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INFINITESIMAL VARIATIONS OF SUBMANIFOLDS

BY KENTARO YANO

§ 0. Introduction.

The purpose of the present paper is to study variations of the metric tensor,
the Christoffel symbols and the second fundamental tensors of submanifolds under
infinitesimal variations of the submanifolds.

The method used here is to displace the deformed quantities back parallelly
from the displaced point to the original point and to compare the parallelly
displaced back quantities and the original quantities, [3], [4].

In § 1, we state formulas for submanifolds of a Riemannian manifold needed
for the later discussions including equations of Gauss, Codazzi and Ricci. [Γ\.

In § 2, we consider infinitesimal variations of submanifolds of a Riemannian
manifold. We define parallel variations of submanifolds and study their pro-
perties.

§ 3 is devoted to the study of variations of the fundamental metric tensor
of the submanifold. We discuss isometric, conformal and volume-preserving,
variations.

We study in § 4 the variations of the Christoffel symbols and those of linear
connection induced in the normal bundle. When the submanifold is compact or
complete and irreducible, we obtain some global results.

In the last § 5, we study variations of the second fundamental tensors and
prove some global propositions. (For normal variations, see [2]).

§ 1. Preliminaries.

Let Mm be an m-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {U xh} and denote by gjif Γ%, VJy Kkji

h and Kjt the
metric tensor, the Christoffel symbols formed with gjif the operator of covariant
differentiation with respect to Γ%, the curvature tensor and the Ricci tensor of
Mm respectively, where and in the sequel the indices h, i,j, k, ••• run over the

range {1,2, - , m } .
Let Mn be an n-dimensional Riemannian manifold covered by a system of

coordinate neighborhoods {V ya} and denote by gcb, Γ%, Vcy Kdcb

a and Kcb the
corresponding quantities of Mn respectively, where and in the sequel the indices

Received February 20, 1976

30



INFINITESIMAL VARIATIONS OF SUBMANIFOLDS 31

a, b, c, d, ••• run over the range {1, 2, •••, n).
We suppose that Mn is isometrically immersed in M m by the immersion ι:

Mn-*Mm and identify i(Mn) with Mn. We represent the immersion by

(1.1) xh=xh(ya)

and put

(1.2) Bb

h=dbx
h, (db=d/dyb).

Then Bb

h are n linearly independent vectors of Mm tangent to Mn. Since the
immersion is isometric, we have

(1.3) gc>=Bϋgji,

where Bίi=Be

3Bb

%. We denote by Cy

h m—n mutually orthogonal unit normals to
Mn, where and in the sequel the indices x,y,z run over the range {n+l,n+2,
•" ,m}. Then the metric tensor of the normal bundle of Mn is given by

(1.4) gzy=C2>Cy*gji

and has values gzy~δzy, δzy denoting the Kronecker delta.
It is well known that Γ% and Γ% are related by

(1.5) Γ%=(deBb

h+Γ^BU)B\f

where Ba

h—Bbg
bagih, gba being contravariant components of the metric tensor

gcb of Mn and the components Γ%, of the connection induced in the normal
bundle are given by

(1.6) Γ^idcCy^Γ^B^Cy^C^,

where Cx

h—Cy

xgyxgih, gyx being contravariant components of the metric tensor
gyx of the normal bundle.

If we denote by VcBb

h and VcCy

h the van der Waerden-Bortolotti covariant
derivatives of Bb

h and Cy

h along the Mn respectively, that is, if we put

(1.7) V cBb

h=dcBb

h+Γ%B&-Γ%Ba

h

and

(1.8) FcCy

h=dcCy

h+Γ%BcJCy

τ-ΓΐyCx

h,

then we can write equations of Gauss and those of Weingarten in the form

(1.9) VcBb

h=hcb

xCx

h,

(1.10) VcCyh=-hc

ayBa

h

respectively, where hcb

x are the second fundamental tensors of Mn with respect
to the normals Cx

h and hc

a

x=hcbxg
ba=hcb

ygyxg
ba.

