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ON THE EXISTENCE OF A COMPLEX ALMOST
CONTACT STRUCTURE

BY YHUJI SHIBUYA

§ 1. Introduction.

A complex manifold of complex dimension 2m-+1 is said to be a complex
contact manifold if it admits an open covering {O,} such that on each O, there
is a holomorphic 1-form y, with 7,A(d7,)™+0 and on O, m0~ﬂ&¢, rl:ﬁ,r, for
some non-vanishing holomorphic function f .~ In general such a structure is not
given by a global 1-form 7 ; in fact, this is the case for a complex manifold if
and only if its first Chern class vanishes [7]. It is also shown in [7] that the
structural group of the tangent bundle of a complex contact manifold is reduci-
ble to (Sp(m)QRU(1))xU(1). Standard examples of complex contact manifolds
are the odd dimensional complex projective space PC?™*!, the complex projective
cotangent bundle of a complex manifold, etc.. (See [3], [7].)

On the other hand, some of complex contact manifolds are base spaces of
principal fibre bundles with 1-dimensional fibres and real contact 3-structure.
A typical example of this is a Hopf map $*™*® — PC?™*!, Generalizing this
situation Ishihara and Konishi studied in [5] fiberings with 1-dimensional fibres
of a manifold with real contact 3-structure and defined in the base space a new
structure called a complex almost contact structure. In [2] an equivalent defini-
tion is given in terms of global tensor fields. The structural group of the
tangent bundle of a complex almost contact manifold is also reducible to
(Sp(m)QUA))xU1). The notion of a complex almost contact structure is
naturally weaker than that of a complex contact structure. In fact, a manifold
with a complex contact structure admits a complex almost contact structure,
and the converse is true if the complex almost contact structure is normal
[5], [6].

Let M be a complex manifold of complex dimension 2m-+1. Let ©={0;} be
an open covering of M. We say, in this paper, M has a -structure if the
structural group of the tangent bundle of M is reducible to (Sp(m)Q U1))x U(1),
that is equivalent to the existence of a local 2-form £, of type (2, 0) on each O,
such that (£2,)"+#0 and a non-vanishing function f,;€U(1) such that 2,=f,,2,

on 01ﬂ0j¢¢.
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The existence of a real almost contact structure is discussed by Hatakeyama
[4]. In this paper we generalize his result to the complex case and prove that
the existence of a {-structure is a sufficient condition for the existence of a
complex almost contact structure.

§ 2. Decomposition of GL(n, C).

Let H*'(n) denote the set of all positive definite hermitian (7, n)-matrices.
Then H*(n) is naturally imbedded as a real analytic submanifold in the general
linear group GL (n, C), and its analytic structure is defined by the components
of its element. Let U(n) denote the unitary group with usual analytic structure.
Both H*(n) and U(n) are considered to act on n-complex variables. Algebraically
it is well known that any A=GL (n, C) is written in one and only one way as
the product 2=xnv of p<H"(n) and v€U(n), thus the components of 7 and v of
the decomposition of A depend continuously on those of A. In this section we
check this decomposition is in fact analytic. First we prove

PROPOSITION 1. Let @ be a map from the product manifold H* (n)xU(n) to
the group GL(n, C) defined by

D (n, v)=nv, pEH*"(n), vel(n).

Then @ 1s an analytic map, and its differential map d@ 1s everywhere an onto
1somorphism.

In order to prove Proposition 1 we begin with the following

LEMMA 1. Let n be an element of H*(n). Then the characteristic values of
the linear map ad(yn): ¢l(n, C) —> gl(n, C), defined by

ad(p)L=nLy™, Legl(n, C),

are all positive numbers.

Proof. Since 7 belongs to H*(n), the characteristic values of 7 are all
positive real numbers, which we shall denote by a, (i=1, :-+, n). According to
a classical result, there is a unitary matrix v such that yypv™ is a diagonal
matrix § whose diagonal components are the a,’s. Since ad(p)=ad(v)'ad(d)ad(y)
the characteristic values of ad(y) are equal to those of ad(d) and hence, by
direct computation, equal to the n® real numbers a,a,™* (13, j=1, -, n), which
are all positive real numbers. g.e.d.

COROLLARY. Let A be a skew hermutian (n, n)-matrix and n be an element
of H*(n). If pA 1s a hermutian matrix, then A=0.
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Proof. 1f nA is a hermitian matrix, then
nA=tpA="Atj=— Ay,
that is ad (p)A=—A. Thus A=0 by Lemma 1. g.e.d.

