3.12) Lap(XE)=Lag(X)".
Moreover, by (3.6), (3.3) and (2.6), we have

(FEN4E, Naby=glst=—L.58),
(3.13) (G"N*, Ns™y=¢lus*=—Las(y),

CHEN 4%, Npty=05t=—L 45(0) .

A~ ~

On the other hand, since {€, 7, &} gives a Sasakian 3-structure in S**7*: & 7
and ¢ are mutually orthonormal Killing vector fields. Thus it follows

(3.14) 7é=Dy7=Dg(=0
and
Dil=—Dz7=¢,
(3.15) . _ _ L
Dzé=—Del=7, gl=—D3&=_

Combining (3.14) and (3.15) with (3.2), or using the fact that all fibres of fibra-
tions 7 and # are totally geodesic, we have

(3.16) 3(HLE, §)=8Hay, =8HL, =0,
@17 3(Han, O=8(HL, §)=8(HLE, 7)=0.

~

The curvature tensor R of S"*P*? is given by
(3.18) BX, 7=, >X—X, 2>,

for any tangent vectors X, ¥ and Z in S™P*® because S™*?*3 has constant
curvature 1. Thus in this case Ricci equation is reduced to

(3.19) RY(X, Y)NAL:‘%g([ﬁA: Hy1X, V)N,
where [H,, Hyl=H,Hz—HzH, and RY isthe curvature tensor of the connection

D¥ in the normal bundle of M in S**»*%. By (3.19) we have

LEMMA 3.1. The wnduced connection DY n the normal bundle of 1\7{ wm Srrpes
is flat of and only 1f the second fundamental lensors Hy and Hg of M commute
for any pair (A, B) (4, B=1, ---, p).

Now we express the flatness of the connection D¥ in the normal bundle of
M in terms of conditions imposed on M. Using (3.10) and (3.11), we have
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(Hy, HplX*
=([H4, HplX)"+g(H,Up—HpUys X)%E
(3.20) +g(H V—HgVa, X)rp+gH Wp—HgW4, X)X
—g(Usp, X)"Hié+g(Ua, X)"Hpé—g(V, X)"Hun
+8(Va, X)Hpy—g(Wp, X)"Hal+g(Wa, X)"HL .

LEMMA 3.2. If the connection DV wn the normal bundle of M n S™7?* is
flat, then the curvature tensor RY of the connection DY n the normal bundle of
M wn QPP s expressed by

(3.21) R¥(X, Y)N,
:§3 {—2g(¢X, Y)¢us—2g(X, Y)Plup—2g(0X, Y )05} Np .

Proof. Taking the inner product of (3.20) and Y * and making use of Lemma
3.1 and (3.11), we have

g(CHa, HplX, YV)=g(Us, X)g(Us, Y)—g(Us, X)g(Us, Y)
(3.22) +g(Va, X)g(Vp, Y)—g(Vy, X)g(Vu, V)
+g(Wa, X)g(Wa, Y)—g(Wp, X)g(W4, V).
Thus (3.21) follows from (2.25) Q.E.D.

DEFINITION 3.3. Let M be a real submanifold of a quaterniomic Kdhlerian
manifold M. If ¢ap, Pan and Oup appearing in (2.6) satisfy the following relation
(3.23), we say the structure wnduced wn the normal bundle of M wn M 1s parallel.

DV ¢up= (X )usg—qaX )05,
(3.23) Dx¥Plup=—r0X)Pun +pX)045,
Dx¥0p= Q(lX)Qﬁ:w_])(lX )Gbiw .

LEMMA 34. Let M be a real submanifold of a quaternionic f(dhlerzan mani-
fold M. The structure induced wn the normal bundle of M wm M s parallel if
and only if the following relations wn (3.24) are valid :

(3-24) HyU,=H,Ug, HgV,=H,Vg, HyW,=H,Wg,
for all A, B=1, -+, p.
Proof. This is straightforward by (2.21) Q.E.D.

LEMMA 3.5. If the connection D¥ in the normal bundle of M i S*?+3 js
flat, then the structure induced wn the normal bundle of M in QP ™% 15 parallel.
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Proof. Taking the inner product of (3.20) and & and making use of Lemma
3.1, (3.16) and (3.17), we get HgU,=H,Uy. The same process derives the rest
of the relations in (3.24). Lemma 3.4 leads to the conclusion. Q.E.D.

