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FIXED POINTS
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Abstract

We consider geometrically in®nite Kleinian groups and, in particular, groups

with singly cusped parabolic ®xed points. In order to distinguish between di¨erent

geometric characteristics of such groups, we introduce the notion of horospheri-

cal tameness. We give a brief discussion of the fractal nature of their limit

sets. Subsequently, we use Jùrgensen's analysis of punctured torus groups to give a

canonical decomposition into ideal tetrahedra of the geometrically in®nite end. This

enables us to relate horospherical tameness to Diophantine properties of Thurston's end

invariants.

1. Introduction

We consider ®nitely generated, geometrically in®nite Kleinian groups acting
on hyperbolic 3-space. Geometrically in®nite groups were ®rst shown to exist
over 30 years ago by Greenberg in [16]. The ®rst explicit examples were
constructed by Jùrgensen in [17]. Subsequently, these groups have attracted a
great deal of attention from various di¨erent points of view.

In this paper we characterise geometrically in®nite groups by introducing
carefully so called Jùrgensen points. The term `Jùrgensen end' was introduced
loosely by Sullivan in his proof of the Cusp Finiteness Theorem. After making
this notion more precise, we consider a fundamental class of Jùrgensen points
which we term singly cusped parabolic ®xed points. These are of particular
interest as they display both geometrically ®nite and in®nite characteristics. For
clarity, we only consider ®nitely generated Kleinian groups whose only ob-
struction to being geometrically ®nite is the existence of such singly cusped
parabolic ®xed points. To distinguish between the di¨erent types of behaviour
that such groups can exhibit, we introduce the notion of horospherical tameness
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for ®nitely generated Kleinian groups. This turns out to be distinct from geo-
metrical tameness considered by Thurston, Canary and others.

Subsequently, we exploit the interplay between the geometrically ®nite and
in®nite features of ®nitely generated Kleinian groups with singly cusped parabolic
®xed points in order to obtain deeper understanding of Jùrgensen points. This
enables us to give, in this special case, an elementary account of some deep
results about geometrically in®nite Kleinian groups. We hope that this will be
useful to people trying to understand the general case. In particular, we obtain
the result that these groups are of 2-convergence-type. This enables us to draw
some conclusions concerning the dynamics on the associated 3-manifold. In
particular, these groups are shown to have (uniformly perfect) non-porous limit
sets. This makes them interesting objects for fractal geometry.

Finally, we build on Jùrgensen's study of quasi-Fuchsian punctured torus
groups to provide concrete examples of groups with singly cusped parabolic
®xed points. We show that an immediate consequence of Jùrgensen's analysis
of the Ford domain is that there is a canonical choice of cutting surfaces needed
to show that the group is geometrically tame. Moreover, these cutting surfaces
lead to a canonical decomposition into ideal tetrahedra of the geometrically
in®nite end of the associated manifold. This tetrahedral decomposition is
related to the well known decomposition of the ®gure eight knot complement
into ideal tetrahedra. By studying these cutting surfaces (or equivalently the
tetrahedra) we consider the di¨erent types of behaviour that can occur, and
relate these to the Diophantine approximation properties of Thurston's end
invariants. Speci®cally, we show that, in this context, horospherical tameness
is equivalent to the end invariant being badly approximable. In particular,
this clari®es a remark of Sullivan concerning such groups made in [35]. In
conclusion, we give two examples of geometrically tame groups one of which
is horospherically tame and the other of which is not. The former is the
Fibonacci example of Mumford, McMullen and Wright. The latter has
end invariant whose continued fraction expansion is given by an arithmetic
progression.

We would like to emphasise that the main goal of this paper is not ex-
clusively to produce new theorems which apply in a wide context, but rather to
analyse a particular concrete family of examples. Within this context, we study
some well known deep theorems which hold in greater generality and we show
how particular cases of these theorems may be proved in a straightforward
manner. We hope that this will be useful to others working in the ®eld. While
doing this, we also develop new structural analysis that makes various intuitive
connections much more precise.
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conference on Ergodic Theory and Dynamical Systems held in Szklarska Poreba.
We would also like to thank the referee for his/her careful reading of the paper
and, in particular, bringing reference [4] to our attention.
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2. Singly cusped parabolic ®xed points

2.1. Geometrically ®nite versus geometrically in®nite; Jùrgensen limit
points

First, we give a brief description of what it means for a hyperbolic 3-
manifold to be geometrically ®nite, respectively geometrically in®nite.

Throughout we shall let G denote a ®nitely generated Kleinian group and
M � H 3=G the associated hyperbolic 3-manifold (M is always assumed to be
oriented). In order to locate the dynamically and homologically interesting part
of M, let m A M be an arbitrary observation point, and consider Lm�M�, the set
of geodesic loops that start and terminate at m (these loops are not necessarily
closed geodesics). Further, a geodesic g in M is called loop-approximable, if and
only if there exists some observation point m A M such that each ®nite segment
of g may be approximated with arbitrary accuracy by segments of elements
in Lm�M�1.

We may now de®ne G�M�, the geodesic core of M, by

G�M� :� fg geodesic in M : g is loop-approximableg:
This enables us to distinguish between the following two di¨erent classes of
®nitely generated Kleinian groups. We remark that our dynamical de®nition of
geometrically ®nite Kleinian groups is based on an `observation of Thurston', see
De®nition 8.4.1 on page 8.15 of [37], who was the ®rst to realise the dynamical
signi®cance of the concept geometrical ®niteness.

Definition. A ®nitely generated Kleinian group G and its associated
hyperbolic 3-manifold M are called geometrically ®nite if the convex hull of the
geodesic core is of ®nite hyperbolic volume. They are called geometrically
in®nite if this volume is in®nite.

Recall that L�G�, the limit set of G, is the derived set of some arbitrary point
in hyperbolic space, that is the set of accumulation points of the G-orbit of that
point. An element of L�G� is called radial limit point if it admits a conical
approach by orbit points from inside hyperbolic space [7, 28]. Furthermore,
recall that a parabolic ®xed point of G is called bounded if it is either of rank 2 or
else is doubly cusped (see next section for further details).

The following classical result of Beardon and Maskit [8] (see also [12])
characterises geometrically ®nite Kleinian groups in terms of their limit set.

Beardon-Maskit. A ®nitely generated Kleinian group G is geometrically
®nite if and only if every point of L�G� is either a radial limit point or a bounded
parabolic ®xed point, that is L�G� `splits'.

1 i.e., each ®nite segment of g is contained in an arbitrarily small neighbourhood of some closed

loop.

kleinian groups with singly cusped parabolic fixed points 171



In order to de®ne a class of limit points which is generic for geometrically
in®nite Kleinian groups we require the notion of visibility at in®nity. A limit
point x A L�G� is called visible if and only if, for some Dirichlet domain F of G
based at a point z0 in hyperbolic space, there exists a group element g A G such
that g�F� contains the hyperbolic geodesic ray from g�z0� to x. The following
de®nition clari®es Sullivan's notion `Jùrgensen end', which he loosely introduced
in Figure 1 of [36].

Definition. An element of the limit set of a Kleinian group is called
Jùrgensen point if and only if it is visible and not a bounded parabolic ®xed
point.

In contrast to the classical result of Beardon and Maskit above, the fol-
lowing result gives a characterisation of geometrically in®nite Kleinian groups in
terms of the limit set.

Proposition 2.1. A ®nitely generated Kleinian group is geometrically in®nite
if and only if its limit set contains a Jùrgensen point.

Proof. The ®rst assertion, namely that the existence of a Jùrgensen point
already implies geometrical in®niteness, is an immediate consequence of the result
of Beardon and Maskit.

For the second assertion, assume that the ®nitely generated Kleinian group
G is geometrically in®nite with no visible points except possibly bounded
parabolic ®xed points. Since, by Beardon and Maskit, L�G� does not split,
there exists a point x A L�G� which is neither a radial limit point nor a bounded
parabolic ®xed point. In the PoincareÂ ball model let s denote the ray con-
necting the origin with x. Now, if s intersects at most ®nitely many G-images of
the Dirichlet domain F based at the origin, then there exist an element g A G such
that s is eventually contained in g�F �. This implies that x is visible, and hence a
Jùrgensen point.

Thus, s must intersect in®nitely many G-translates of F , denoted gi�F�, and
in particular their boundaries. Let ~xi denote the points at which s intersects
these boundaries, and let xi � gÿ1

i �~xi� denote their canonical pull backs onto F .
Since x is not a radial limit point, it follows that there exists a subsequence �xik �
which eventually leaves every subset of F with bounded hyperbolic diameter.
Thus �xik � accumulates at the boundary of hyperbolic space, and hence has a
subsequence converging to a point in the intersection of the boundary of hy-
perbolic space and the boundary of F . By convexity, this accumulation point is
visible and not a bounded parabolic ®xed point; hence it must be a Jùrgensen
point. r

2.2. Parabolic ®xed points
In this section we classify parabolic ®xed points for Kleinian groups. In

particular, we introduce singly cusped parabolic ®xed points and discuss some of
their general properties.
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The following facts are well known. A parabolic ®xed point p of a Kleinian
group G is called rank 1 or rank 2 depending on the type of its stabiliser Gp.
Namely,

. p has rank 1 when Gp is isomorphic to a ®nite extension of Z, and so is
necessarily cyclic or in®nite dihedral,

. p has rank 2 when Gp is isomorphic to a ®nite extension of Z 2.
A rank 1 parabolic ®xed point p is called doubly cusped if and only if there

exist a pair of disjoint open discs in W�G� tangent at p, where as usual W�G� �
Ĉ ÿL�G� denotes the set of ordinary points of G. Furthermore, a parabolic
®xed point is called bounded if and only if it is either of rank 2 or else is doubly
cusped.

In contrast, we are now going to set up the concept of singly cusped rank 1
parabolic ®xed points. It will be clear from Proposition 2.1 that groups with
such points are necessarily geometrically in®nite. In particular, the class of
singly cusped parabolic points provides simple examples of Jùrgensen points, and
hence of geometrically in®nite ends for hyperbolic 3-manifolds.

Definition. Let G be a Kleinian group containing parabolic elements. A
parabolic ®xed point p of G is called singly cusped if and only if the following
conditions hold:

(i) there exists an open disc hp contained in W�G� with p on its boundary;
(ii) any open disc in the Riemann sphere disjoint from hp and with p on its

boundary contains a point of the limit set L�G�.

For the rest of the paper we will assume, unless stated otherwise, that G is a
group with a singly cusped rank 1 parabolic ®xed point p. For simplicity we
assume that there are no other geometrically in®nite ends of M � H 3=G (i.e., all
Jùrgensen points in L�G� are in the orbit of p). In section 3 we shall show that
such groups exist.