Proof of Proposition 1. @ is an analytic map because H*(n) and U(n) are
real analytic submanifolds of GL(n, C) and the multiplication of the elements of
GL (n, C) is algebraic. In order to prove d@ is everywhere an onto isomorphism
we have only to prove that the differential map d@ is univalent since the
dimensions of H*(n)XU(n) and GL(n, C) are both equal to 2n%. Let X be a
tangent vector to H'(n)xXU(n) at a point (y, v) which is tangent to a para-
meterized curve (y+itB,vexptA), where A is skew hermitian and B is
hermitian. Then d®@(X) is given by

(p+1B) (v exp t A)—nv
i

d@(X)-——ltirrol
=nAv+Bv.

Assuming d9(X)=0, we have nAv+Bv=0 and therefore y A=—B, which means
7 A is hermitian. Applying the preceding corollary, we have A=0 and so B=0,
which shows d@ is univalent. q.e.d.

Since d@ is univalent, there exists an analytic inverse map of @ (p.80 [1]),
which we denote by ¥'. Thus we have

PROPOSITION 2. Any complex regular matrix A can be wrilten in one and
only one way as the product 2=nv of a positwe definite hermitian matrix 7 and
a unitary matrix v. The map

¥: GL(n, C)—> H" (n)xU(n)

defined by this decomposition gives an analytic homeomorphism of GL(n, C) to
H(n)X U (n) with respect to their usual analytic structures.

Remark. 1t easily follows from Propositions 1 and 2 that any 2=GL (n, C)
can also be decomposed analytically in one and only one way as A=v’%np’, where

v'elU(n) and yp’€H*(n).

§ 3. Existence Theorem.

Let (M, F, &) denote a complex manifold of odd complex dimension 2m-1
(=3) with complex structure F and hermitian metric & and let M be covered by
a system of coordinate neighborhoods ©={0;}. We shall suppose M has a
f-structure.
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Since £, is of rank 2m, if we set
D.(p)={X; X€T,(0), (X)2,=0  for any p<0,

where 7(X)£2, is defined by (z(X)2,)(Y)=2,(X, Y) for any Y&T,(0,), then
the correspondence p+— D;(p) gives a distribution D, on each O, of complex
dimension 1 and of class C*. The condition £2,=f,;2, on 0, N 0,;#¢, where f,, is
a non-vanishing function, shows that D;=D, on 0;N0,, that is, D, is globally
extended to a distribution D on M of complex dimension 1 and of class C*.

On each 0; we can choose a field of unitary frames {E;, -, Eim, Ni} of
class C~ with respect to g such that the last vector N, belongs to the distribu-
tion D. The transformation of the field of such unitary frames on O,NO;#¢ is

of the form

0
Ty G
0 0
0, -0, 7/s,
T,,= 0
fz] :
0 0
0, 0, 7/,

where z,;€U(@2m), /,;€U(1) and 7,, denotes the complex conjugate of r,,.
The matrix W, consisting of components of the form {2, relative to the field
of unitary frames defined on 0; has the form

0
OL
0 0
0, 0, 0
Wi:

0
o,
0 0
0, -0, 0

where w; is a regular (2m, 2m)-skew symmetric matrix. As a consequence of
Proposition 2, w; is written as

@1 ®;=§;7,

where &,€H*(2m) and ¢;€U(2m), and the components of &, and o, depend
analytically on those of w;. So if we set
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0
&
0 0
0, -0, 1
(38.2) Z,= s
) 0
S O O
0, -0, 1
0
o,
0 0
0, -0, 0
2= ,
0
a, 0 0
0, -0, 0
then (3.1) is equivalent to
@.1y W,=22%.

Since w; is a skew symmetric matrix and o,=U(2m), we have
§i6,=—13,'6;=—0;"¢,
and thus
Ei=—0;' 0, =010 (—a7 07,
On the other hand it is easily checked
o1, 0, €H 2m), —old;'€U@2m).
Therefore by the uniqueness of the decomposition we have
§i=071%, 0, Le, 0,6=%, 0,
and
3.3) 0,6=—1Ism.

Where I, denote the unit (k, k)-matrix. The condition (3. 3) is equivalent to
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0
_12771. (:) 0
0, -0, 0
3.3y e

0
"‘]gm E
0 0
0, ...0, 0

Next, the relation 2,=f£,,2, on O, N O;#¢ is represented as
W‘L':tT’L] *fw W] Tw;

where

ftJ[2m+l | 0

*fzjz _
O { fi] Izm+1

or equivalently as
©;="7,, f1;0,Ty;

relative to the field of unitary frames defined on O,. If we substitute (3.1) to
this relation, we have

§.6:="7,,/13€;5,7;="0;6,T0,,T] [1,5,T0;-

Since ‘r,;&,7,,€H*(2m) and 73 f,,6,7,,€U(2m), by the uniqueness of the
decomposition of this type, we have

(3 4) Ei:tftjejfu; oizfz'_jlfzj O'wa:
or
(3.4) Z;="T,Z,T,,, 2:=Ti *f’u 2,T,,.