THEOREM 3.5. In order that the connection DY wn the normal bundle of M
m S™PYE s flat, 1t 15 necessary and sufficient that the curvature tensor RY of the
connection DY in the normal bundle of M on QP™*P/* 15 expressed by (3.21), that
18,

RY(X, Y)N,
=%){—2g(¢X, Y)Pus—2gpX, Y )Pup—2g0X, Y )0ust N
and the structure induced n the normal bundle of M i QP ™4 15 parallel.

Proof. Necessity follows from Lemmas 3.2 and 3.5. If we prove [H,, Hg]
=0, then by Lemma 3.1 we see the condition is sufficient. Since (3.21) holds, we
have g([H,, Hy]1X*, Y%)=0 by (3.20), (3.8) and (3.11). On the other hand, since
(3.23) or, equivalently, (3.24) holds, we have

&([Hy, Hs1XY, §)=8([H4, HslX", n)=g([Ha, HplX", 0)=0

by (3.20), (3.16) and (3.17). Finally H,&, H,n and H,{ are horizontal because of
(3.16) and (3.17), therefore so are H,HyzE, H Hzyp and H,Hz{. Thus

([Hy, HplE, &)=8([H., Hply, 7)=2[H Hs1C, 0)
:g([ﬁm ﬁB]% C):g([ﬁm HB]C; E):g([ﬁm HB]E: 7]):0-

Since H, are symmetric tensors, we may conclude [H,, Hz]=0. Q.E.D.

§4. The second fundamental tensors H, of M and H, of M.

First we investigate the relations between the mean curvature vector flelds
p of M and g of M. The mean curvature vector field p of M is defined by

4.1) /,z——-LZ (trace Hy)N 4
n a
and @ of M by
_ 1 - L
4.2) fi= p— ;(trace HON -

It is well known that ¢ and f are independent of the choices of the local bases
{N4} and {N,"}.

LEMMA 4.1. At any pownt of 3EM we have
(4.3) (trace H,)(¥)=(trace H)“(7)=(trace H )z ().
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Consequently M 1s munimal in QPP 1f and only 1f M is mumimal in S™H2*5,

Proof. Let {E,, ---,_En} be an orthonorm_al basis of Trq),(M). YVe choose
an orthonormal basis {Ey, -, Ensg} of T7(M) in such a way that E;=E,* for

1=1, -+, n, Ep1=§, Enso=7 and E,,;=(. Then because of (3.8) and (3.16) we
get

n+3

trace H,= Z:)lé(HAEu E)

g(HAELL’ E1L>+E(EAE: 5)+§(ﬁ477, 7])+§(HAC’ 0

il
it

g(HAE,, E)-=(trace H)*.

If
M;

7

Il
-

Thus the first equality in (4.3) is proved. The second equality in (4.3) follows
from the definition of lifted functions in a fibred Riemannian space, cf. [4].
Q.E.D.
By Lemma 4.1, we have

COROLLALY 4.2. The following relation (4.4) holds between the mean curvature
vector fields p of M and fi of M,

_n L
(4.4) ,u——n+3 uh.
Proof. This is straightforward by (4.1) and (4.2). Q.E.D.

LEMMA 4.3. If the mean curvature vector field @ of M is parallel with respect
to the nduced connectioo D¥ wn the normal bundle of M wn S**?*%, then the mean
curvature vector field p of M 1s parallel with respect to the induced connection
DY n the normal bundle of M in QP +P/4,

Proof. Since (3.12) is valid, we have
(7Z+3)5xLNﬂ: ; {(XL trace ﬁA)NAL-I-(trace HA)ExLNJVAL}

= %} {X*(trace H )N 4 +(trace H,)*(Dx¥N,)*}

4.5)
= ; {(X trace HA)NA +(trace HA)DXNIVA} L
= n(DXNﬂ)L .
Thus Dxz? =0 implies Dx" p=0. Q.E.D.