Observe that the stabiliser of a singly cusped parabolic ®xed point is
necessarily a cyclic group of parabolic transformations. There are two directions
to approach a singly cusped parabolic ®xed point along a horosphere in the
quotient manifold M. The singly cusped parabolic ®xed point has a di¨erent
appearance depending on our direction of approach. Seen from a certain
direction it is cusped and so looks like a rank 1 parabolic ®xed point of a
geometrically ®nite Kleinian group. Seen from the opposite direction, it looks
like the parabolic ®xed point of one of the doubly degenerate groups considered
by Jùrgensen and Marden in [20]. Thus, heuristically, singly cusped parabolic
®xed points combine both geometrically ®nite and in®nite behaviour.

Also, observe that a ®nitely generated Kleinian can only have ®nitely many
singly cusped parabolic ®xed points. This fact is an immediate consequence of
the Ahlfors' Finiteness Theorem [1] or of Sullivan's Cusp Finiteness Theorem [35]
because singly cusped parabolic ®xed points lie on the boundary of some
component of W�G�, and hence correspond to one of the punctures of one of the
®nitely many boundary surfaces of ®nite type.
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2.3. Geometry of singly cusped parabolic ®xed points
We now consider the geometry associated to a singly cusped parabolic ®xed

point. The following theorem of Leutbecher [23], generalising work of Shimizu
[32], gives a uniform bound on invariant horoballs at parabolic ®xed points of a
Kleinian group. Recall that if a group G acts on a space X , a subset Y of X is
said to be precisely invariant under a subgroup G 0 of G if and only if g�Y � � Y
for every g A G 0 and g�Y� is disjoint from Y for every element of G ÿ G 0.

Leutbecher. Let G be a Kleinian group containing the parabolic trans-
formation z 7! z� t for some positive t. Then the horoball Hy at height t centred
at the parabolic ®xed point y is precisely invariant under Gy, the stabiliser of y
in G.

In what follows we always assume, without loss of generality, that t � 1.
With this normalisation, we refer to Hy as the Leutbecher horoball. Also, the
Leutbecher horoball may clearly be de®ned for any parabolic ®xed point p in
terms of its stabiliser, and the Leutbecher horoballs so obtained are pairwise
disjoint by construction.

Let p be any singly cusped parabolic ®xed point of a Kleinian group G.
Let Gp be the subgroup of G ®xing p. By de®nition, there is a horodisc hp in
W�G� with p on its boundary. Without loss of generality, we take this to be the
largest precisely invariant horodisc at p in W�G�. Let h�p be the hyperbolic half
space with ideal boundary hp. The precisely invariant horodisc hp and Leut-
becher horoball Hp will be called the horopair �hp;Hp� at p. This means that the
part of a fundamental domain for Gp not in Hp U h�p is a `semi-in®nite box', see
Figure 1.

In what follows we make the following normalisation. We use the PoincareÂ
extension from the Riemann sphere to the upper half space model of hyperbolic

Figure 1. Horopairs for a map g with small drift and altitude, and a map g 0 with large drift and

altitude.
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3-space, and write points as �z; t� A C � R� or in quaternion notation z� tj [2, 7].
We take p to be the point at in®nity, and its stabiliser in G to be Gp � Gy �
hz 7! z� 1i. Moreover, we assume that hy � fz A C : I�z� > 0g. Thus, the
half space h�y is f�z; t� A H 3 : I�z� > 0g. The condition that y is singly cusped
implies that there exists a sequence of points zj A L�G� so that I�zj� tends to ÿy.
Applying elements of Gy if necessary, we assume, without loss of generality, that
<�zj� A �0; 1�. Also, Leutbecher's theorem implies that Hy � f�z; t� A H 3 : t > 1g.

We now consider points in the orbit of y. Let g : z 7! �az� b�=�cz� d�
with ad ÿ bc � 1 be any element of G not in the stabiliser of y (so c0 0). We
consider the image of the above con®guration under g. To be more precise, we
actually consider the image of this con®guration under the coset gGy. Clearly,
the point g�y� � a=c is a singly cusped rank 1 parabolic ®xed point. The
horoball Hg � Hg�y� is a Euclidean ball in H 3 with

radius Rg � 1

2jcj2 and centre
a

c
;

1

2jcj2
 !

:

The horodisc hg � hg�y� is a Euclidean disc in the Riemann sphere with

radius rg � 1

jcd ÿ dcj �
1

2jcj2I�d=c� and centre
ad ÿ bc

cd ÿ dc
:

The half space h�g is the Euclidean hemisphere in H 3 with the same centre and

radius as hg. Also I 0g, the isometric sphere of gÿ1, is a Euclidean hemisphere in
H 3 with radius rg � 1=jcj and centre g�y� � a=c on the Riemann sphere. For
obvious reasons, we call g�y� � a=c the pole of gÿ1 and gÿ1�y� � ÿd=c the pole
of g.

We de®ne the altitude and the drift of a horopair which will be crucial in our
analysis.

. The altitude ag of the horoball Hg is de®ned to be the Euclidean distance
of g�y� from the boundary of hy. (It is clear that ag � ÿI�a=c� and that ag

measures how far Hg is along the cusp at y.)
. The drift dg of the horopair (hg;Hg) measures the relative sizes of Hg and

hg. It is de®ned to be

dg � Rg

rg
� I�d=c�:

Intuitively, the larger the drift the further one has to `travel' along qHg from the
`top' of Hg until one reaches the boundary of h�g .

Observe that the altitude and the drift are dual to one another in the sense
that agÿ1 � dg and dgÿ1 � ag. This is immediate from the de®nition in terms of a,
c and d. Alternatively, this can be deduced geometrically as follows. Consider
the hyperbolic geodesic lg from y to g�y�. The distance from lg along qHy to
h�y is ag. Applying gÿ1, the horopairs �hy;Hy� and �hg;Hg� are mapped to the
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horopairs �hgÿ1 ;Hgÿ1� and �hy;Hy� respectively, and lg is mapped to lgÿ1 . The
drift of g has become the altitude of gÿ1.

Let cg be the maximal height of a point lying in qHg V qh�g . The point xg

attaining this height is the point of qHg V qh�g closest to qHg V lg. We have the
following lemma which gives a concrete (Euclidean) estimate of the drift.

Lemma 2.2. With the above notation, we have that cg � 2Rg=�1� d2
g�.

Proof. We refer to Figure 2. For simplicity we drop the subscript g from
all quantities.

Let y be the angle subtended at the centre of H between g�y� and x. An
elementary Euclidean argument implies that the angle subtended at the centre of
H between g�y� and the centre of h is equal to y=2. Thus,

sin�y=2� � r=
����������������
R2 � r2

p
; cos�y=2� � R=

����������������
R2 � r2

p
:

In particular, we see that sin�y� � 2Rr=�R2 � r2�.
Now, y is also the angle subtended at the centre of h between the Riemann

sphere and x. Thus, using the equality r � R=d,

c � r sin�y�

� 2Rr2

R2 � r2

� 2R�R=d�2
R2 � �R=d�2

� 2R

1� d2
: r

Figure 2. The construction of c.
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Proposition 2.3. Let G be a Kleinian group with a singly cusped parabolic
®xed point normalised as above. Let �gn� be a sequence of elements of G with
unbounded altitude. Then as n tends to in®nity, either dgn

tends to in®nity or Rgn

tends to zero.

Proof. Suppose the result is false. That is, there exist positive constants d0

and R0 so that dgn
< d0 and Rgn

> R0, for all n.
Consider the horoballs Hgÿ1

n
. These have altitude less than d0, since

agÿ1
n
� dgn

. By choosing di¨erent coset representatives if necessary, we may
assume that the centres of these horoballs have imaginary part between ÿd0 and 0
and real part between 0 and 1. That is, their centres lie in a compact set.
Moreover, the radii of these horoballs are bounded from below, since Rgÿ1

n
� Rgn

> R0 > 0. This implies that the horoballs cannot be disjoint, which is a
contradiction. r

Corollary 2.4. Let G be as in the previous proposition. For any g A G we
have cg a D�ag�, where D : R� ! �0; 1� is a function with limx!y D�x� � 0.

Let N�G� denote the Nielsen region of G, that is the convex hull in H 3 of
the limit set L�G�. The quotient C � N�G�=G is called the convex core of
M � H 3=G. It is standard to divide the Nielsen region or the convex core into
two parts, called the thick part and the thin part. Given a positive number e, the
e-thick part of N�G� consists of all those points x A N�G� for which the hy-
perbolic ball of radius 2e centred at x contains no points g�x�, for all g A G ÿ fIg.
Equivalently, the hyperbolic balls of radius e centred at each point in the orbit of
x are disjoint. Likewise, the e-thick part of C consists of those points x A C
whose e-neighbourhood in C is an embedded ball. In both cases, the e-thin part
is de®ned to be the complement of the e-thick part. By a well known result of
Margulis [24], generalising Leutbecher's theorem, there exists a universal constant
e0, such that the e0-thin part of N�G� is a disjoint union of horoballs centred at
parabolic ®xed points and of tubes around the axes of loxodromic elements with
translation length at most 2e0.

In what follows we choose e so that the Leutbecher horoballs Hg correspond
to the e-thin part of M. In fact, by a simple calculation we see that e �
log��1� ���

5
p �=2�, although we do not use this here. Our analysis above leads to

the following result which combines several well known properties of geomet-
rically in®nite groups (see [11], [12], [15] for example). In this case, the proof is
elementary and illustrates the geometrical construction involved.

Proposition 2.5. Let G be a Kleinian group with a singly cusped parabolic
®xed point, let M � H 3=G be the associated 3-manifold and let C be the convex
core of M. Then there exists a sequence �xn� of points in the e-thick part of C
whose hyperbolic distance to any ®xed reference point in M tends to in®nity with n.
Moreover, the hyperbolic volume of C is in®nite.
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Proof. Without loss of generality, we normalise G in the manner described
above. That is, we assume that y is a singly cusped parabolic ®xed point with
stabiliser Gy � hz 7! z� 1i. This enables us to de®ne the horopairs, drift and
altitude of elements of G ÿ Gy. Let �gn� be a sequence of group elements for
which agn

tends to in®nity with n. Let �xn� be the sequence of points at height 1
lying above the centres of Hgn

.
The points �xn� clearly have unbounded hyperbolic distance from any given

base point in H 3. Moreover, by the previous corollary, they also have un-
bounded distance from the orbit of this base point.