Equations of Gauss, Codazzi and Ricci are respectively
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(1.11) Kdcb

a=KkJi

hBk

d^h+hd

a

xhcb

x-hc

a

xhdb

x,

(1.12) O=Kkji

hBMiC\-(Fdhcb*-Fchdb

x)

and

(1.13) Kdcv

x=Kkji

hB&Cv

xC\+(hde

xhe\-hee

xhd

ey),

where Bh&^Bd

kBc

JBb

xBa

h, BUi=Bd

kBc

JBb

ι and Kdcy

x is the curvature tensor of
the connection induced in the normal bundle.

§ 2. Infinitesimal variations.

We now consider a variation of Mn in Mm given by

(2.1) xh=xh+ξh(y)ε,

where gjiξJξι>0 and ε is an infinitesimal. We then have

(2.2) Bb

h=Bb

h+(dbζ
h)ε,

where Bb

n—dbx
n are n linearly independent vectors tangent to the deformed

submanifold at the deformed point (xh).
If we displace Bb

h back parallelly from the point (xh) to (xh), we obtain

that is,

(2.3) Bb*=B

neglecting the terms of order higher than one with respect to ε, where

(2.4) Vbξ
h=db

In the sequel we always neglect terms of order higher than one with respect
to the infinitesimal ε.

Thus putting

(2.5) δBb

h=Bb

h-Bb

h,

we have

(2.6) δBb

h=Fbξ
hε.

If we put

(2.7) ξh=ξaBa

h+ξxCx

h,

we have

(2.8) Fbξ
h=(Fbζ

a-hb

a

xξ
x)Ba

h
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and consequently, putting

(2.9) ζb

a=Vbξ
a-hb\ξ*,

(2.10) ξb

x=Pbξ*+hba*ζa,

we have

(2.11) r>ξh=ξ>aBa

h+ξb*Cx

h.

From (2.5), (2.6) and (2.11), we have

(2.12) Bb

h=(δS+ξb

aε)Ba

h+ξb

xCx

hε .

When the tangent space at a point (xh) of the submanifold and that at the
corresponding point (xh) of the deformed submanifold are parallel, we say that
the variation is parallel.

From (2.12), we have

PROPOSITION 2.1. In order for a variation of a submanifold to be parallel,
it is necessary and sufficient that

(2.13) ξb

x=P»ζx+hba*ςa=O.

When ξx=0, that is, when the variation vector ξh is tangent to the sub-
manifold we say that the variation is tangential and when ξa=0, that is, when
the variation vector ξh is normal to the submanifold we say that the variation
is normal.

From Proposition 2.1, we have

PROPOSITION 2.2. In order for a tangential variation of a submanifold to be
parallel, it is necessary and sufficient that

(2.14) hba

xξa=O.

COROLLARY 1. A tangential variation of a totally geodesic submanifold is
always parallel.

COROLLARY 2. A tangential variation of a totally umbilical submanifold with
non-vanishing mean curvature is never parallel.

From Proposition 2.1, we also have

PROPOSITION 2.3. In order for a normal variation of a submanifold to be
parallel, it is necessary and sufficient that

(2.15) F*£*=0,

that is, the variation vector ξxCx

h is parallel in the normal bundle.

For a parallel normal variation, we have Fbξ
x=0, which shows that Vb(gzyζ

zξv)
=0. Thus we have
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COROLLARY 1. A parallel normal variation of a submanifold displaces each
point of the submanifold the same distance.

When the submanifold is a hypersurface a normal variation is given by
xh=xh+λChε, Ch being the unique unit normal to the hypersurface and λ a
positive function and consequently (2.15) reduces to F bλ—0 and we have

PROPOSITION 2.4. In order for a normal variation of a hypersurface to be
parallel, it is necessary and sufficient that the normal variation displaces each
point of the hypersurface the same distance.

% 3. Variations of the metric tensor.

