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PLANE DOMAINS WITH HARMONIC INTERPOLATING SEQUENCES

WHICH ARE NOT INTERPOLATING SEQUENCES
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Let D be an arbitrary open set in the complex plane C, and HyðDÞ be the
set of bounded analytic functions f ðzÞ on D, equipped with the supremum norm
k f ky ¼ supz ADj f ðzÞj. A sequence fzjg in D is called an (HyðDÞ-)interpolating
sequence if for all complex valued bounded sequences fajg, the interpolation
problem

f ðzjÞ ¼ aj; j ¼ 1; 2; 3; . . .

has a solution f ðzÞ in HyðDÞ.
For an arbitrary open set D in C, let hyðDÞ be the set of bounded har-

monic functions on D, equipped with the supremum norm. In the same way as
HyðDÞ-interpolating sequences, we can consider interpolating sequences for this
space hyðDÞ. Namely, a sequence fzjg in D is called an hyðDÞ-interpolating
sequence or harmonic interpolating sequence (in DÞ, if for any real valued bounded
sequence fajg, there exists a function h A hyðDÞ such that

hðzjÞ ¼ aj; j ¼ 1; 2; 3; . . . :

Obviously every interpolating sequence is a harmonic interpolating sequence.
For the unit disk D ¼ fjzj < 1g, J. Garnett [7] showed the converse: a harmonic
interpolating sequence in D is an interpolating sequence for HyðDÞ.

The existence of a plane domain and a sequence which is a harmonic inter-
polating sequence but not an interpolating sequence was first pointed out by
Fisher using a Zalcman domain ([7, p. 191]), and Behrens gives a necessary and
su‰cient condition for some kind of Zalcman domains to satisfy that a sequence
in this domain is an interpolating sequence if and only if it is a harmonic inter-
polating sequence ([2, Th. 3.7]). These two results suggest that one typical
reason for the existence of a sequence which is a harmonic interpolating sequence,
but is not an interpolating sequence, is the existence of a boundary point where
the boundary is su‰ciently small for bounded analytic functions (in some sense)
and is not su‰ciently small for bounded harmonic functions (i.e. the point is a
regular boundary point in the sense of Dirichlet problem).

328

2000 Mathematics Subject Classification. 30C85, 30H05, 46J20.

Received March 30, 2004; revised February 3, 2005.



In this paper, first, we study in this direction and describe two su‰cient
conditions when harmonic interpolating sequences and interpolating sequences
do not coincide (Theorem 2.3, 2.4). Also we give another example of a domain
and a sequence, which is also a harmonic interpolating sequence, but not an
interpolating sequence, but in this case, this sequence converges to a boundary
point where the boundary is su‰ciently large even for bounded analytic functions
(Theorem 3.1).

1. Fundamental lemmas

Thought the proofs of the following two lemmas are essentially included in
Fisher’s example, we would like to contain these, since we use these lemmas with
proof in some detail later.

Lemma 1.1. Let D be a domain in C. Let fzjg be a sequence in D, and
let mj be the harmonic measure relative to zj and D. If there exists a sequence of
mutually disjoint Borel sets fFjg such that Fj H qD and mjðFjÞb 2

3 ð j ¼ 1; 2; . . .Þ,
then fzjg is a harmonic interpolating sequence.

Proof. Let fajg be a bounded sequence and let kfajgky ¼ k. We set a
boundary function h1 as

h1ðzÞ ¼ aj ðz A FjÞ ð j ¼ 1; 2; . . .Þ;
h1ðzÞ ¼ 0 ðz A qDn6FjÞ;

and let f1 be the solution of Dirichlet problem for h1. Then k f1ky a k and

jaj � f1ðzjÞj ¼ aj �
ð
qD

h1 dmj

����
����a

ð
qD

jaj � h1j dmj ¼
ð
qDnFj

jaj � h1j dmj

a supjaj � h1j � mjðqDnFjÞa 2kð1� 2=3Þ ¼ ð2=3Þk:

Hence

kfaj � f1ðzjÞgky a ð2=3Þk:
In the same way as we construct f1 from fajg, we can construct f2 A hyðDÞ from
faj � f1ðzjÞg such that

k f2ky a ð2=3Þk;

jaj � f1ðzjÞ � f2ðzjÞja ð2=3Þ2k ð j ¼ 1; 2; . . .Þ:

Repeating this process, we can take fm A hyðDÞ satisfying

k fmky a ð2=3Þm�1
k ðm ¼ 1; 2; . . .Þ;

aj �
Xm
l¼1

flðzjÞ
�����

�����a ð2=3Þmk ðm ¼ 1; 2; . . . ; j ¼ 1; 2; . . .Þ:
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Then f ¼
Py

m¼1 fm satisfies

k f ky a
Xy
m¼1

ð2=3Þm�1
k ¼ 3k;

f ðzjÞ ¼ aj ð j ¼ 1; 2; . . .Þ:
This implies that the sequence fzjg is a harmonic interpolating sequence. r

Lemma 1.2. Let D be a domain in C and let z be a regular boundary point
of D in the sense of Dirichlet problem. If a sequence S ¼ fzng in D converges to
z, then S has a subsequence fznjg which is a harmonic interpolating sequence.