For d > 0 su½ciently small, let Bn denote d-balls about the points xn. These
d-balls are contained in the convex core. From this set of balls we can extract a
sequence of pairwise disjoint balls whose hyperbolic volume then gives rise to the
in®nite hyperbolic volume of the convex core of M. r

We now introduce the class of horospherically tame Kleinian groups.
We ®rst require the notion of the K-neighbourhood of a horoball H HH 3,
which is de®ned as the collection of points a (hyperbolic) distance at most K
from H.

Definition. Let G denote a Kleinian group with a singly cusped parabolic
®xed point p. The group G is said to be horospherically tame if and only if there
exists a positive constant K such that the Nielsen region N�G� is contained in the
union over all g A G of the K-neighbourhoods of the Leutbecher horoballs Hg�p�.
In other words, the whole of C is contained in the K-neighbourhood of the cusp
of C.

Note, in our de®nition of horospherical tameness we have assumed for
simplicity that all parabolic ®xed points of G lie in one single orbit. Clearly, one
can extend this de®nition to the case of ®nitely many orbits of parabolic ®xed
points. It is also possible to extend this de®nition in the obvious way to doubly
degenerate parabolic ®xed points, that is rank 1 ®xed point which does not lie on
the boundary of any disc in the limit set.

Observe that, for ®nitely generated groups, horospherical tameness and
geometrical tameness are not the same. Recall that a hyperbolic manifold M is
said to be geometrically tame if every end is either geometrically ®nite or simply
degenerate (see O8.11 of [37] or [15]). That is, the end has a neighbourhood U
homeomorphic to S � �0;y� (where S is a ®nite volume surface), and there exist
a sequence of simplicial hyperbolic surfaces f fn : S ! Ug such that f fn�S�g
leaves every compact set in U and fn�S� is homotopic to S � f0g within U . One
consequence of geometrical tameness in our situation is that there is a positive
constant R0 so that for any positive, arbitrarily large a there is a group element g
with altitude ag > a and horoball Hg of radius Rg > R0. In other words, for
geometrically tame groups there is a sequence of group elements gn with both agn

and dgn
tending to in®nity with n. In section 3.7 we will give an example of a

geometrically tame group which is not horospherically tame.
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We remark that in section 3 we shall see that for punctured torus groups
horospherical tameness can be detected from the bounded excursion pattern of
the tail of the continued fraction expansion of the associated end invariant.
Speci®cally, it will turn out that the end invariant is badly approximable if and
only if the group is horospherically tame.

2.4. Fractal geometry and singly cusped parabolic ®xed points
In this section we make a few qualitative and quantitative observations on

limit sets of ®nitely generated Kleinian groups with singly cusped parabolic ®xed
points. Much of the material in this section is true for wider classes of
geometrically in®nite Kleinian group. We restrict our attention to groups
with singly cusped parabolic points, since here many of the proofs are more
straightforward. In particular, the results should be of interest to people
working in fractal geometry. We show that limit sets of geometrically in®nite
Kleinian groups provide a wide class of examples that are uniformly perfect but
not porous. Hence, they are of particular interest to fractal geometers.

It is known that the Hausdor¨ dimension of the limit set of a geometrically
in®nite, geometrically tame Kleinian group is equal to 2 [14]. Recently, in [10]
this result was generalised to the case of an arbitrary geometrically in®nite
Kleinian group. In fact, the most delicate part of the proof in [10] shows that a
geometrically in®nite Kleinian group G whose exponent of convergence2 d�G� is
strictly less than 2 has a limit set of positive 2-dimensional Lebesgue measure
(contradicting the Ahlfors' conjecture). However, this means that its Hausdor¨
dimension is equal to 2. (We remark that in this statement the assumption that
d�G� is strictly less than 2 is purely hypothetical.)

Recall that a Kleinian group G is of 2-convergence type if and only if the
series

P
g AG�1ÿ jg�v�j�2 converges, for some point v in the PoincareÂ ball model of

hyperbolic space. The following proposition is proved using ideas of Sullivan.

Proposition 2.6. A ®nitely generated Kleinian group with singly cusped
parabolic ®xed points is of 2-convergence type.

Proof. We refer to Figure 3. We assume that the reader is familiar with
passage between the two equivalent models of hyperbolic space, the upper half
space model and the PoincareÂ ball model. Where it is clear which of these two
models we are in, we shall make no notational di¨erence. Let G denote the
®nitely generated Kleinian group with singly cusped parabolic ®xed points under
consideration. We use the notation and normalisation introduced earlier, and
assume in particular that the origin in the PoincareÂ ball model is contained in
N�G�, the Nielsen region of G.

2The exponent of convergence of the PoincareÂ series
P

g AG�1ÿ jg�v�j� s, for some point v in the

PoincareÂ ball model of hyperbolic space.
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Fix a hyperbolic ball contained in Hy V h�y, tangent to the boundary of Hy

as well as the boundary of h�y, and which is contained in a fundamental domain
for the stabiliser of y in G. Let Bu denote the corresponding hyperbolic ball,
centred at u, in the PoincareÂ ball model. Let P denote the shadow map, which
projects subsets of the PoincareÂ ball radially from the origin to the boundary of
hyperbolic space.

A straight forward Euclidean argument then shows that the set of shadows
fP�g�Bu�� : g A G ÿ Eg represents a packing of ®nite multiplicity of W�G�; where
E denotes some suitably chosen, ®nite set of exceptional elements of G. The
®nite multiplicity of the packing arises when dealing with horoballs with small
drift. Together with the trivial fact that, in the PoincareÂ ball model, W�G� is of
®nite 2-dimensional Lebesgue measure, this givesX

g AGÿE

�diam�P�g�Bu����2 <y:

Combining this with the ®niteness of E and the well known fact that, for
g A G ÿ E, the quotient of diam�P�g�Bu��� and 1ÿ jg�u�j is universally bounded
from above and below, the assertion of the proposition follows. r

We remark that the above proof in fact only uses the existence of a rank 1
cusped parabolic ®xed point, and hence works for general Kleinian groups which
have parabolic elements of that type.

It is well known that this result closely relates to some interesting properties
of the dynamics on the associated 3-manifold [3, 28]. The following corollary
gives a few of these.

Figure 3. The balls g�Bu� and their shadows.
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Corollary 2.7. Let G be a ®nitely generated Kleinian group with singly
cusped parabolic ®xed points, and let M denote the associated hyperbolic 3-
manifold. Then

. the geodesic ¯ow on M is not ergodic;

. M supports a Green's function;

. the harmonic measure of the ideal boundary of M is strictly positive.

We end this section by giving a further immediate implication of the above
results, which clearly exhibits the rich fractal structure of geometrically in®nite
limit sets. Recall the following notion, where B�z; r� denotes the ball of radius r
centred at z.

Definition. A set X HRn is called porous if and only if there exist positive
constants K and R such that for all x A X and 0 < r < R there exists h �
h�x; r� A Rn with the properties

. B�h;Kr�HB�x; r�,

. B�h;Kr�VX � j.

As Tukia has shown implicitly in [38], the limit set of a geometrically ®nite
Kleinian group without rank 2 parabolic ®xed points is porous. For geomet-
rically in®nite Kleinian groups we have the following statement.

Corollary 2.8. The limit set of a geometrically in®nite Kleinian group is
not porous.

Proof. It is an easy exercise in the theory of fractals to see that the porosity
of a compact subset in Rn implies that its box-counting dimension is strictly less
than n, and hence in particular the same is true for its Hausdor¨ dimension.
Since, as mentioned above, the Hausdor¨ dimension of the limit set is 2, the
result follows. r

The limit set of a ®nitely generated Kleinian group is uniformly perfect, see
[30] (see also the survey articles [33], [34]). It hence follows that limit sets of
®nitely generated Kleinian groups with singly cusped parabolic ®xed points are
examples of uniformly perfect fractal sets which are not porous.

3. The punctured torus

3.1. Punctured torus groups

In this section we look at a family of concrete examples in some detail.
These examples arise from so called punctured torus groups. Parts of the
material we present may be found in the unpublished papers of Jùrgensen [19],
Wright [39] and McMullen-Mumford-Wright [27] as well as the recent paper of
Minsky [26]. We now recall some standard terminology.
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Definition. A Kleinian group G < PSL�2;C� is called a punctured torus
group if and only if it is freely generated by two maps whose commutator is
parabolic.

Clearly, there is a certain amount of freedom in choosing these generators.
With this in mind, we de®ne a generator g to be any element of the punctured
torus group G with the property that there exists an element h of G so that
the commutator ghÿ1gÿ1h is parabolic. It is clear that h is also a generator,
and �g; h� will be called a pair of neighbours. Indeed, �g; hgn� is a pair of
neighbours for any integer n. From an algebraic viewpoint, a pair of neighbours
is a generating set for G, viewed as the free group on two generators. From a
geometric point of view, conjugacy classes of generators correspond to homotopy
classes of simple closed curves on the punctured torus, and the commutator
corresponds to a loop around the puncture. In this setting, a pair of neighbours
corresponds to a marking, i.e. a pair of simple closed curves intersecting exactly
once.

If g and h are neighbours, then gh is also a generator and, moreover, �g; gh�
and �h; gh� are two pairs of neighbours. We call the unordered set �g; h; gh�
a generator triple. To each pair of neighbours �g; h� there are two generator
triples, namely �g; h; gh� and �g; h; ghÿ1�. A classical result of Nielsen [29] states
that, given a pair of neighbours, we may obtain any other pair of neighbours by
passing through a sequence of successive generator triples. These changes in the
generators are called Nielsen moves. A convenient geometric model describing
this set up is the Farey tessellation. The sides of this tessellation form an in®nite
graph whose vertices correspond to generators and where two vertices are
connected by an edge if and only if the associated generators are neighbours.
In addition, each generator is associated to the same vertex as its inverse. In
particular, Nielsen's result referred to above states that this graph is connected.

There is a standard way of embedding this graph into the closed upper half
plane such that the generators (up to conjugacy and taking inverses) are in one to
one correspondence to the rational numbers. This gives an in®nite triangulation
where every triangle corresponds to a generator triple. Identifying the upper half
plane with the TeichmuÈller space of the punctured torus in the usual way, one
obtains that groups with singly cusped parabolic ®xed points correspond to
irrational numbers. One of our goals will be to see how the geometry of such
Kleinian groups relates to Diophantine approximation patterns of these irrational
numbers.