Now applying the operator δ to (1.3) and using (2.6), (2.8) and δgji=0, we
find

(3.1) δgcb=(Fcξb+Fbξc-2hcbxξ
x)ε,

where ξb=gbaξ
a, from which

(3.2) δgba= -(Fbζ a+Faξ b~2hba

xξ
x)ε,

where Fb=gbaFa and hba

x=gebgdahedx.
A variation of a submanifold for which δgcb=0 is said to be isometric and

that for which δgcb is proportional (with constant proportional factor) to gcb is
said to be con formal (homothetic).

From (3.1), we have

PROPOSITION 3.1. In order for a variation of a submanifold to be isometric,
it is necessary and sufficient that

(3.3) Fcξb+Fbξc-2hcbxξ*=0.

PROPOSITION 3.2. [5] In order for a tangential variation of a submanifold
to be isometric, it is necessary and sufficient that

(3.4) -Cgcb=Fcζb+Fbξc=0,

X denoting the Lie derivative with respect to ξa.

PROPOSITION 3.3. In order for a normal variation of a submanifold to be
isometric, it is necessary and - sufficient that

(3.5) hebxξ
x=O,

that is, the submanifold is geodesic with respect to the direction of the normal
variation.

COROLLARY 1. A submanifold is totally geodesic if and only if every normal
variation is isometric.



INFINITESIMAL VARIATIONS OF SUBMANIFOLDS 35

From (3.1), we also have

PROPOSITION 3.4. In order for a variation of a submanifold to be conformal
{homothetic), it is necessary and sufficient that

(3.6) Fcζb+Fbξc~2hcbxξ
x=2λgcb,

λ being a certain function {constant).

PROPOSITION 3.5. [5] In order for a tangential variation of a submanifold
to be conformal {homothetic), it is necessary and sufficient that

(3.7) -Cgcb=Fcξb+Fbζc=2λgcb,

λ being a certain function {constant).

PROPOSITION 3.6. In order for a normal variation of a submanifold to be
conformal {homothetic), it is necessary and sufficient that

(3.8) hcbxξ*=λgcb,

λ being a certain function {constant), that is, the submanifold is umbilical with
respect to the direction of the normal variation.

COROLLARY 1. A submanifold is totally umbilical if and only if every normal
variation of the submanifold is conformal.

We denote by g the determinant formed with gcb. Then the volume element
dV of Mn is given by

(3.9) dV= Vg dy'Ady'A ••• Λdyn .

Since we have from (3.1) and (3.2),

δVg=Vg{Faξ
a-ha

a

xξ*)e,
we have

(3.10) δ dV={Faξ
a-ha

a

xζηdV ε .

Thus we have

PROPOSITION 3.7. In order for a variation of a submanifold to be volume-
preserving, it is necessary and sufficient that

(3.11) F α £ f l -λcΛ£*=0.

PROPOSITION 3.8. [5] In order for a tangential variation of a submanifold
to be volume-preserving, it is necessary and sufficient that

(3.12) xVg=Faξ
a=0.

PROPOSITION 3.9. In order for a normal variation of a submanifold to be
volume-preserving, it is necessary and sufficient that
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(3.13) /iΛf=0

that is, the submanifold is minimal with respect to the direction of the normal
variation.

COROLLARY 1. A submanifold is minimal if and only if every normal varia-
tion of the submanifold is volume-preserving.

% 4. Variations of Christoffel symbols.

We denote by Cy

hjn—n mutually orthogonal unit_ normals to the deformed
submanifold and by Cy

h the vectors obtained from Cy

h by parallel displacement
of Cy

h from the point (xh) to (xh). Then we have

(4.1) Cy

h=Cy%(ζ)ξ

We put

(4.2) δCy

h=Cy

h-Cy

h

and assume that δCy

h is of the form

(4.3) δCyh=ηv

he=(ηv

aBa

h+ηv

Then (4.1), (4.2) and (4.3) give

(4.4) Cv

h=Cv

h-Γ

Applying the operator δ to Bb

JCy

ιgjί=0 and using (2.6), (2.11), (4.3) and
δgji=0, we find

where ηyb=ηy

cgcb, or

(4.5) Vva=-(Paξy+hb

a

yξ
b).