Proof. Let n1 ¼ 1 and let m1 be the harmonic measure relative to zn1 and D.
For t > 0, let

EðtÞ ¼ fz A qD : jz� zj < tg:
Since m1ðfzgÞ ¼ 0, we can take a t1 > 0 such that m1ðEðt1ÞÞ < 1=6. We want to
take n2 to satisfy m2ðEðt1ÞÞ > 5=6 where m2 is the harmonic measure relative to
zn2 . To see this, let g1 be a boundary function such that g1 ¼ 1 on Eðt1Þ and
g1 ¼ 0 on qDnEðt1Þ, and let u1 be the solution of Dirichlet problem for the
boundary values g1 in D. Since z is a regular boundary point for D,

lim
D C z!z

u1ðzÞ ¼ 1:

Hence we can take n2 such that u1ðzn2Þ > 5=6. Then

u1ðzn2Þ ¼
ð
qD

g1 dm2 ¼
ð
Eðt1Þ

dm2;

and so m2ðEðt1ÞÞ > 5=6.
In a similar manner, we can choose a subsequence fznjg and a sequence of

positive numbers ftjg such that

t1 > t2 > � � � ; tj ! 0 ð j ! yÞ;
mjðEðtj�1ÞÞ > 5=6 ð j ¼ 2; 3; . . .Þ;

mjðEðtjÞÞ < 1=6 ð j ¼ 1; 2; . . .Þ
where mj is the harmonic measure relative to znj . Let

F1 ¼ qDnEðt1Þ;
Fj ¼ Eðtj�1ÞnEðtjÞ ð j ¼ 2; 3; . . .Þ:

Then fFjg are mutually disjoint and satisfies

mjðFjÞ > 2=3 ð j ¼ 1; 2; . . .Þ:
Hence, by virtue of Lemma 1.1, the subsequence fznjg is a harmonic interpolating
sequence. r
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2. Sequences converging to an irregular boundary point

A compact set K in C is called a Painlevé null set if K is a removable sin-
gularities for bounded analytic functions, that is, for any open neighborhood V
of K and f A HyðVnKÞ, f extends analytically to V . It is not di‰cult to see
that K is a Painlevé null set if and only if HyðCnKÞ consists of only constant
functions ([5, p. 86]); the last property is symbolically represented as CnK A OAB

in the function theory.
Similarly, a compact set K in C is a removable singularities for bounded

harmonic functions if and only if hyðCnKÞ consists of only constant functions;
symbolically CnK A OHB. The condition CnK A OHB is also equivalent to the
condition that the logarithmic capacity of K is zero.

It is known that there is a compact set which is a Painlevé null set, but has
positive logarithmic capacity ([1, p. 252]). Hence the following Theorem gives
another example of plane domains in which interpolating sequences and harmonic
interpolating sequences do not coincide.

Theorem 2.1. Let D be an open set in C. Suppose a compact set K in D is
a Painlevé null set, and the logarithmic capacity of K is positive, then there exists a
sequence S in DnK such that S is an hyðDnKÞ-interpolating sequence, but not an
HyðDnKÞ-interpolating sequence.

Proof. It is known that the set of irregular boundary points of an open
set has zero capacity ([3, Satz 4.7]). And the Painlevé null set K has no inner
points. Therefore, there exists a point z on K such that z is a regular boundary
point of DnK . By Lemma 1.2, there is a harmonic interpolating sequence fzjg
in DnK , converging to z. On the other hand, fzjg cannot be an HyðDnKÞ-
interpolating sequence, since any function in HyðDnKÞ extends analytically to D.

r

To state another result concerning harmonic interpolating sequences, we in-
troduce Zalcman domains, which were first studied by Zalcman in [9] and are
frequently used in the study of function algebras and the potential theory. Let
D0 ¼ f0 < jzj < 1g and let Dðcn; rnÞ ¼ fjz� cnja rng be a sequence of closed disks
with centers on the positive real axis satisfying