We _s_hall now relate the lengths of the second fundzimental tensors H, of
M and H, of M. Choose orthonormal bases {E;} and {E;} in the same way as
in the proof of Lemma 4.1. Using (3.10), (3.11) and (3.17), we see that
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n+3

trace H,2= Eé(ﬁfﬁ_‘u E)

3 AN HAE ) —g(Ua, EYE—g(Vay E)'7—g(Wa, E)), EF)
+&(H.E, ﬁAE)+g(HA77r ﬁA’?)"’Q(ﬁAc, A,L)

{g(ﬁA(HAEt)L; ELL)+g<UA; Et)L2+g(VAy Ez)L2+g(WAy Ez)LZ}

Il
Ms

~
Il

1

(4.6) +G(HE, HE)+5Hym, Hip)+E8HL, HiL)

S {g(HPE, BN +g(Us BN +g(Va, BN +g(Way B
+8(Us Un*+8(Vay Va)r+g(Wa Wa)*
={trace H2+2g(Uy, Un)+2g(V4, V)+2a(Wy4, WL,
Hence we have the following relation (4.7):
4.7) %‘,trace Hp?
=(Strace Hy")' +23{g(Us, U)+8(Va, Vi) +g(Wa, WatE.

Next we rewrite (4.7) using the scalar curvatures » of M and 7 of M. Since
the curvature tensor R of QP ™*»/4 ig expressed by (2.23) Gauss equation for
the immersion 1: M — QP **?/* is given by

gR(X, Yz, W)=g(Y, 2)g(X, W)—g(X, Z)g(Y, W)
+2(Y, Z)g(¢X, W)—g(¢X, Z)g(¢Y, W)—22(4X, Y)g(¢Z, V)

(4.8) +8(QY, Z)g(pX, W)—g(¢pX, Z)g(pY, W)—2g($pX, Y)g(¢Z, Y)
+g0Y, Z)g(0X, W)—g0X, Z)g0Y, W)—2g(0X, Y)g(0Z, V)
+2{g(HLY, Z)g(H.X, W)—g(HaX, Z)g(H,Y, W)},

where R denotes the curvature tensor of M. Thus using (2.5) and (2.9), we have

r=n(n+8)—33{g(Us Un)+g(Va, V) tg(Wa W}

4.9)
-+ %}(trace H,)?— %} trace H 2.

If M is minimal, substituting (4.9) with trace H,=0 into (4.7), it follows
(4.10) ; trace H 2
=n(n+8)—F—§){g(UA, Un)+g(Va, V+g(Wa, Waokt.
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On the other hand because of (3.18), Gauss equation for the immersion i: M —
Sntp+3 ig given by

@11) ZRX, V)Z, W)=a(¥, 2)aX, W—&X, Z)g¥, W)
' + ALY, DEEX, W)—-2(HK, 2)3(HLT, W,
where R denotes the curvature tensor of M. Thus we have

(4.12) F=(n+2)(n+3)+ AZ (trace H,)?— ; trace H,2.

Substituting (4.9) and (4.12) into (4.7) and making use of Lemma 4.1, we obtain
the following relation (4.13):

(4.13) F+(371—_6):7'L+§{g(UA; U)+g(Va V)+g(Wa, WLt

LEMMA 44. [Inequalities
AZ trace H fz(; trace H %)

and
7+(@Bn—6)=rt

are always valid. In both cases equalities hold 1f and only 1f the submanifold M
of QPP 45 ynyariant, that is, M 1s QP™*.

If i is a totally geodesic immersion, the relation (4.7) leads to

LEMMA 4.5. Suppose i 1s a totally geodesic wmmersion of a Riemannian
manifold M wnto S™*?*3. Then 1 1s also a totally geodesic vmmersion of M 1nto
QP It and M 1s an wmvariant submanifold of QP P4 that 1s, M 1s QP™*.

PROPOSITION 4.6. In a quatermonic projective space QP "*P/* a compact
totally geodesic submanifold M of real codimension p<(n+9)/12 or equivalently
of the scalar curvature satisfying r>n(n+8)—(6p+n)/(2—1/p) is necessarily an
wvariant submamfold and consequently a quatermonic projective space QP™*.