We remark that most of the results in this section do not use singly cusped
parabolic points in an essential way. Properties such as having a badly ap-
proximable end invariant could apply to doubly degenerate groups but would
involve keeping track of the end invariants for both ends. Another context
where similar ideas are used is the construction of explicit Ford domains for ®bre
bundles over the circle with ®bre the punctured torus by Alestalo and Helling [6].
This is related to the Farey tessellation by Bowditch [13]. These have cyclic
covers whose end invariants have a periodic continued fraction expansion (related
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to the combinatorics of the Ford domain) and so are well approximable. Thus
these groups are horospherically tame (with an appropriate extension of the
de®nition to cover doubly degenerate groups). However, it is clear that as the
automorphism used becomes more complicated, the canonical horoballs need to
be expanded more and more. This phenomenon is encapsulated in Proposition
3.16. Furthermore, cutting surfaces may be de®ned as in section 3.5 below
and decompose such manifolds into ideal tetrahedra. The combinatorics of this
decomposition come from the arithmetic of the end invariants (see page 329
of [13]).

3.2. Normalising punctured torus groups
We begin this section by deriving some general consequences about pairs of

elements in SL�2;C� with parabolic commutator. This leads to Jùrgensen's
normalisation for punctured torus groups [19]. Even though these results are
well known, the proofs are short and we include them. One consequence of
the ®rst result is that, if �g; h� is a pair of neighbours, then the trace of their
commutator must be ÿ2.

Lemma 3.1. Let g and h be elements of SL�2;C� whose commutator has
trace �2. Then either g and h commute or they have a common ®xed point.

Proof. Without loss of generality we may assume that k � ghÿ1gÿ1h ®xes
in®nity. Thus k : z 7! z� t for some t A C . If we have

g � a b

c d

� �
; hÿ1gh � g 0 � a 0 b 0

c 0 d 0

� �
;

then g 0 � kÿ1g, a 0 � aÿ tc and d 0 � d. As g and g 0 are conjugate, their traces
are equal, which implies tc � 0. Thus we have that either t � 0 or c � 0. That
is, k is the identity or g ®xes in®nity. Letting h 0 � ghgÿ1 and using h 0k � h, a
similar argument gives that either k is the identity or h ®xes in®nity. This proves
the result. r

Lemma 3.2. Let g and h be elements of SL�2;C� whose commutator has the
form

ghÿ1gÿ1h � ÿ1 ÿ2

0 ÿ1

� �
:

Then g and h have the form

a b

a� d d

� �
:

Proof. Let g and g 0 have the same form as in the proof of the previous
lemma. Since g and g 0 are conjugate, their traces are equal, namely tr�g 0� �
a 0 � d 0 � a� d � tr�g�. Also g 0 � �ghÿ1gÿ1h�ÿ1g. That is
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a 0 b 0

c 0 d 0

� �
� ÿ1 2

0 ÿ1

� �
a b

c d

� �
� ÿa� 2c ÿb� 2d

ÿc ÿd

� �
:

Thus a� d � tr�g� � tr�g 0� � ÿaÿ d � 2c, and so c � a� d as claimed. It is
clear that a similar argument works for h and h 0 � ghgÿ1. r

We shall now return to the situation of a punctured torus group G. For the
rest of the paper we shall normalise the commutator of the generators, which is
parabolic by hypothesis, to be the translation of length 2, as already done in
Lemma 3.2. This enables us to express the radii of the isometric sphere and the
Leutbecher horoball of a generator in terms of its trace. Using the notation
established in section 2.3, we obtain the following result.

Lemma 3.3. Let G be a punctured torus group normalised as above. For a
generator g of G we have that

rg �
1

jtr�g�j ; Rg � 1

2jtr�g�j2 ; ag � dg:

Proof. The ®rst two facts follow by de®nition. For the third, as c � a� d,
we have a=c � 1ÿ d=c, and so

ag � I�ÿa=c� � I�ÿ1� d=c� � I�d=c� � dg: r

Proposition 3.4. Let G denotes a punctured torus group normalised as
above. For each g in G we have jtr�g�jb 1.

Proof. Let g and h be as in Lemma 3.2 and let f be the translation by 1.
We will show that G � hg; hi has index 2 in G 0 � h f ; g; hi. This then implies
that G 0 is discrete. By Leutbecher's lemma, the isometric sphere of g has radius
at most 1. But this radius is equal to 1=jtr�g�j by the previous lemma.

It is easy to see that f 2 � ghÿ1gÿ1h. An argument similar to that in the

proof of Lemma 3.2 gives tr�g f ÿ1� � 0 and tr�h f ÿ1� � 0. Thus g f ÿ1 and h f ÿ1

have order 2 (they correspond to the hyperelliptic involution of the punctured
torus). Hence g f � f hÿ1gÿ1h and h f � f hÿ1ghÿ1gÿ1h. This implies that
G 0 �G U f G. r

3.3. The structure of the Ford domainÐJùrgensen's theorem
In what follows we shall assume that the reader is familiar with the de®nition

of the Ford domain of a Kleinian group acting on hyperbolic 3-space for which
y is an ordinary point. If y is a parabolic ®xed point of a group, then the
Ford domain is de®ned to be the set of points lying above the isometric spheres
of all group elements not ®xing y. In order to obtain a fundamental domain,
we have to intersect the Ford domain with some fundamental domain for the
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stabiliser of y. The details for Fuchsian groups are given in [22] (pages 57±58)
and [7] (page 239), and may be extended to Kleinian groups in the obvious way.
We also assume that the reader is familiar with the concepts faces, edges, edge
cycles, vertices and vertex cycles for Ford domains. In [19] Jùrgensen developed
his so called `method of geometric continuity' to show that the Ford domain of
punctured torus groups has the following structure.

Jérgensen. The Ford domain D of a quasi-Fuchsian punctured torus group
G, normalised as above, has the following structure:

. every face of D is contained in the isometric sphere of a generator;

. every edge of D is contained in the intersection of the isometric spheres of a
pair of neighbours;

. every edge of D with endpoints in the interior of hyperbolic 3-space lies in a
cycle of length 3 and this cycle corresponds to the pairwise intersection of the
isometric spheres of a generator triple;

. every vertex of D in hyperbolic 3-space is the common intersection of the
isometric spheres of a generator triple;

. if the isometric spheres of a generator triple intersect pairwise, then their
common intersection is non-empty.

This result appears in a paper that has not been published or widely cir-
culated (Theorem 1 of [19]). Therefore, we now give a brief description of
Jùrgensen's method of proof. Recently, another account of this result has
been announced by Akiyoshi, Sakuma, Wada and Yamashita [5]. We will be
interested in an extension of Jùrgensen's result to groups with singly cusped
parabolic ®xed points. This extension may be proved using Jùrgensen's methods
and an outline was given by Akiyoshi in [4], who calls the theorem Condition (J).
In what follows we will continuously vary the punctured torus group.
Technically we should de®ne a punctured torus group to be a type preserving
representation of the fundamental group of a punctured torus (which we refer
to as the abstract punctured torus group) into SL�2;C�. A deformation is a
continuous path of such representations.

The main technique is Jùrgensen's so called method of geometric continuity
which he had earlier used to classify the Ford domains for cyclic groups of
loxodromic transformations, [18]. As the two methods are broadly similar, we
now describe the methods in [18] as an aid to understanding [19]. A cyclic
loxodromic group is completely classi®ed, up to conjugacy, by the trace of the
generator. Therefore, for each point in the trace plane one can ®nd a suitably
normalised group. The Ford domain is then speci®ed by this information and
one can determine its combinatorics. A small change of parameter in the trace
plane e¨ects a small change in the normalised group. This small change will
generally not e¨ect the combinatorics of the Ford domain. However there are
places where a small change causes a face to disappear or a new face to be
created. Therefore, by continuously varying the trace parameter (that is con-
tinuously varying the group) one may watch these continuous changes in the
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Ford domain and the associated changes in the combinatorics. The details of
this process are clearly laid out in [18].

For the punctured torus the process is similar. If the group is Fuchsian,
then it is completely determined up to conjugation by a point in the upper half
plane. Moreover, one may check that the faces of the Ford domain correspond
to a particular generator triple and that there are two edge cycles, both with
length three. (There is also a degenerate case where the sides of the Ford
domain are contained in the isometric spheres of a pair of neighbours and the
edge cycle has length 4). Thus we can subdivide the upper half plane into
regions according to which faces arise. This decomposition is just the Farey
decomposition. One can easily check that the Ford domain of a Fuchsian
punctured torus group satis®es the conditions of the theorem.

Now we extend this to quasi-Fuchsian punctured torus groups. Roughly
speaking, if a quasi-Fuchsian group is su½ciently close to being Fuchsian the
faces in both components of the ideal boundary of the Ford domain correspond
to the same triples of generators. (If we are in the degenerate case mentioned
above then the group must be Fuchsian.) If we deform further, the combi-
natorics of the Ford domain will change. This process is illustrated by the
®gures on page 36 of [5]. The main idea of the theorem is to show that when
this happens the resulting Ford domains also satisfy the conditions of the
theorem. This is the method of geometric continuity. Jùrgensen's proof of this
assertion involves careful study of the structure of the Ford domain and the
properties of isometric spheres.

The ideal boundary of the Ford domain consists of two polygons in the
Riemann sphere. These polygons each glue up to form a punctured torus. Part
of the ingredients of Jùrgensen's proof is that, just as we had for Fuchsian
groups, each of these polyhedra has edges in a generator triple (or a generator
pair). Each of these triples (pairs) corresponds to a triangle (edge) in the Farey
tessellation. He then goes on to show that the faces of the Ford domain
correspond to generators which lie on a path between these two triangles (edges).
Moreover, this path never crosses an edge of the Farey tessellation more than
once. Thus, this path lies in a ®nite number of triangles which (apart from the
end ones) abut exactly two more triangles in the path. Each of these triangles
corresponds to a generator triple and Jùrgensen proves that the generator triples
we see along this path precisely correspond to the faces of the Ford domain,
Theorem 3 of [19].

Another way of thinking of this is that the upper half plane is the
TeichmuÈller space of the punctured torus. Bers' simultaneous uniformisation
theorem [9] states that a quasi-Fuchsian group corresponds to two points in
TeichmuÈller space each associated to one of the ends (with the restriction that
points in a certain diagonal are not allowed). Thus a quasi-Fuchsian punctured
torus group corresponds to two points in the upper half plane. If the group is
Fuchsian, the ends are related by complex conjugation (re¯ection across the limit
set) and the two points are the same. What Jùrgensen is doing is putting the
additional structure of the Farey tessellation onto the upper half plane and
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showing that this records information about the combinatorics of the Ford
domain. It is clear that for a Fuchsian group the Ford domains in the upper
and lower half planes are related by complex conjugation and so Jùrgensen's
point of view is consistent with Bers' theorem. This connection was exploited by
Minsky in his pivot theorem, Theorem 4.1 of [26], where the details are worked
out precisely.