Dðcn; rnÞHD0 ðn ¼ 1; 2; . . .Þ;ð1Þ

Dðcn; rnÞVDðcm; rmÞ ¼ j ðn0mÞ;ð2Þ
c1 > c2 > � � � ; cn ! 0 ðn ! yÞ:ð3Þ

Then the domain D0n6y
n¼1

Dðcn; rnÞ is called a Zalcman domain.
Now we recall the Fisher’s example. Zalcman showed in [9], that whenPy

n¼1 rn=cn < y, any bounded analytic function f on the Zalcman domain D ¼
D0n6y

n¼1
Dðcn; rnÞ has a limit
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lim
R� C z!0

f ðzÞ

where R� represents the negative real axis. Therefore, any sequence tending 0
along negative real axis cannot be an HyðDÞ-interpolating sequence. Fix two
constants a, b such as 0 < b < a < 1, and set

cn ¼ an; rn ¼ bn ðn ¼ 1; 2; . . .Þ:
Then

Py
n¼1 rn=cn ¼

Py
n¼1ðb=aÞ

n < y. We remark that, though finite closed disks
Dðan; bnÞ may intersect, we can choose an integer N such that R ¼ D0n6y

n¼N

Dðan; bnÞ is a Zalcman domain (for example, take N such as bN < ðaN � aNþ1Þ=2
¼ aNð1� aÞ=2). Let

An ¼ qRV fanþ1=2
a jzja an�1=2g;

and let capðAnÞ be the logarithmic capacity of An. For nbN, An ¼ qDðan; bnÞ.
Since the logarithmic capacity of a disk of radius r is r, we have capðAnÞ ¼ bn.
Hence the series of the Wiener’s criterion ([4], [8, p. 104]) diverges as

Xy
n¼N

n

logð1=capðAnÞÞ
¼
Xy
n¼N

n

�n log b
¼
Xy
n¼N

1

�log b
¼ y:

This implies that the boundary qR is thick at the origin in the sense of fine
topology, or equivalently, the origin is a regular boundary point for R. From
Lemma 1.2, there exists a sequence fzjg on negative real axis such that fzjg is a
harmonic interpolating sequence.

Though Fisher’s example is not contained in the result of Theorem 2.1,
it depends on the fact that in some sense the boundary of the Zalcman domain
is small for bounded analytic functions but not small for bounded harmonic
functions at the origin. By virtue of the study of Gamelin and Garnett in [6], we
can consider this phenomena in more general domains.

Since HyðDÞ is a Banach algebra with the supremum norm, we can consider
the maximal ideal space MðDÞ of HyðDÞ. It consists of all nonzero complex
valued multiplicative linear functionals, called complex homomorphisms, on
HyðDÞ. By the weak star topology inherited from the dual space HyðDÞ� of
HyðDÞ, MðDÞ is a compact Hausdor¤ space.

When D is a bounded open set in C, the coordinate function Z belongs
to HyðDÞ. The Gelfand transform ẐZ maps MðDÞ onto D, and ẐZ�1jD gives a
homeomorphism of D onto the open subset ẐZ�1ðDÞ of MðDÞ, which coincides
with the identification by the point evaluations ([5, p. 2]).

When D is unbounded open set in C, the usual coordinate function does not
belong to HyðDÞ. However, if HyðDÞ contains a nonconstant function, there
exists a continuous function 1 from MðDÞ onto DH ĈC, such that 1�1jD gives a
homeomorphism of D onto the open subset 1�1ðDÞ of MðDÞ, and this coincides
with the identification by the point evaluations. ([5, p. 87]).

For a bounded open set D in C and a point z in D, the fiber MzðDÞ is
defined by MzðDÞ ¼ ẐZ�1ðzÞ. When D is not bounded and CnD is not a Painlevé

332 junichiro narita



null set, we can replace Z by 1, and set MzðDÞ ¼ 1�1ðzÞ. According to usual
terminology, MzðDÞ is called a peak set if there exists an f A HyðDÞ such that
f̂f ¼ 1 on MzðDÞ and j f̂f j < 1 on MðDÞnMzðDÞ.

Theorem 2.2. Let D be an open set in C. Suppose there is a point z such
that z is a regular boundary point for D in the sense of Dirichlet problem, and the
fiber MzðDÞ is not a peak set. Then there exists a sequence S in D such that S is
an hyðDÞ-interpolating sequence, but not an HyðDÞ-interpolating sequence.