Proof. From (2.15) we have
S¢ (U, Ud=p+ S ¢ucdeash,
(4.14) Se(Va, V)=p+ Zduedeas,
36 (Wa, W=pt D0scboa=p
Since M is totally geodesic, it follows from (4.7)
3 trace Hit =23 {g (U, Un+8(Va, Va)+2(Wa, Wal*
=6p<(n+3)/(2—1/p),
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and from (4.10)
; trace B 2=<n(n+8)—r—3p<(n+3)/(2—1/p).

Considering Lemma 4.1, we see that M is minimal. Thus applying Simons’ result,
cf. [12], to M, we obtain that M is totally geodesic. By Lemma 4.5 M is neces-
sarily QP™1. Q.E.D.

COROLLARY 4.7. If nz=0 (mod 4), there 1s no n-dimensional compact totally
geodesic submanifold of codimension p<(n+9)/12 or of the scalar curvature r
>n(n+8)—(6p--n)/(2—1/p) wn a quatermomc projective space QP4

THEOREM 4.8. If a compact mwmmal submanifold M of real codimension p
of a quatermonmic projective space QP " P/t satisfies either of the following equi-
valent 1nequalities

(4.15) %} trace H,2<(n—12p+9)/(2—1/p),
(4.16) r>n(n-+8)—(6p+n)/(2—1/p),
then M 1s a quatermonic projective space QP™*.

Proof. From (4.7) and (4.14) it follows
(4.17) ; trace fé%) (trace H 2 +6p

<(n—12p+9)/(2—1/p)+6p=(n+3)/(2—1/p)
and from (4.10)

(4.18) %} trace H 2= n(n+8)—r—3p
<(m+3)/(2—1/p).

Since M is_ minimal so is Jfl by Lemma 4.1. Thus in both cases applying Simons’
result to M, we see that M is totally geodesic. By Lemma 4.5 M is necessarily
QP™, Q.E.D.

§5. Anti-quaternionic submanifolds.

If M is an invariant submanifold of a quaternionic Kihlerian manifold M7,
then at any point x&M we have

6.1 FT (M) N.(M), GT,M)L N (M), HT.(M)LN(M),
or equivalently
(5.2) FN,(M)1T(M), GN (M)LT (M), HN(M)LT(M).

On the other hand if M is a totally real (or anti-invariant) submanifold of a
quaternionic Kédhlerian manifold M, then at any point x&M we have
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(5.3) FT (M) T, (M), GT (M) ] T, (M), HT (M) T (M).

In this section we shall consider a submanifold M which satisfies the follow-
ing conditions at any point x€M :

(54) FN (M) N, M), GN,(M)LN, M), HN M) NM).

DE}«‘INITION 5.1. Let M be a submamfold of a quatermomc Kdhlerian mani-
fold M wzthAcanomcal local basis {F, G, H}. We call M anti-quaternionic sub-
manifold of M 1f M satisfies the condition (5.4) at any pownt xeM.

REMARK 5.2. In other words, M is an anti-quaternionic submanifold of M
if and only if all of ¢)s, ¢4s and 045 in (2.6) vanish.

LEMMA 53. A submamfold M of a quatermonic Kdhlerian mamfold M
cannot be totally real and anti-quatermonic at the same tume.

Proof. Let M and M be of real dimensions n and n-+p respectively. Suppose

M is totally real and anti-quaternionic at the same time, it easily follows from

(5.3) and (5.4) that p should satisfy both p=3n and n=3p. This is a contradiction.
Q.E.D.

REMARK 5.4. In the complex case the corresponding condition to anti-qua-
ternionic is anti-holomorphic. It is possible that a submanifold of a K&hlerian
manifold is totally real and antiholomorphic at the same time. For example
consider the real axis in the complex plane.

RROPOSITION 5.5. Let M be an n-dimensional anti-quatermonic submanifold
of a quatermomic projective space QP P4 of real dimension n+p and let 7 :
M— M be a fibration which 1s compatible with the Hopf fibration #: S™ P+ —
QP+t Then the mean curvature vector field p of M 1s parallel with respect
to the wduced connection DV n the normal bundle of M in QP P4 of and only
of the mean curvature vector field & of M 1s parallel with respect to the induced
connection DY wn the normal bundle of M n S*+e+2,

Proof. By Lemma 4.3 we have only to prove that g is parallel if p is
parallel. From (4.2) it follows that

V= ? {(€ trace H, )N =+(trace H)D:Y N},
(5.5) DN ja= ; {(7 trace H,)N,=+(trace H,)D,” N4},
DNa= i‘i {(¢ trace AN +(trace H)D N N4L}.