Now suppose we deform our group towards the boundary of quasi-Fuchsian
space. Using Minsky's theorem [26], which says that all punctured torus groups
are limits of quasi-Fuchsian ones, we can extend Jùrgensen's theorem to cover all
punctured torus groups [4]. We give a sketch here. For simplicity, we suppose
that, throughout the deformation, one of the two polygons in the ideal boundary
corresponds to the same generator triple or pair. In other words, one of the end
points of the path through the Farey tessellation remains in a given triangle or
edge while the other end moves towards the boundary. There are exactly three
things that can happen (see page 117 of [4]). First, two faces may degenerate at
the same time (pages 17±18 of [19]). In this case a generator has become an
accidental parabolic (see O3 of [27]). Secondly, there may be an element g of the
abstract punctured torus group so that g corresponds to a face of the Ford
domain whose number of sides grows unboundedly as we go towards the
boundary of quasi-Fuchsian space (g is an ``in®nite pivot''). This corresponds to
passing through in®nitely many triangles of the Farey tessellation with the same
(rational) vertex. This group element becomes parabolic in the limit (see Lemma
4 of [19] or compare Proposition 3.15 below). Therefore we again have an
accidental parabolic element. In both of these cases, this accidental parabolic
element corresponds to the vertex of one (and hence in®nitely many) of the
triangles in the Farey tessellation. This vertex is the end-point of our deformed
path through the Farey tessellation from which we read o¨ the faces of the Ford
domain and corresponds to the end-invariant. Hence the end-invariant is
rational, [26] or page 119 of [4], and these rational end-invariants occur with their
natural ordering. We will not be concerned with the details of this case. Indeed
one needs to be careful because, as Jùrgensen points out on page 36 of [19], these
two constructions give di¨erent paths towards a cusp the Ford domains which
look very di¨erent. In particular, for some paths the Ford domains do not
converge to the Ford domain of the limit group.

The third possibility, which is the one which interests us here, is the fol-
lowing. We continually add more and more faces to the Ford domain in such a
way that, for each g in the abstract punctured torus group, the number of sides of
the face corresponding to g (if any) remains bounded. In the limit we have faces
corresponding to in®nitely many generator triples and each generator lies in only
®nitely many of these triples. In this case one of the polygons in the ideal
boundary degenerates, and we obtain a group with a singly cusped parabolic
®xed point (see O6 of [27]). The ordinary set now has one component and the
limit set looks like a tree. Such groups are called singly degenerate. The
corresponding path through the Farey tessellation passes through in®nitely many
triangles and ends at an irrational number which we de®ne to be the end invariant

kleinian groups with singly cusped parabolic fixed points 187



(see Figure 11 of [4]). We will relate this to the usual de®nition below. Minsky
shows that the group is determined by the end-invariants [26]. Moreover, a
consequence of Jùrgensen's methods is that the generator triples giving faces of
the Ford domain correspond to the triangles in the path through the Farey
tessellation (this uses Theorem 3 of [19] and geometric continuity and is outlined
below). The arrangement of these triangles is, in turn, related to the continued
fraction expansion of the end-invariant.

For completeness, we mention that if we allow both ends of the path through
the Farey tessellation to tend to the boundary then (again using Minsky's
theorem) there are three possibilities (see [27]). First, both end invariants may be
rational and the group is called doubly cusped. The group is geometrically ®nite
[21]. In this case the ordinary set has in®nitely many components, each of which
is a round disc. There are two orbits of such discs corresponding to the two
ends of the original group. The limit set is a circle packing (such as those
illustrated in [25]). Secondly, one end invariant may be rational and the other
irrational. In this case we again obtain a group with a singly cusped parabolic
®xed point. Now the ordinary set again has in®nitely many components, each of
which is a round disc but now there is a single orbit of these. The limit set has
become a circle packing considerably more complicated than the circle packings
mentioned above (see Figure 7). Finally, both end invariants may be irrational.
In this case the limit set is the whole Riemann sphere and the group is called
doubly degenerate (see [20]).

In order to make this account as self contained as possible, we now indicate
how the above discussion relates to Thurston's construction of end-invariants for
a geometrically in®nite end (compare the discussion in [26]). There exists a
sequence fgjg of geodesics in the associated manifold M which is eventually
contained in any neighbourhood of the end. To each of these geodesics there is
a unique rational number, the ``slope'' of the corresponding curve on the square
torus. This rational number is the corresponding vertex in the Farey tessellation.
Thurston then shows that these rational numbers tend to a unique limit [37]. He
de®nes this limit to be the end invariant. From our construction above, it is
clear that the simple closed geodesic corresponding to any generator giving rise
to sides of the Ford domain is the axis of this generator. Its end points are
contained in the isometric spheres. Thus, for any sequence of faces of the Ford
domain that move out to the end (that is the altitude agn

of the corresponding
horoballs tends to in®nity) the axes of the associated group elements form a
sequence of geodesics that are eventually contained in any neighbourhood of the
end. The slope of these geodesics are the vertices of the corresponding triangles
in the Farey tessellation. It is clear that as we move deeper into the tessellation
then these triangles get smaller and smaller. Eventually they tend to a limit,
which is the end invariant.

Fix a starting point y in the upper half plane and consider the geodesic path
from y to an irrational number x in the boundary of the upper half plane.
(Note that, if we allow ®nitely many changes as the beginning, the following
construction is independent of the starting point, and also the path does not have
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to be geodesic [26].) We observe the pattern of edges in the Farey tessellation
that one crosses while travelling along this path from y to x. It is well known
that this pattern is re¯ected by the continued fraction expansion of x, see for
example [31]. Moreover, the points y and x determine a punctured torus group
G with a singly cusped parabolic ®xed point [26], the number x being the end
invariant. By Minsky's theorem [26] we can express G as a limit of quasi-
Fuchsian punctured torus groups Gn. These correspond to ®nite geodesic
segments �y; xn� of the path from y to x � limx!y xn. In Theorem 3 of [19],
Jùrgensen has shown that the patterns mentioned above on the arc �y; xn� are
also seen in the arrangements of the faces of the Ford domain of Gn. Now using
geometric continuity we see that as n tends to in®nity more faces are added to the
Ford domain but the patterns already established do not change (see section 4.2.1
of [4]). Hence the the pattern of triangles containing the arc �y; x� corresponds
to the combinatorial arrangement of the faces of the Ford domain of G
(essentially they are dual to one another).

We now outline our method for producing cutting surfaces and decomposing
the geometrically in®nite end into ideal tetrahedra. The details will be given in
the next sections. By Jùrgensen's theorem, every edge cycle is contained in the
pairwise intersection of the isometric spheres of a generator triple. Consider a
generator triple �g; h; gh� giving rise to such an edge cycle of the Ford domain of
G. We shall show that associated to this generator triple there are two edge
cycles, each consisting of three edges. Moreover, transverse to these six edges
there is a canonical cutting surface whose quotient under the group is a pair of
ideal triangles. These triangles may be glued together with constant bending
angle along their edges to form a punctured torus. This surface separates the
geometrically in®nite end from the rest of the manifold. Moving along the
boundary of the Ford domain towards the Jùrgensen point, we next encounter
a vertex cycle of the Ford domain. This vertex cycle has length four. Also,
by Jùrgensen's theorem, each vertex is contained in the common intersection of
the isometric spheres of a generator triple. This triple is either the triple we
started with, or else a triple corresponding to an adjacent triangle in the Farey
tessellation (both possibilities occur, each for two of the vertices in the cycle). In
the latter case, the new generator triple may be obtained from the initial triple by
applying a Nielsen move. For instance, the vertex formed by the intersection of
the isometric spheres of g; ghÿ1 and h is the endpoint of two edges associated with
the triple �g; h; ghÿ1� and one edge associated to the triple �g; h; gh�. Similarly
the vertex formed by the intersection of the isometric spheres of g; h and gh is the
endpoint of one edge associated to �g; h; ghÿ1� and two edges associated to
�g; h; gh�. The latter vertex is the image of the former under the map hÿ1. We
can repeat this process to obtain a cutting surface associated to this new
generator triple. We shall see that the region between these two surfaces is an
ideal tetrahedron.

Moving from the generator triple �g; h; gh� to the triple �g; h; ghÿ1� may be
interpreted as crossing the edge in the Farey tessellation joining g and h.
Following [26], such an edge is called a spanning edge. If a generator is the

kleinian groups with singly cusped parabolic fixed points 189



endpoint of at least two spanning edges, then, again following [26], it is called a
pivot. It is easy to see that a generator is a pivot if and only if the corre-
sponding face in the Ford domain has at least 6 edges.

3.4. The structure of the Ford domainÐ®ner details
We now give a quantitative analysis of the faces, edges and vertices of the

Ford domain of our punctured torus group G.

Lemma 3.5. If g is a generator, then the di¨erence between the centres of the
isometric spheres of g and gÿ1 is equal to ÿ1.

If g and h are neighbours, then the di¨erence between the centres of their
isometric spheres is equal to

tr�ghÿ1�
tr�g� tr�h� :

Proof. The centres of the isometric spheres of g; gÿ1 and h respectively
are the points ÿdg=cg � ÿdg=�ag � dg�, ag=cg � ag=�ag � dg� and ÿdh=ch � ÿdg=
�ah � dh�. The di¨erence of the ®rst two is clearly equal to ÿ1. The di¨erence
between the ®rst and last is equal to

ÿdg

cg
� dh

ch
� ÿdgch � cgdh

cgch
� cghÿ1

cgch
� tr�ghÿ1�

tr�g� tr�h� : r

We now compare the relative sizes of traces of the members of a generator
triple giving rise to faces of the Ford domain.