Applying the operator δ to Cz

JCy

ιgji=δzy and using (4.3) and δgji—0, we find

(4.6) 7]

where ηyx=-ηy

zgzx.
From (4.2) and (4.3), we have

(4.7) <*y

Λ= [

which shows that in order that the normal space of the deformed submanifold
at the point {xh) and that of the original submanifold at the point (xh) are
parallel, it is necessary and sufficient that rjy

a—0, which proves Proposition 2.1.
We denote by Ba

t n covectors of the deformed submanifold corresponding to
Ba

ι of the original submanifold and by Ba

t the covectors obtained from Ba

t by
parallel displacement of Ba

τ from the point (xh) to (xh). Then we have
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(4.8) B\=Ba

i-Γ%(x+ξε)ξ'Ba

hε.

We put

(4.9) δBa

ι^Ba

i-B\.

Then applying the operator δ to

Bb'B\=δa

b} Cy

ιB\=0

and using (2.6) and (4.3), we find

(4.10) δBa

ι=-(Fbξ
a-hb

a

xξ
x)Bb

iε+(Faξx+hb

a

xξ
b)Cx

ιε.

From (4.8), (4.9) and (4.10), we have

(4.11) Ba

i=B

We denote by Cx

% m—n covectors of the deformed submanifold correspon-
ding to Cx

% of the original submanifold and by Cx

% the covectors obtained from
Cx

t by parallel displacement of Cx

ι from the point (xh) to (xh). Then we have

(4.12) Cx

ι=Cx

ι-Γ%(x+ξε)ξ>Cx

hε.

We put

(4.13) δCx

i=Cx

i~Cx

ι.

Then applying the operator δ to

Bb

τCx

ι=0, CJCx

x=δ*

and using (2.6) and (4.3), we find

(4.14) δCx

ι=-l(Pbξ
x+hba

xζa)Bb

ι+Vy

xCy

ιlε.

From (4.12), (4.13) and (4.14), we have

(4.15) Cx

ι=C

We now put

(4.16) %

and

(4.17) δΓ%=n~Γa

cb.

Γ% are Christoffel symbols of the deformed submanifold.
Substituting (2.2) and (4.11) into (4.16), we obtain by a straightforward com-

putation,

(4.18) δΓ%=i(
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from which, using equations (1.11) of Gauss and those (1.12) of Codazzi,

(4.19) δΓ%=(FcFbξ
a+Kdcb

aζd)ε

We now put

(4.20) Γ*,=(deCv

h+Γh

fi{x)Be>Cy

i)C*h

and

(4.21) δΓϊy=Γΐy-Πy.

Γcy are components of the connection induced on the normal bundle of the de-
formed submanifold.

Substituting (2.2), (4.4) and (4.15) into (4.20), we obtain by a straightforward
computation

(4.22) δΠy=

from which, using equations (1.15) of Ricci,

(4.23) ^Γ^=[Γ c)7

A variation of a submanifold for which δΓ%—0 is said to be affine. From
(4.19) we have

PROPOSITION 4.1. In order for a variation of a submanifold to be affine, it
is necessary and sufficient that

(4.24) Γ / δ e + ^ c δ

α f d - [ ^ c ( ^ e , Γ ) + f 7

δ ( / z c e ^ ) - ί 7 e ( ^ δ , r ) ] ^ α = 0 .

COROLLARY 1. [5] In order for a tangential variation of a submanifold to
be affine, it is necessary and sufficient that

(4.25) XΓ%=FcFbξ
 a+Kdcb

aξ d=0.

