ON A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION AND THE COSINE FUNCTION BY FACTORIZATION II

By Mitsuru Ozawa

1. In our previous paper [1] we proved the following

THEOREM A. Let F(z) be an entire function for which there exist polynomials $P_m(z)$ of degree m and entire functions $f_m(z)$ so that $F(z)=P_m(f_m(z))$ for $m=2^j$, $j=1, 2, \cdots$ and for m=3. Then F(z) is either $Ae^{H(z)}+B$ or $A\cos\sqrt{H(z)}+B$ with constants A, B and an entire function H(z).

In this paper we shall give an application of this theorem.

THEOREM 1. Let F(z) be an entire function for which

$$F(z) = P_2\left(F\left(\frac{z}{n}\right)\right) = P_3\left(F\left(\frac{z}{m}\right)\right)$$

with polynomials P_k of degree k and positive integers n, m. Then F(z) is either $Ae^{az}+B$ or $A\cos az+B$ or $A\cos \sqrt{az}+B$ with constants A, B and a.

This theorem gives again a characterization of exp and cos. It seems to the present author that there is another proof depending on the power series expansion. If we omit the condition $F(z)=P_3\left(F\left(\frac{z}{m}\right)\right)$ in our theorem, we cannot say that theorem 1 holds.

In this theorem we may put m, n as non-zero constants and we have the same conclusion.

2. Proof of Theorem 1. Evidently

$$F(z) = P_{2j} \left(F\left(\frac{z}{m^j}\right) \right) = P_3 \left(F\left(\frac{z}{m}\right) \right)$$

for $j=1, 2, 3, \cdots$. Hence Theorem A implies that F(z) is either $Ae^{H(z)}+B$ or $A\cos\sqrt{H(z)}+B$. By $F(z)=P_2(F(z/n))$ we have further $m(r, F)\sim 2m(r/n, F)$ as $r\to\infty$. For $r\ge r_0$

Received June 9, 1977

$$(1-\varepsilon)2m\left(\frac{r}{n}, F\right) \leq m(r, F) \leq (1+\varepsilon)2m\left(\frac{r}{n}, F\right).$$

For $r_0 \le r_2 \le n r_0 = r_1$ and $r = n^p r_2$

$$\overline{\lim_{p\to\infty}} \frac{\log m(n^p r_2, F)}{\log n^p r_2} \le \frac{\log 2 + \log(1+\varepsilon)}{\log n}$$

and

$$\lim_{p\to\infty}\frac{\log m(n^pr_2,\,F)}{\log n^pr_2}\geq\frac{\log 2+\log(1-\varepsilon)}{\log n}\,.$$

Hence the order of F is equal to $\log 2/\log n$. Evidently $n \ge 2$. If $F(z) = Ae^{H(z)} + B$, its order ≥ 1 and so n should be equal to 2. Therefore $F(z) = A_1e^{az} + B$. If $F(z) = A\cos\sqrt{H(z)} + B$, its order should be a half integer and hence H(z) is either $az + a_0$ if n = 4 or $az^2 + a_1z + a_0$ if n = 2. Let $P_2(w)$ be $C_2w^2 + C_1w + C_0$. Then by $F(z) = P_2(F(z/2))$ in the latter case

$$A\cos\sqrt{az^{2}+a_{1}z+a_{0}}+B$$

$$=\frac{C_{2}A^{2}}{2}\cdot\cos\sqrt{az^{2}+2a_{1}z+4a_{0}}+(2C_{2}AB+C_{1}A)\cos\sqrt{\frac{a}{4}z^{2}+\frac{a_{1}}{2}z+a_{0}}$$

$$+C_{2}B^{2}+C_{1}B+C_{0}+\frac{C_{2}}{2}A^{2}.$$

Without appealing to the impossibility of Borel's identity we can proceed in the following manner. The left hand side term is symmetric with respect to $-a_1/2a$ and the right hand side term is symmetric with respect to $-a_1/a$. Hence $a_1=0$. Next consider the asymptotic behavior of both sides for $\sqrt{az^2}=iy$ with real y for $y\to\infty$. Then $2A=C_2A^2$, $2C_2AB+C_1A=0$. Hence

$$A\cos\sqrt{az^{2}+a_{0}}+B$$

$$=A\cos\sqrt{az^{2}+4a_{0}}+C_{2}B^{2}+C_{1}B+C_{0}+\frac{C_{2}}{2}A^{2}.$$

Let us put $az^2+a_0=\left(2n\pi+\frac{\pi}{2}\right)^2$. Then

$$B = A \sin \frac{3a_0}{2n\pi + \frac{\pi}{2}} \left(\frac{1}{2} + O\left(\frac{1}{n^2}\right) \right) + C_2 B^2 + C_1 B + C_0 + \frac{C_2}{2} A^2.$$

Hence $a_0=0$ and $B=C_2B^2+C_1B+C_0+C_2A^2/2$. Therefore

$$F(z) = A \cos \sqrt{a}z + B$$
.

In the former case

$$\begin{split} A\cos\sqrt{az+a_0} + B \\ = & C_2 \, \frac{A^2}{2} \cos\sqrt{az+4a_0} + (2ABC_2 + C_1A)\cos\sqrt{\frac{a}{4}z+a_0} \\ & + \frac{C_2}{2} \, A^2 + C_2B^2 + C_1B + C_0 \, . \end{split}$$

Quite similarly we have

$$a_0{=}0$$
, $A{=}\frac{C_2}{2}A^2$, $2ABC_2{+}C_1A{=}0$, $B{=}\frac{C_2}{2}A^2{+}C_2B^2{+}C_1B{+}C_0$.

Hence

$$F(z)=A\cos\sqrt{az}+B$$
.

This completes the proof of our theorem.

BIBLIOGRAPHY

[1] Ozawa, M., On a characterization of the exponential function and the cosine function by factorization. Kodai Math. J. 1 (1978), 45-74.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU, TOKYO, JAPAN