Proposition 3.6. Suppose that �g; h; gh� is a generator triple giving rise to
faces of the Ford domain. Then

jtr�gh�j < jtr�g�j � jtr�h�j;
jtr�g�j < jtr�h�j � jtr�gh�j;
jtr�h�j < jtr�g�j � jtr�gh�j:

Proof. Since gh gives rise to a face of the Ford domain, the isometric
spheres of g and hÿ1 intersect. Thus, the distance between their centres is less
than the sum of their radii. That is

1

jtr�g�j �
1

jtr�h�j >
jtr�gh�j

jtr�g�j jtr�h�j :

This gives the ®rst stated inequality. The others follow similarly. r

The following proposition gives an explicit expression for the height of each
vertex of the Ford domain.
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Proposition 3.7. Suppose that �g; h� is a pair of neighbours, and that there
are faces of the Ford domain in the isometric spheres of g; h; gh; ghÿ1 and their
inverses (so necessarily either g or h is a pivot). Then the faces of the Ford
domain contained in the isometric spheres of g; h and gh intersect in a point �z0; t0�,
where

t2
0 �

2�jtr�g�j2 � jtr�h�j2� ÿ �jtr�gh�j2 � jtr�ghÿ1�j2�
�jtr�g�j2 � jtr�h�j2�2 ÿ jtr�gh�j2jtr�ghÿ1�j2 :

Corollary 3.8. If g and h are as in Proposition 3.7, then

2jtr�g�j2 � 2jtr�h�j2 > jtr�gh�j2 � jtr�ghÿ1�j2:

Proof. The proof is a simple exercise in Euclidean geometry. We refer to
Figure 4. Let A, B and C be the centres of the isometric spheres of gh, g and h
respectively. The heavy lines in Figure 4 represent the triangle in the Riemann
sphere with vertices A, B and C. We know that the lengths of the sides of this
triangle are given by

jABj � jtr�h�j
jtr�g�j jtr�gh�j ; jACj � jtr�g�j

jtr�h�j jtr�gh�j ; jBCj � jtr�ghÿ1�j
jtr�g�j jtr�h�j :

For simplicity, for the rest of the proof we write tg instead of jtr�g�j, etc. Let f
be the internal angle at A of the triangle ABC. Using the cosine rule, we see
that

cos�f� �
t4

g � t4
h ÿ t2

ght2
ghÿ1

2t2
gt2

h

:

Figure 4. Finding the height of a vertex of the Ford domain.
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Let G be the point of intersection of the isometric spheres of g and gh lying
above AB, and let y be the internal angle at A of the triangle ABG. The lengths
of AG and BG are equal to the radii of the isometric spheres of gh and g
respectively, that is they are equal to 1=tgh and 1=tg. Using the cosine rule on
this triangle, we have that

cos�y� � t2
g � t2

h ÿ t2
gh

2tgth
:

As this expression is symmetric in tg and th, it follows that y is also the internal
angle at A of the triangle ACH, where H is the point of intersection of the
isometric spheres of h and gh lying above AC.

Let D and E be the feet of perpendiculars from G and H to AB and AC
respectively. Let I be the common intersection point of the isometric spheres of
g, h and gh, and let F be the foot of the perpendicular from I to the Riemann
sphere. As the intersection of the isometric spheres of g and gh is a semicircle
centred at D, we have that jDGj � jDI j and similarly that jEHj � jEI j. Now,
the triangles ADG and AEH are congruent, and so are also the triangles ADF
and AEF. This means that the internal angle at A of the triangle ADF is equal
to f=2.

The distance t0 � jIF j can now be computed as follows.

t2
0 � jDI j2 ÿ jDF j2

� jDGj2 ÿ jADj2 tan2�f=2�
� jAGj2 sin2�y� ÿ jAGj2 cos2�y� tan2�f=2�

� 1

t2
gh

1� cos�f� ÿ 2 cos2�y�
1� cos�f�

� 1

t2
gh

�t2
g � t2

h�2 ÿ t2
ght2

ghÿ1 ÿ �t2
g � t2

h ÿ t2
gh�2

�t2
g � t2

h�2 ÿ t2
ght2

ghÿ1

�
2�t2

g � t2
h� ÿ �t2

gh � t2
ghÿ1�

�t2
g � t2

h�2 ÿ t2
ght2

ghÿ1

: r

In order to show that a group is horospherically tame, it is su½cient to give
a lower bound on the height of points which are both in the Ford domain and
the Nielsen region of our punctured torus group G. By (Euclidean) concavity of
the faces and edges of the Ford domain, it is clear that the height is locally
minimal at (certain) vertices of the Ford domain. Thus, we say that a vertex
�z0; t0� of the Ford domain leads to a local minimum of the height function, if
there exists a neighbourhood U of z0 such that all points �z; t� in the closure of
the Ford domain which lie above U (that is z A U) have the property that t b t0.
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We need to characterise vertices of the Ford domain which lead to a local
minimum of the height function. We also express this minimal height in terms
of the radii of the isometric spheres. This is done in the next two propositions.

Proposition 3.9. Suppose that the generator triple �g; h; gh� gives rise to a
vertex �z0; t0� of the Ford domain leading to a local minimum of the height
function. Then we have that

jtr�g�j2 � jtr�h�j2 > jtr�gh�j2;
jtr�g�j2 � jtr�gh�j2 > jtr�h�j2;
jtr�h�j2 � jtr�gh�j2 > jtr�g�j2:

Proof. Since the vertex corresponding to �g; h; gh� leads to a local minimum
of the height function, it follows, by concavity, that its projection to the Riemann
sphere is contained in the interior of the triangle whose vertices are the centres
of the isometric spheres of g, h and gh. Using the notation in the proof of
Proposition 3.7, we deduce that F is in the interior of the triangle ABC. A
consequence of this is that the triangle ABG has an acute internal angle y at A.
Applying the cosine rule to this triangle, we obtain that jtr�g�j2 � jtr�h�j2 >
jtr�gh�j2. Similarly, the triangles ABG and ACH have acute internal angles at B
and C respectively. This gives the other two inequalities. r

Proposition 3.10. Suppose that g and h are as in Proposition 3.7. Suppose

also that jtr�g�j2 � jtr�h�j2 > jtr�gh�j2 and jtr�g�j2 � jtr�h�j2 > jtr�ghÿ1�j2. Then
the intersection of the isometric spheres of g, h and gh has height t0, where

t2
0 >

1

jtr�g�j2 � jtr�h�j2 � jtr�gh�j jtr�ghÿ1�j :

Proof. Without loss of generality we assume that jtr�gh�ja jtr�ghÿ1�j.
Therefore, we have that

jtr�gh�j2 a jtr�gh�j jtr�ghÿ1�ja jtr�ghÿ1�j2 < jtr�g�j2 � jtr�h�j2:
As in the proof of Proposition 3.7, let tg � jtr�g�j. We see that

t2
0 �

2�t2
g � t2

h� ÿ �t2
gh � t2

ghÿ1�
�t2

g � t2
h�2 ÿ t2

ght2
ghÿ1

>
t2

g � t2
h ÿ t2

gh

�t2
g � t2

h � tghtghÿ1��t2
g � t2

h ÿ tghtghÿ1�

b
1

�t2
g � t2

h � tghtghÿ1� : r
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3.5. Cutting surfaces and the tetrahedral decomposition
In this section we give an explicit construction of the geometrically in®nite

end of our singly cusped manifold associated to the punctured torus group G.
We construct a sequence of simplicial hyperbolic surfaces which we call cutting
surfaces. This sequence is then used to build up the tiling with ideal tetrahedra
of the geometrically in®nite end. Moreover, an immediate consequence of our
construction will be that all punctured torus groups with a singly cusped par-
abolic ®xed point are geometrically tame.

The cutting surfaces will be associated to pairs of edge cycles in the
boundary of the Ford domain. Suppose that the isometric spheres of gÿ1 and
hÿ1 intersect to give such an edge. Let T�g; h� denote the ideal triangle in H 3

with vertices at y; g�y� and h�y� (these last two points are the centres of the
isometric spheres that give rise to the edge). By Jùrgensen's theorem, this edge
lies in a cycle of length 3 and the three group elements form a generator triple.
It is clear that the other members of this cycle are the intersections of the
isometric spheres of the pairs �g; hÿ1g� and �h; gÿ1h�. We analogously de®ne the
triangles T�gÿ1h; gÿ1� and T�hÿ1; hÿ1g�. The edge cycle extends to these tri-
angles, namely:

gÿ1 : T�g; h� 7! T�gÿ1h; gÿ1�;
hÿ1g : T�gÿ1h; gÿ1� 7! T�hÿ1; hÿ1g�;

h : T�hÿ1; hÿ1g� 7! T�g; h�:

The intersection of T�g; h� with the Ford domain is a quadrilateral (denoted by
E in Figure 5). Similarly, the intersection of T�gÿ1h; gÿ1� and T�hÿ1; hÿ1g�
with the Ford domain of G are quadrilaterals (denoted by C and A respectively).
The pull backs of these three quadrilaterals then tile T�g; h�. In Figure 5

Figure 5. A cutting surface corresponding to the generator triple �g; h; ghÿ1�. In order to embed

this into the manifold, bend along the bold lines.
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these quadrilaterals are E, h�A� and g�C�. Also, consider the ideal triangle
T�gÿ1; hÿ1�. Analogously, this lies in a cycle of length 3, namely:

g : T�gÿ1; hÿ1� 7! T�ghÿ1; g�;
hgÿ1 : T�ghÿ1; g� 7! T�h; hgÿ1�;

hÿ1 : T�h; hgÿ1� 7! T�gÿ1; hÿ1�:
Figure 5 illustrates the tessellation of T�gÿ1; hÿ1� by the quadrilaterals B, hÿ1�D�
and gÿ1�F�. The six quadrilaterals A, B, C, D, E and F may be glued together
to form a polygon inside the Ford domain of G, as indicated in Figure 5. If we
now build up M � H 3=G by identifying the sides of the Ford domain as usual,
then this particular polygon becomes a punctured torus embedded in M. This
punctured torus consists of two ¯at triangles (corresponding to T�g; h� and
T�gÿ1; hÿ1�) which are glued together at constant `bending angle' along three
disjoint geodesic arcs which begin and end at the puncture. We call such a
surface a cutting surface. The way in which a cutting surface is embedded in the
Ford domain makes it clear that the cutting surface disconnects the manifold.

We remark that Figure 5 illustrates the generic situation, where the in-
tersection of the cutting surface and the isometric spheres is contained in the
triangles T�g; h� and T�gÿ1; hÿ1�. Our construction also works for more general
con®gurations; the crucial point is that T�g; h� and T�gÿ1; hÿ1� may be glued to
form an embedded simplicial surface.

We now repeat this construction for every generator triple that gives rise to
an edge cycle of the Ford domain. To each of these triples there corresponds a
cutting surface. The set of these cutting surfaces is naturally ordered by the path
through the Farey tessellation. In particular this gives a sequence of surfaces
which allow us to deduce that the group is geometrically tame. We remark that
it may not be immediately clear that the end of the manifold is a topological
product (which is also necessary for geometrical tameness). This follows
immediately because our group is in the closure of quasi-Fuchsian space (by
Minsky's theorem [26]), and hence its quotient manifold is a topological product.
Alternatively, one may interpolate between adjacent cutting surfaces using sur-
faces with the following properties. They are the union of pieces of vertical
planes and they intersect the boundary of the Ford domain in points which are
identi®ed pairwise by elements of the group. Hence, we have proved the fol-
lowing special case of a result of Thurston (Theorem 9.2 of [37]).

Theorem 3.11. A punctured torus group with a singly cusped parabolic ®xed
point is geometrically tame.