Because of Lemma 4.1 trace H, are invariant functions with respect to &, 7 and
¢, that is

(5.6) & trace H =1 trace H,={ trace H,=0.
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Moreover since M is anti-quaternionic, by (3.13) and Remark 5.2 we have
D Nu*=3 Las)Ns"=—3(gas)"No"=0,
(5.7) D* Nyt =3 Lap(Ny" == Z(Pas) N5 =0,
DN =3 Las(ONs"=— 3 (0as)"Na*=0.
Thus we obtain
(5.8) D p=D,"i=D.¥ i=0.

Consifl_ering (45) and (5.8), we see that 7 is parallel with respect to the connec-
tion D¥. Q.E.D.

PROPOSITION 5.6. If M 1s an anti-quatermowuc submanifold of QP4 we
have (3.24), namely

HyU,=H,Ug, HpyV,=H,Vg, HBWA:HAVVB-
Proof. By Lemma 4.3 and Remark 5.2 this is straightforward. Q.E.D.

PROPOSITION 5.7. Let M be an anti-quatermomc submanifold of QP ™+™/1,
The connection D¥ in the normal bundle of M in QP ™+P/* 1s flat 1f and only if
the connection DY wn the normal bundle of M 1n S*™*P*3 15 flat.

Proof. This follows easily from Lemma 3.2, Proposition 5.6 and Theorem
3.5. Q.E.D.

THEOREM 5.8. Let M be an n-dimensional compact minimal antiquatermionic
submamifold of a quaterniomic projective space QP +P/* of real dimension n+p.
If either of the following equivalent inequalities

(5.9 ;} trace H,2<(n—12p+9)/(2—1/p)

(5.10) rzn(n+8)—(6p+n)/(2—1/p)

holds everywhere on M, then M 1s M8, in QP™*V/* for some q and s satisfying
g+s=(n—3)/4.

If p=1, Theorem 5.8 is Lawson’s result as stated in the following Corollary
5.9 because a hypersurface in QP**V/* is anti-quaternionic. (See Theorem in [6])

COROLLARY 5.9. Let M be an n-dimensional compact mnimal hypersurface of
QPO If either of the equivalent inequalities

(5.11) trace H2=n—3
(5.12) rzn*+7n—6
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holds everywhere on M, then M 1s M3, for some q and s satisfying q+s=(n—3)/4.
Proof of Theorem 5.8. Since M is anti-quaternionic, by (4.14) we have

(5.13) ;g(UA, UA):;:g(VA, VA):§g<WA: Wao=p.

Thus from (4.7) and (5.9) it follows
(5.14) ; trace H 2= %}(trace H2)E+6p

=n+3)/(2—1/p)
and from (4.10) and (5.10)

(5.15) 3 trace At =n(n-+8)—r—3p

=(n+3)/2-1/p).

Since M is minimal, M is also minimal by Lemma 4.1. If in (5.14) and (5.15)
equalities are not satisfied, we see that M is QP"™* by Theorem 4.8. But this
is impossible because M is anti-quaternionic. Thus equalities necessarily hold in
both (5.14) and (5.15). From the result of Chern-do Carmo-Kobayashi, cf [2], it fol-

lows that M is isometric to M, pis-n=S™(/m/(n-+3))x S***~™(+/(n+3—m)/(n+3))
in S7***! and the second fundamental tensor A of M, pis-m in S™3*! is parallel.
Considering the fibration = is compatible with that of #, we see the second
fundamental tensor H of M in QP™*»/* and each of ¢, ¢ and ¢ appearing in
(2.5) are commutative. Thus m=4¢+3 and n+3—m=4s+3 for some ¢ and s

satisfying g+s=(n—3)/4. (For detail see [11]) Hence M=n(Mg+s 45+5)=MZ,.
Q.E.D.
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