Proof. When MzðDÞ is not a peak set, there exists a sequence fzjg in D
such that fzjg converges to a point c (called a distinguished homomorphism)
in MzðDÞ in the norm of the dual space ðHyðDÞÞ� ([6, Section 4]). This means
that any subsequence of fzjg is not an HyðDÞ-interpolating sequence. On the
other hand, by Lemma 1.2, we can take a subsequence S ¼ fzjkg such that S is
an hyðDÞ-interpolating sequence. r

3. Sequences converging to a regular boundary point

Considering Theorem 2.1 and Theorem 2.2, we might expect that the ex-
istence of these kinds of boundary point is a necessary and su‰cient condition for
the existence of a sequence which is a harmonic interpolating sequence but not an
interpolating sequence. However, an example, which we will construct, shows
that this is not true.

To this purpose, we consider domains D ¼ Dn6y
n¼1

Dðcn; rnÞ, similar to
Zalcman domains, but satisfy

c1 < c2 < � � � ; cn ! 1 ðn ! yÞ
instead of (3). We call these domains as boundary Zalcman domains. Note
that the boundary qD of a boundary Zalcman domain D is large enough for
bounded analytic functions at any boundary point z A qD; in fact, it is easy to see
that the fiber MzðDÞ is a peak set.

Theorem 3.1. There exists a boundary Zalcman domain D and a sequence
S in D such that S is a harmonic interpolating sequence but not an interpolating
sequence.

Proof. Let R ¼ D0n6y
n�1

Dðcn; rnÞ be a Zalcman domain of Fisher’s ex-
ample, and let fzjg be a sequence in R such that fzjg is a harmonic interpolating
sequence but not an interpolating sequence. We can assume that the sequence
fzjg is constructed as in the proof of Lemma 1.2, and that there exist mutually
disjoint subsets Fj H qR such that mjðFjÞ > 2=3 ð j ¼ 1; 2; . . .Þ where mj is the
harmonic measure relative to zj . By deleting z1 and renumbering, we can also
assume that

Fj H 6
y

n¼1

qDðcn; rnÞ ð j ¼ 1; 2; . . .Þ:

333plane domains with harmonic interpolating sequences



For each positive integer n, there exists an positive integer NðnÞ such that

6
n

j¼1

Fj H 6
NðnÞ

m¼1

qDðcm; rmÞ:

Let fVng be a sequence of mutually disjoint closed disks in D, whose centers are
on the positive real axis, and converge to 1 A qD. And in each Vn, we take NðnÞ
mutually disjoint disks

Dðcn;k; rn;kÞHVn ðcn;k > 0; rn;k > 0Þ ðk ¼ 1; 2; . . . ;NðnÞÞ

such that Vnn6NðnÞ
n¼1

Dðcn;k; rn;kÞ is similar to Dn6NðnÞ
n¼1

Dðck; rkÞ. We denote this
similar transformation by jn:

jn D

-
6
NðnÞ

n¼1

Dðck; rkÞ
 !

¼ Vn

-
6
NðnÞ

n¼1

Dðcn;k; rn;kÞ;

and let

W ¼ D

-
6
y

n¼1

6
NðnÞ

k¼1

Dðcn;k; rn;kÞ;

wn; j ¼ jnðzjÞ ð j ¼ 1; 2; . . . ; n; n ¼ 1; 2; . . .Þ:
We show that the boundary Zalcman domain W and the sequence

S ¼ fwn; j : j ¼ 1; 2; . . . ; n; n ¼ 1; 2; . . .g
in W give the desired example.

Let

~FFn; j ¼ jnðFjÞ ð j ¼ 1; 2; . . . ; n; n ¼ 1; 2; . . .Þ:
Then the sequence of subsets of qW ,

f ~FFn; j : j ¼ 1; 2; . . . ; n; n ¼ 1; 2; . . .g
are mutually disjoint, and for the harmonic measure ~mmn; j relative to wn; j and W ,
we have

~mmn; jð ~FFn; jÞ > mjðFjÞ > 2=3:

Hence, by Lemma 1.1, S is a harmonic interpolating sequence in W .
Suppose S is an interpolating sequence in W . Then for any bounded se-

quence fajg A ly, there is a function ~ff A HyðWÞ such that

~ff ðwn; jÞ ¼ aj ð j ¼ 1; 2; . . . ; n; n ¼ 1; 2; . . .Þ:
Let

fn ¼ ~ff � jn ðn ¼ 1; 2; . . .Þ:
Then fn A HyðRÞ, k fnky a k ~ff ky ðn ¼ 1; 2; . . .Þ, and
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fnðzjÞ ¼ ~ff � jnðzjÞ ¼ ~ff ðwn; jÞ ¼ aj ð j ¼ 1; 2; . . . ; n; n ¼ 1; 2; . . .Þ:
By taking uniform convergent limit of a subsequence of f fjg, we have a function
f A HyðRÞ such that

f ðzjÞ ¼ aj ð j ¼ 1; 2; . . .Þ:
This contradicts the hypothesis of R and fzjg. r
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