For a normal variation of a submanifold we have from (4.19)

(4.26) δΓ%=-lFc(hbex

from which

(4.27) Fc(hbaXξ
z)e=^

From (4.26) and (4.27), we have

COROLLARY 2. In order for a normal variation of a submanifold to be affine,
it is necessary and sufficient that

(4.28) Fc(hbaxξη=0,

that is, the second fundamental form with respect to the variation vector is parallel.
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COROLLARY 3. // a submanifold with parallel second fundamental tensors
admits a parallel normal variation, then it is affine.

For a compact orientable submanifold Mn, we have the following integral
formula:

(4.29) J[(^/^+iW)fα+^

which is valid for any vector field ξa in Mn [6]. From (4.29), we find

(4.30) \[igcbF CF bξ^Kd

aξd-2F\hc\

+-γ(PΌξ>+P\ξc-2hcbyξy

Now if a variation of the submanifold is isometric, we have (3.3) and con-
sequently

(4.31) (Fcξb+Fbξc-~2hcbyξ
y)hcb

xζ
x^ and Vcξ

c-hc

c

xξ
x=O.

Since an isometric variation is affine, we also have (4.24), from which

(4.32) gcΨfbξ
a+Kd

aξd-2Fc(hc

a

xξ
x)+F%hb

b

xξ
x)=0.

Conversely if (4.31) and (4.32) are satisfied, we have from (4.30),

Fcξb+Fbξc-2hcbxξ
x=0

and consequently the variation is isometric. Thus we have

PROPOSITION 4.2. In order for a variation of a compact submanifold to be
isometric, it is necessary and sufficient that we have (4.31) and (4.32).

Now, from (4.24), we have

(4.33)

Kdcba being covariant components of the curvature tensor of Mn, from which
using the identity Kdcba+Kdcab=0,

Fc(Fbξa+Faζb-2hbaxζη=0.

Thus if the submanifold is complete and irreducible, we have

(4.34) Fbξa+Faζb-2hbaxξ*=2λgba,



40 KENTA.RO YANO

λ being a constant.
Conversely from (4.34) we can deduce (4.33) which is equivalent to (4.24).

Thus we have

PROPOSITION 4.3. A variation of a complete and irreducible submamfold is
affine if and only if it is homothetic.

From (4.34), we have

COROLLARY 1. // a complete and irreducible submamfold admits an affine
normal variation, then the submamfold is umbilical with respect to the variation
vector.

§ 5. Variations of the second fundamental tensors.

Suppose that vh is a vector field of Mm defined intrinsically along the sub-
manifold Mn. When we displace the submanifold Mn by xh=xh+ξ\y)ε in the
direction ξh, we obtain a vector field vh which is defined also intrinsically along
the deformed submanifold. If we displace vh back parallelly from the point
(xh) to (xh), we obtain

ϋh=vh+ΓI}i(x+ξε)ξJvtε

δvh=ϋh-vh,

δvh=ΰh-vh+Γ%ζJvιe.

δV cv
h=V Cϋ

h-V cυ
h+Γ%ξΦ cυ

%ε ,

δPcv
h=FCv

h-P'ev
h

and

(5.1)

we ]

(5.2)

that

(5.3)

hence forming

find

Similarly we have

is,

δPc

On the other hand, from (5.2) we have

(5.4) Vcδvh=FCϋ
h-P'ev

h

Thus forming (5.3)-(5.4), we find

(5.5) δVcv
h-Vcδvh=Kkji

hξkBc

Jvιe.

Similarly, for a covector wlf we have
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(5.6) δFcwι~Fcδwι= -Kkji

hξkBc>whε.