We now turn our attention from the cutting surfaces and investigate the
regions between adjacent cutting surfaces. It will turn out that these regions are
in fact ideal tetrahedra and the boundary of each of these tetrahedra consists of
two pairs of ideal triangles arising from the cutting surfaces.
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Let us begin with a cutting surface associated to a generator triple
�g; h; ghÿ1� (compare Figure 5). There are two edge cycles of the Ford domain
associated to this cutting surface. One of these is contained in the pairwise
intersection of the isometric spheres of �gÿ1h; h�, �g; ghÿ1�, �hÿ1; gÿ1�, the other in
the intersections of the isometric spheres of �h; g�, �ghÿ1; hÿ1�, �gÿ1; hgÿ1�. We
need to ®nd the generator triple which is associated to an adjacent cutting
surface. In order to do this, choose one of the six edges mentioned above.
Move along this edge towards the geometrically in®nite end. If we do not
meet a vertex, then we have come to the end of the manifold, and the end was
not geometrically in®nite after all. Therefore we must reach a vertex. By
Jùrgensen's theorem, this vertex must have valence 3. Hence, the edge we are
considering bifurcates into two new edges, a new face appearing between them.
Again using Jùrgensen's theorem, we see that this new face must be associated to
a neighbour of the two faces giving our ®rst edge. For example, let us suppose
that we are considering the edge which is the intersection of the isometric spheres
of �h; g�. The new face must be a common neighbour, so is in the isometric
sphere of one of gh, hg, ghÿ1, gÿ1h or their inverses.

There are two possibilities. First, the new face may not be one we have
already seen in our cutting surface. In Figure 5 we illustrate this in the case
where the new face is in the isometric sphere of gh. Thus the new cutting surface
is associated to the triple �g; h; gh�. Secondly, the new face may already give a
face from our cutting surface. In this case two of the edges associated to our
cutting surface meet. We again illustrate this from Figure 5 but need to use a
di¨erent edge. Let us suppose that these are the edges arising from the in-
tersection of the isometric spheres of �g; hÿ1g� and �hÿ1g; hÿ1�. By Jùrgensen's
theorem, this vertex has valence 3 and the third edge is in the intersection of the
isometric spheres of �g; hÿ1�. Therefore the triangle T�gÿ1; h� is part of the next
cutting surface. This determines the new triple as �g; h; gh�.

These processes are the reverse of each other. It is not hard to see that for
each cutting surface, both possibilities must occur. Two of the edges each
bifurcate to give a pair of new faces and four new edges while the other four
edges meet in pairs and give two new edges. These six new edges are the ones
associated to the new cutting surface. That they form two edge cycles of length
three may be seen using the gluing patterns derived from our ®rst cutting surface.

We now characterise the region between adjacent cutting surfaces.

Proposition 3.12. Suppose the generator triples �g; h; gh� and �g; h; ghÿ1�
give rise to edge cycles of the Ford domain (and hence cutting surfaces). Consider
the ideal tetrahedron with vertices y, g�y�, h�y� and gh�y�. Then the pro-
jection of this tetrahedron to M has as its boundary the cutting surfaces for the
generator triples �g; h; gh� and �g; h; ghÿ1�.

Proof. The boundary of the tetrahedron considered in the statement of
the proposition consists of four ideal triangles. Clearly, two of these are
the triangles T�gh; g� � g�T�gÿ1; h�� and T�h; gh� � h�T�g; hÿ1��. By de®nition,
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T�g; hÿ1�UT�gÿ1; h� is the cutting surface associated to the generator triple
�g; h; gh�. The other two faces of the tetrahedron are T�g; h� and
gh�T�gÿ1; hÿ1��. The union of T�g; h� and T�gÿ1; hÿ1� gives the cutting surface
associated to �g; h; ghÿ1�. Thus, the boundary of the tetrahedron is in the
G-orbit of the union of these two cutting surfaces. r

Figure 6 shows the vertical projection onto the Riemann sphere of the
cutting surfaces associated to �g; h; ghÿ1� (solid line) and �g; h; gh� (dashed line).
Each of the ideal triangles shown in Figure 5 has projected to a line. The union
of these lines over all cutting surfaces is a graph dual to the projection of the
Ford domain. The four triangles between the two cutting surfaces are the
vertical projections of four hyperbolic polyhedra. Each of these polyhedra has
three in®nite faces (corresponding to quadrilaterals in the cutting surfaces) and
three ®nite faces (corresponding to pieces of the isometric spheres associated to
the vertices of the triangle). When we use the side identi®cations to glue these
polyhedra together we obtain the ideal tetrahedron of Proposition 3.12 (in just the
same way that the triangle T�g; h� is formed by identifying sides of the three
quadrilaterals A, C and E ).

One could perform the analogous construction in the case of ®bre bundles
over the circle with ®bre the punctured torus. This would verify the assertion of
Bowditch on page 329 of [13].

3.6. Pivots
In this section we shall give an estimate on the size of the isometric sphere of

a pivot. For this we ®rst require the following lemma which improves Lemma 2
of [19].

Lemma 3.13. If g and h are neighbours, and either g or h is a pivot, then

Figure 6. Two adjacent cutting surfaces seen from above. Here either g or h (or both) is a pivot.
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1

jtr�g�j2 �
1

jtr�h�j2 >
1

4
:

Proof. Without loss of generality, we assume that there exist faces of the
Ford domain which are contained in the isometric spheres of g, h, gh, ghÿ1 and
their inverses. Using the estimate of the height of a vertex in Proposition 3.7, it
follows that

4jtr�g�j2 � 4jtr�h�j2 > 2jtr�gh�j2 � 2jtr�ghÿ1�j2

b jtr�gh� � tr�ghÿ1�j2

� jtr�g� tr�h�j2;

where we have used the well known relation

tr�g� tr�h� � tr�gh� � tr�ghÿ1�: r

We now give the estimate on the size of isometric spheres of pivots, showing
that the absolute value of the trace of a pivot is bounded. The estimate is an
adaptation of Jùrgensen's method in [19], where the weaker bound 4� 2

���
5
p

is
obtained.

Proposition 3.14. If g is a pivot, then jtr�g�j < 2
���
3
p

.

Proof. Using Lemma 3.13 and the fact that a pivot is by de®nition the end
of two spanning edges, we have for the neighbours h and gh of the pivot g so that

1

jtr�g�j2 �
1

jtr�h�j2 >
1

4
;

1

jtr�g�j2 �
1

jtr�gh�j2 >
1

4
:

If jtr�g�ja 2 we already may deduce the estimate in the proposition. Hence
we assume without loss of generality that jtr�g�j > 2. Rearranging the above
estimates gives

jtr�h�j2 < 4jtr�g�j2
jtr�g�j2 ÿ 4

; jtr�gh�j2 < 4jtr�g�j2
jtr�g�j2 ÿ 4

:

We may also assume that among all vertices of the Ford domain on the isometric
sphere of g, the vertex corresponding to the triple �g; h; gh� has the smallest
height. This means that, with the notation of Figure 4, the internal angle of the
triangle ABG at the vertex B is acute. Using the cosine rule, this gives

jtr�g�j2 < jtr�h�j2 � jtr�gh�j2:
Combining these three inequalities, we obtain
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jtr�g�j2 < jtr�h�j2 � jtr�gh�j2

<
8jtr�g�j2
jtr�g�j2 ÿ 4

:

It follows that jtr�g�j2 ÿ 4 < 8, which gives the result. r

3.7. Neighbours and horospherical tameness
In this section we show that a punctured torus group G is horospherically

tame if and only if each face of the Ford domain of G, which corresponds to a
pivot, has a bounded number of sides. This is equivalent to saying that the
associated end invariant is badly approximable. In particular, this will clarify a
remark of Sullivan in [35], which we quote verbatim at the end of this section.

As we have already seen, the patterns one sees in the Farey tessellation when
going towards an irrational number are (by Jùrgensen's theorem) related to the
combinatorics of the Ford domain. The goal of this section is to make this
connection more explicit and to interpret this in the context of the geometry of
the manifold. As one goes towards an irrational point on the boundary of the
Farey tessellation (by the above remarks this number will be the end invariant)
then one crosses an in®nite sequence of edges, each edge corresponding to a pair
of neighbours (that is a pair of curves on the punctured torus intersecting exactly
once). Adjacent edges that one crosses are boundary arcs of the same triangle in
the Farey tessellation. There are two possibilities: the third edge of this triangle
is either on the left or on the right (see [31]). Topologically, this corresponds to
obtaining the new set curves by doing a Dehn twist about one or the other of
them. Algebraically, this corresponds to doing di¨erent Nielsen moves on the
generators. If we cross a sequence of m� 1 edges in the Farey tessellation so
that the third edge in the m triangles we pass through is always on the left, then
these triangles all have a common vertex. This group element is a pivot (see
[26]). Arithmetically, this corresponds to seeing the number m in the continued
fraction expansion of our irrational number. As the pattern in the Farey
tessellation is dual to the pattern we see in the Ford domain, we have a face in
the Ford domain, in the isometric sphere of the pivot, with at least m� 1 edges
(in fact 2m� 4).

We can now ask what this means in terms of the cutting surfaces and the
tetrahedral decomposition we discussed earlier. When viewing the Ford domain
and cutting surfaces from above (as in Figure 6) we see that the cutting surface is
a pattern of 6 line segments joining a point z to the point z� 2. If the point z is
the centre of the isometric sphere of our pivot, we see that we must have m� 1
cutting surfaces from z to z� 2 and the regions between these are all triangles.
Moreover, the cutting surfaces never contain points whose imaginary parts are
more than a uniformly bounded distance from the imaginary part of z. In order
to see this, recall that the cutting surface is contained in the union of six isometric
spheres which pairwise intersect and whose radii are at most 1. Putting all of
this together, we see that, if m is large, then some of the triangles one sees
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between the cutting surfaces become long and thin. This in turn means that
when we consider the tetrahedral decomposition of the geometrically in®nite end
of the manifold, then at least some of these tetrahedra become long and thin. In
particular, when we cut o¨ the vertices using the Leutbecher horoballs, then the
remaining compact pieces have diameter which increases with m. If m is allowed
to increase unboundedly over a sequence of pivots, this means that the manifold
is not horospherically tame. Making this statement precise is the object of this
section. Also, the tori given by the cutting surfaces become very long and thin:
that is, they have a very short closed geodesic and this short geodesic corresponds
to the pivot. This in turn means that in the 3-manifold the geodesic associated
to the pivot is also short. Thus, when m is large enough, the e-thin part of the
manifold contains Margulis tubes as well as cusp neighbourhoods.