Thus, there is a global (0, 2)-tensor field g of class C~ on M defined by the set
{Z,;0,0}. (See [8].) Since each &, is positive definite, g is regarded as a
positive definite hermitian metric on M. Also there is a local (1, 1)-tensor field
G; of class C* and of rank 2m defined by 2, on each O, in such a way that
the condition G,=f,;G, is satisfied on O, N O;#4.

Now, we shall define on each O, vector fields U, and V,, 1-forms u, and v;
and (1, 1)-tensor field H, respectively by
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(3.5) U;=N,,
Vi=—FN,,
u;=c(U)g,
vi=¢(V.)g,
H,=—FG,.
Then from (3.2), (3.3), and (3.5) the following relations are easily varified :
FU=-V, FV=U,
g, U)=g(V, V)=1, g, V,)=0,
G,F=—FG;=H, H,F=—FH,=—G,,

(3.6) G U;=G,V,;=HU;=H,V,=0,
v;0G;=v;0G;=u;0H;=v;0H;=0,
Gi=H=—I+u,QU;+v,QV,,
HG=—GH=F+u;QV:—v;QU..

Furthermore, taking account of z,;€U(@2m), z/,;€U() and f,;€U(1) on O, O,
#¢, and by (3.4), we obtain

ui=auj+bv1, { Gi:CGJ‘*“dHJ,

3.7
{ Hi:_de“"CH].

v;=—bu,+av,,

where a, b, ¢, and d are real valued functions satisfying a?+4b*=1, and
ct+-d?=1.

The preceding argument shows that the set {(O,, u,, v,, G;, H,): 0,€0}
defines a complex almost contact structure on M. Thus we have

THEOREM. Let (M, F, &) denote a complex manifold of odd complex dimen-
sion 2m-+1 (=3) with complex structure F and hermitian metric 8. If M has a
Q-structure, then there are a hermitian metric g and a complex almost contact
structure on M.

Remark. The significance of the Theorem proved in the preceding way is
that if we suppose the original hermitian metric & and 2-forms £,’s are of class
C?, then we get a hermitian metric g and (1, 1)-tensor fields G;’s of class C“.

It might be convenient to have a metric § satisfying g(G; X, Y)=—2(X, G.;Y)
and §(H. X, Y)=—2(X, H,Y) on each O,. We get such a metric from g in the
Theorem in the following way.

First we define &, on each O, by

(.8 A V=g, V)t @G.X, CY)+g(HX, HY)
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Then by (3.7) we see £,(X, V)=5;(X, V) on O,n0,;#¢. This shows that &, is
extended to a global metric, which we denote by g. It is easily checked that &
satisfies the required conditions on each O,, namely, §(G;X, Y)=—3F(X, G;Y)
and §(H, X, Y)=—2(X, HY) as well as g(FX, Y)=—g(X, FY). However
changing metrics of this type does not affect the definitions of U,, V,, u,, and
v;. In fact, this is easily checked by (3.5) and (3.6).

Remark. By slightly modifying the argument in this section we have the
following :

Instead of a Q-structure, if there is on each O, a 2-form £, of type (2, 0)
satisfying (2.)"#0 (n=m) and 2,=f,,2,, f,;€UQ) on O,NO;#¢, then there is
a hermitian metric g on M such that the non-zero eigenvalues of each £, with
respect to g are only 1 and —:i. (See (3.3)".)

BIBLIOGRAPHY

[1] C. CHEVALLEY, Theory of Lie groups I, Princeton Univ. Press, 1946.

[2] D.E. BLAIR, S.Ishihara and G.D. Ludden, Projectable Almost Complex Contact
Structure, to appear.

[3] W.M. BoorHBYy, Homogeneous Complex Contact Manifolds, Proc. Symp. Pure
Math., Vol. III, 144-154, Amer. Math. Soc., 1961.

[4] Y. HATAKEYAMA, On the existence of Riemannian metrics associated with
2-form of rank 2r, Tohoku Math. J., 14 (1962), 162-166.

[5] S.IsHiHARA and M. KonisHi, Complex Almost Contact Structures and Fiberings,
to appear.

[6] S. IsmiHARA and M. Konisui, Complex Almost Contact Manifolds, to appear.

[7] S. KoBavasHl, Remarks on Complex Contact Manifolds, Proc. Amer. Math.
Soc., 10 (1959), 164-167.

[8] K. Yano, Differential Geometry on Complex and Almost Complex Spaces,
Pergamon Press, 1965.

TOKYO INSTITUTE OF TECHNOLOGY