For a tensor field carrying three kinds of indices, say, Tby

h, we have

(5.7) δFcTby

h-FcδTby

h

Applying the formula (5.7) to Bb

h, we find

δFeBb

h-reδBb

h=KkJi

hςkBe>B

or using (1.9) and (2.6)

from which, using (4.3),

(δhcb

x)Cx

h+heb

x(ηx

aBa

h+VxvCyh)e

Thus

from which

(5.8) δhcb

x

Thus we have

PROPOSITION 5.1. A variation of a submamfold gives the variation (5.8) to
the second fundamental forms and consequently it preserves the second funda-
mental forms if and only if

(5.9) lξdFdhc

PROPOSITION 5.2. For a tangential variation of a submamfold, we have

(5.10) δhcb

x=lξΨdhcb*+hebψc

and consequently a tangential variation of a submamfold preserves the second
fundamental forms if and only if

(5.1D ξ d F d h c b η

PROPOSITION 5.3. [2] For a normal variation of a submamfold, we have

(5.12) δhcb

x=ίFfb
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and consequently a normal variation of a submanifold preserves the second funda-
mental forms if and only if

(5.13) Ffbξ^κkjί

hCykBiicx

hξy-hce

xhb

e

yξy~hcbyVy^o.

COROLLARY 1. [2] A normal variation carries a totally geodesic submanifold
into a totally geodesic submanifold if and only if

(5.14) VcVbξ
 x+KkJi

hCy

kBUCx

hζ
 y=0.

COROLLARY 2. [2] A normal variation carries a totally umbilical submanifold
into a totally umbilical submanifold if and only if

(5.15) ,

ax being certain functions.

Since for a normal variation we have from (3.2)

δ(gcbhcb

x)=(δgcb)hcb

x+gcbδ(hcb

x)>
that is,

δ(gebheb

x)=2hcb

yξ
vhcb

x+gcbδ(heb

x).

we obtain from (5.12)

(5.16)

where Bjί=B%gcb.
Thus we have

PROPOSITION 5.4. For a normal variation of a submamfold, we have (5.16)
and consequently a normal variation preserves the mean curvature vector if and
only if

(5.17) gcΨfbξ
x+Kkji

hCy

kBjίCx

hξ
y+hcb

xhcbyξy-ha

ayr]yx==O.

COROLLARY 1. [2] A normal variation carries a minimal submanifold into a
minimal submanifold if and only if

(5.18) gcΨfbξ
XJrKkji

hCy

kBjίCx

hξ
y + hcb

xhcbyξy=:O.

Suppose that a normal variation carries a minimal submanifold into a minimal
submanifold. Then substituting (5.18) into

we find
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(5.19)

Now suppose that a parallel normal variation carries a minimal submanifold
into a minimal submanifold. Then we obtain from (5.19)

(5.20) κkjihcy

kB^cx

hξyξxHhcbyξ
v){hc\ζη^o.

Thus if the sectional curvature of Mm with respect to the section spanned by
the variation vector and a tangent to the submanifold is non-positive, we have

and consequently from (5.20)

hebxξ
x=O.

Thus we have

PROPOSITION 5.5. // a parallel normal variation cornes a minimal submani-
fold into a minimal submanifold and the sectional curvature of the ambiant mani-
fold with respect to a section spanned by the variation vector and a tangent to
the submanifold is non-positive, then the submanifold is geodesic with respect to the
variation vector.

We now consider a normal variation xh=xh+λChε of a compact hypersurface,
where λ is a positive function and Ch the unit normal to the hypersurface.

In this case (3.2) reduces to

(5.21) δgcb=2λhcbε

and (5.12) to

(5.22) δhcb=\ΎcFbλ+λKkjihC
kBUCh-λhcehb

e']ε,

7]y

x being identically zero. Thus from (5.21) and (5.22) we have

(5.23) δ(gcbhcb) = ίJλ+λKkjihC
kBJίCh+λhcbh

cb^ε.

Thus if the normal variation preserves gcbhcb we have

(5.24) Jλ+λίKkJihC
kBJiCh+hcbh

eb']=0.

Consequently if moreover

we have

Λ=constant, KkjιhC
kBjίCh=0 and hcb=0.

Thus we have
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PROPOSITION 5.6. // a normal variation xh=xhJrλChε, λ>0, of a compact

hyper surf ace preserves gcbhcb and KkjihPkBjιCh^Q, then we have

Λ=constant, KkjihC
kBjίCh=0

and the hypersurface is totally geodesic.
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