We now want to quantify the above discussion. If g is a pivot with m� 1
neighbours, each giving rise to sides of the Ford domain as discussed above, then
the number m is called the width of g. Observe that if g is a pivot of width m,
then the neighbours of g giving rise to faces in the Ford domain can be taken to
have the form h; gh; . . . ; gmh, for some h in G. In this situation, h and gmh are
both pivots, and we shall refer to them as extreme neighbours. The following
result should be compared to Lemma 5 of [19] or Theorem 4.1(i) of [26].

Proposition 3.15. Let �gn� be a sequence of pivots of width mn. If mn tends
to in®nity with n, then, as n tends to in®nity, the translation length of gn tends to
zero.

Proof. Suppose ®rst that mn � 2j is even. Let hn and g2j
n hn be the extreme

neighbours of gn. Since these are both pivots, it follows from Proposition 3.14
that jtr�hn�ja 2

���
3
p

and jtr�g2j
n hn�ja 2

���
3
p

.
Now suppose that mn � 2j � 1 is odd. Let hn and g2j�1

n hn be the extreme
neighbours of gn. Since these are both pivots, it follows that jtr�hn�ja 2

���
3
p

and
jtr�g2j�1

n hn�ja 2
���
3
p

. Clearly, g2j
n hn has two pivots as neighbours (namely, gn and

g2j�1
n hn). It follows that

jtr�g2j
n hn�ja jtr�gn�j � jtr�g2j�1

n hn�ja 4
���
3
p

:

Hence, in either case we have that

jtr�g j
n�ja jtr�g j

n� tr�g j
nhn�j � jtr�hn� � tr�g2j

n hn�ja 6
���
3
p

:

Note, in this estimate we have implicitly used the fact that jtr�g j
nhn�jb 1. Let

�mn=2� denote the integer part of mn=2. The previous inequality gives a bound
on jtr�g�mn=2�

n �j, for all n. Since gn cannot tend to an elliptic transformation as n
tends to in®nity, it follows that the translation length of gn tends to zero. r

The following proposition can be seen in practice from the example con-
structed by Alestalo and Helling [6].
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Proposition 3.16. Let �gn� be a sequence of pivots of width mn. Among all
neighbours of gn which give rise to faces of the Ford domain, let hn denote the one
for which jtr�hn�j is maximal. Then, the sequence �jtr�hn�j� is unbounded if and
only if �mn� is unbounded.

Proof. In the following we consider the intersection of an isometric sphere
with the complex plane. As usual, this intersection will be called a isometric circle.

Without loss of generality, we ®rst assume that mn tends to in®nity. The
distance between the poles of gn and hn is at most equal to 2, since the radii of
their isometric circles (which intersect) are at most equal to 1. Thus, every
neighbour of gn giving rise to a face in the Ford domain has its pole within a
circle of radius 2 centred at the pole of gn. Let ln denote the shortest distance
between the centres of two of these isometric circles. By construction, there
exist mn � 1 pairwise disjoint discs of radius ln=2 which are contained in the
disc of radius 2� ln=2 centred at the pole of gn. Comparing the areas of

these discs, we obtain the estimate �mn � 1��ln=2�2p a �2� ln=2�2p, and thus ln a
4=� ��������������mn � 1
p ÿ 1�a 4�1� ���

2
p �= ������

mn
p

. Hence, ln tends to zero as mn tends to
in®nity. Observing that ln b 1=jtr�hn�j2, it follows that jtr�hn�j tends to in®nity.

Now, suppose that mn is bounded, say gn has width at most M, for all n.
Then there exists j a mn a M ÿ 1 such that g j

nhn is a pivot and gi
nhn gives rise to

a face of the Ford domain, for all 0 a i a j. This implies that

jtr�hn�ja jtr�gn�j � jtr�gnhn�j
a jjtr�gn�j � jtr�g j

nhn�j
< 2� j � 1�

���
3
p

a 2M
���
3
p

: r

The following theorem gives the main result of this section. Recall that an
irrational number is badly approximable if the entries in its continued fraction
expansion are bounded from above by some positive ®xed number.

Theorem 3.17. Let G be a punctured torus group with a singly cusped

parabolic ®xed point. The end invariant of M � H 3=G is badly approximable if
and only if G is horospherically tame.

Proof. By construction, the width of a pivot of G can be interpreted as an
entry in the continued fraction expansion of the associated end invariant x (see
the remark on page 10 of [26]).

Suppose ®rst that the entries in the continued fraction expansion of the end
invariant x are unbounded. Proposition 3.16 implies that there exists a sequence
�hn� of generators of G giving rise to sides in the Ford domain, such that the radii
of the isometric spheres of the hn become arbitrarily small. It follows that there
exists a sequence of points in the intersection of the Nielsen region and the Ford
domain with unbounded distance from the Leutbecher horoball Hy. Since these
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points are contained in the Ford domain, they are at least as far from all other
Leutbecher horoballs. It follows that G is not horospherically tame.

Suppose now that the entries in the continued fraction expansion of x are
bounded. Therefore, the radii of all isometric spheres which give rise to faces in
the boundary of the Ford domain are bounded away from zero. We shall see that
this means that the heights of the vertices of the Ford domain are bounded away
from zero. Clearly, this then implies that the group is horospherically tame.

It is su½cient to show that if all isometric spheres containing faces of the
Ford domain have radius at least r, for some positive r, then there exists a
positive lower bound T for the heights of the vertices of the Ford domain. Let
�g; h� be a pair of neighbours which are ends of a spanning edge. Suppose ®rst

that jtr�g�j2 � jtr�h�j2 > jtr�gh�j2 and jtr�g�j2 � jtr�h�j2 > jtr�ghÿ1�j2. An imme-
diate consequence of Proposition 3.10 is that the heights of the vertices corre-
sponding to �g; h; gh� and �g; h; ghÿ1� are at least equal to r=

���
3
p

. Now suppose
that �g0; h0; g0h0� is a generator triple giving rise to the vertex �z0; t0� of the Ford
domain and, furthermore, that jtr�g0�j2 � jtr�h0�j2 a jtr�g0h0�j2. Proposition 3.9
implies that t0 does not lead to a local minimum of the height function. By
construction, the points near �z0; t0� on the boundary of the Ford domain with
height less than t0 are contained in the isometric sphere of g0h0. In particular,
there is a vertex �z1; t1� of the Ford domain with t1 a t0, such that �z1; t1�
corresponds to a generator triple �g1; h1; g1h1�, where g1 � g0h0. If these gen-
erators satisfy the conditions of Proposition 3.10, then t1, and hence also t0, is at
least equal to r=

���
3
p

. When these conditions are not satis®ed, we repeat this
process to obtain a sequence of vertices of the Ford domain with decreasing
height. We claim that there is a universal bound on the number of times we
need to do this until we obtain a vertex corresponding to a generator triple
satisfying the conditions of Proposition 3.10.

Speci®cally, suppose that for each 0 a i a j we have a vertex �zi; ti� of the
Ford domain corresponding to a generator triple �gi; hi; gihi� such that gi�1 � gihi,
ti�1 a ti and jtr�gi�j2 � jtr�hi�j2 a jtr�gi�1�j2, for each 0 a i a j ÿ 1. Then we
have in particular that

jtr�gj�j2 b jtr�gjÿ1�j2 � jtr�hjÿ1�j2

b jtr�gjÿ1�j2 � 1

b jtr�g0�j2 � j:

Since by assumption jtr�gj�ja 1=r, it follows that there exists j a 1=r2 for which
jtr�gj�j2 � jtr�hj�j2 > jtr�gjhj�j2 and jtr�gj�j2 � jtr�hj�j2 > jtr�gjh

ÿ1
j �j2. Now, since

we have that r=
���
3
p

< tj a ti a t0, the result follows. r

Remark. In [35] Sullivan de®nes a hyperbolic half cylinder to be a manifold
M for which

. the fundamental group G of M is isomorphic to p1�S�, where S is a
compact surface;
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. the ordinary set W�G� is non-empty;

. there are embeddings f fn : S !Mg of S with bounded diameter so that
fn�S� has distance between n and n� 1 from some initial embedding f0�S�.
Sullivan then makes the following assertion ([35], page 142), which we now quote
verbatim and which should be compared with Theorem 3.17.

Sullivan. In Jorgensen's description [19] of the punctured torus case,
Teichmuller space is the PoincareÂ disk and the geometry of the hyperbolic 3-
manifold corresponding to the limit group is controlled by the tail of the continued
fraction expansion of a limiting point on the boundary of the disk. A hyperbolic
half cylinder results (we ignore the cusp) i¨ the partial convergents are bounded.

3.8. Two examples
We conclude with two examples of punctured torus groups with singly

cusped parabolic ®xed points. The group in the ®rst example is horospherically
tame, whereas the group in the second is not. Since both groups are geo-
metrically tame, this illustrates that, for punctured torus groups, horospherical
tameness is in fact a stronger notion than geometrical tameness.

Example 1 (a punctured torus group which is horospherically tame).
This example is considered by McMullen, Mumford, Wright in [27], who call

it the Fibonacci example. Here, G is the punctured torus group whose end
invariant x is the golden ratio x � �1� ���

5
p �=2 � �1; 1; 1; . . .� (where, in particular,

the edges in the Farey tessellation, crossed by the path towards x, alternate
between left and right). A part of the limit set for this group in the case where
the geometrically ®nite end has been pinched to a thrice punctured sphere is
shown in Figure 7. Every generator g of G is a pivot (of width 1), and for its
trace we have jtr�g�j < 2

���
3
p

. Also, every face in the Ford domain is a hexagon
(compare this to the ®rst example in [20]). Using similar arguments to those in
the proof of Theorem 3.17, we see that every vertex of the Ford domain has
height at least equal to 1=6. Therefore, if in the de®nition of horospherical
tameness we choose K � log�6�, then it follows that G is horospherically tame.

Example 2 (a punctured torus group which is not horospherically tame).
Let G denote a punctured torus group whose associated end invariant is

given by the irrational number with continued fraction expansion
�1; 2; 3; 4; 5; . . .�. Now, if g is the mth pivot of G, then g is of width m.
Furthermore, using the estimates obtained in the proof of Proposition 3.16, g has
a neighbour hm whose isometric sphere has radius

1

jtr�hm�j a
�������������������������

4������������
m� 1
p ÿ 1

s
<

4

m1=4
:

Obviously, isometric spheres of this type contribute to the boundary of the Ford
domain of G. This implies that there exists no ®nite hyperbolic enlargement
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of the Leutbecher horoball which `swallows up' the convex core of M � H 3=G.
Hence, the group G is not horospherically tame.
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